EconStor >
Queen Mary, University of London >
School of Economics and Finance, Queen Mary, University of London  >
Working Paper Series, School of Economics and Finance, Queen Mary, University of London  >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/55155
  
Title:Forecasting government bond yields with large Bayesian VARs PDF Logo
Authors:Carriero, Andrea
Kapetanios, George
Marcellino, Massimiliano
Issue Date:2010
Series/Report no.:Working Paper // School of Economics and Finance, Queen Mary, University of London 662
Abstract:We propose a new approach to forecasting the term structure of interest rates, which allows to efficiently extract the information contained in a large panel of yields. In particular, we use a large Bayesian Vector Autoregression (BVAR) with an optimal amount of shrinkage towards univariate AR models. Focusing on the U.S., we provide an extensive study on the forecasting performance of our proposed model relative to most of the existing alternative specifications. While most of the existing evidence focuses on statistical measures of forecast accuracy, we also evaluate the performance of the alternative forecasts when used within trading schemes or as a basis for portfolio allocation. We extensively check the robustness of our results via subsample analysis and via a data based Monte Carlo simulation. We find that: i) our proposed BVAR approach produces forecasts systematically more accurate than the random walk forecasts, though the gains are small; ii) some models beat the BVAR for a few selected maturities and forecast horizons, but they perform much worse than the BVAR in the remaining cases; iii) predictive gains with respect to the random walk have decreased over time; iv) different loss functions (i.e., statistical vs economic) lead to different ranking of specific models; v) modelling time variation in term premia is important and useful for forecasting.
Subjects:Bayesian methods
forecasting
term structure
JEL:C11
C53
E43
E47
Document Type:Working Paper
Appears in Collections:Working Paper Series, School of Economics and Finance, Queen Mary, University of London

Files in This Item:
File Description SizeFormat
63222813X.pdf661.08 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/55155

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.