EconStor >
Technische Universität Dortmund >
Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen, Technische Universität Dortmund >
Technical Reports, SFB 475: Komplexitätsreduktion in multivariaten Datenstrukturen, TU Dortmund >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/49340
  

Full metadata record

DC FieldValueLanguage
dc.contributor.authorDette, Holgeren_US
dc.contributor.authorStudden, W. J.en_US
dc.date.accessioned2011-09-06T11:41:35Z-
dc.date.available2011-09-06T11:41:35Z-
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/10419/49340-
dc.description.abstractIn this note we consider the problem of maximizing the determinant of moment matrices of matrix measures. The maximizing matrix measure can be characterized explicitly by having equal (matrix valued) weights at the zeros of classical (one dimensional) orthogonal polynomials. The results generalize classical work of Schoenberg (1959) to the case of matrix measures. As a statistical application we consider several optimal design problems in linear models, which generalize the classical weighing design problems.en_US
dc.language.isoengen_US
dc.publisherUniv., SFB 475 Dortmunden_US
dc.relation.ispartofseriesTechnical Report // Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen 2003,09en_US
dc.subject.ddc310en_US
dc.subject.keywordMatrix measuresen_US
dc.subject.keywordHankel matrixen_US
dc.subject.keywordorthogonal polynomialsen_US
dc.subject.keywordapproximate optimal designsen_US
dc.subject.keywordspring balance weighing designsen_US
dc.titleAn note on the maximization of matrix valued Hankel determinants with applicationen_US
dc.typeWorking Paperen_US
dc.identifier.ppn369861892en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungenen_US
dc.identifier.repecRePEc:zbw:sfb475:200309-
Appears in Collections:Technical Reports, SFB 475: Komplexitätsreduktion in multivariaten Datenstrukturen, TU Dortmund

Files in This Item:
File Description SizeFormat
369861892.pdf137.03 kBAdobe PDF
369861892.psOriginal Publication290.29 kBPostscript
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.