Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/65298 
Erscheinungsjahr: 
2002
Schriftenreihe/Nr.: 
SFB 373 Discussion Paper No. 2002,27
Verlag: 
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes, Berlin
Zusammenfassung: 
This paper is devoted to the problem of hedging contingent claims in the framework of a complete two-factor jump-diffusion model. In this context, it is well understood that every contingent claim can be hedged perfectly if one invests the unique arbitrage-free price. Based on the results of H. Föllmer and P. Leukert [4][ 5] in a general semimartingale setting, we determine the unique hedging strategies which minimize a suitably defined shortfall risk under a given cost constraint. We derive explicit formulas for this so-called efficient or quantile hedging strategy for a European call option. We then compare the performance of the optimal strategy for different degrees of the investor's risk-aversion.
Schlagwörter: 
Efficient hedging
Quantile Hedging
jump-diffusion
martingale Measure
JEL: 
G10
G12
G13
D81
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
296.45 kB





Publikationen in EconStor sind urheberrechtlich geschützt.