EconStor >
Institut für Angewandte Wirtschaftsforschung (IAW), Tübingen >
IAW-Diskussionspapiere, Institut für Angewandte Wirtschaftsforschung (IAW) >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/56782
  

Full metadata record

DC FieldValueLanguage
dc.contributor.authorRonning, Gerden_US
dc.date.accessioned2012-03-30en_US
dc.date.accessioned2012-04-10T14:04:36Z-
dc.date.available2012-04-10T14:04:36Z-
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/10419/56782-
dc.description.abstractEmpirical research using micro data via remote access has been advocated in recent time by statistical offices since confidentiality is easier warranted for this approach. However, disclosure of single values and units cannot be completely avoided. Binary regressors (dummy variables) bear a high risk of disclosure, especially if their interactions are considered as it is done by definition in saturated models. However, contrary to views expressed in earlier publications the risk is only existing if besides parameter estimates also predicted values are reported to the researcher. The paper considers saturated specifications of the most popular linear and nonlinear microeconometric models and shows that in all cases the disclosure risk is high if some design points are represented by a (very) small number of observations. For two of the models not belonging to the exponential family (probit model and negative binomial regression model) we show that the same estimates of the conditional expectations arise here although the parameter estimates are defined by a modified equation. In the last section we draw attention to the fact that interaction of binary regressors can be used to construct strategic dummy variableswhich lead to hight disclosure risk as shown, for example, in Bleninger et al. (2010) for the linear model. In this paper we extend the analysis to the set of established nonlinear models, in particular logit, probit and count data models.en_US
dc.language.isoengen_US
dc.publisherInstitut für Angewandte Wirtschaftsforschung (IAW) Tübingenen_US
dc.relation.ispartofseriesIAW-Diskussionspapiere 72en_US
dc.subject.ddc330en_US
dc.subject.keywordLogit modelen_US
dc.subject.keywordprobit modelen_US
dc.subject.keywordpoisson regressionen_US
dc.subject.keywordnegative binomial regression modelen_US
dc.subject.keywordstrategic dummy variableen_US
dc.subject.keywordtabular dataen_US
dc.subject.stwMikrodatenen_US
dc.subject.stwDatenschutzen_US
dc.subject.stwRisikoen_US
dc.subject.stwMikroökonometrieen_US
dc.titleDisclosure risk from interactions and saturated models in remote accessen_US
dc.typeWorking Paperen_US
dc.identifier.ppn689527659en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungenen_US
Appears in Collections:IAW-Diskussionspapiere, Institut für Angewandte Wirtschaftsforschung (IAW)

Files in This Item:
File Description SizeFormat
689527659.pdf252.3 kBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.