EconStor >
Technische Universität Dortmund >
Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen, Technische Universität Dortmund >
Technical Reports, SFB 475, TU Dortmund >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/49353
  
Title:Bayesian and maximin optimal designs for heteroscedastic regression models PDF Logo
Authors:Dette, Holger
Haines, Linda M.
Imhof, Lorens A.
Issue Date:2003
Series/Report no.:Technical Report // Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen 2003,36
Abstract:The problem of constructing standardized maximin D-optimal designs for weighted polynomial regression models is addressed. In particular it is shown that, by following the broad approach to the construction of maximin designs introduced recently by Dette, Haines and Imhof (2003), such designs can be obtained as weak limits of the corresponding Bayesian Φq-optimal designs. The approach is illustrated for two specific weighted polynomial models and also for a particular growth model.
Document Type:Working Paper
Appears in Collections:Technical Reports, SFB 475, TU Dortmund

Files in This Item:
File Description SizeFormat
379083701.psOriginal Publication385 kBPostscript
379083701.pdf199.24 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/49353

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.