EconStor >
Deutsche Bank Research, Frankfurt am Main >
Research Notes, Deutsche Bank Research >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/40262
  
Title:Linking series generated at different frequencies and its applications PDF Logo
Authors:Hyung, Namwon
Issue Date:1998
Series/Report no.:Research notes in economics & statistics 99-1
Abstract:This paper systematically studies the use of mixed-frequency data sets and suggests that the use of high frequency data in forecasting economic aggregates can improve forecast accuracy. The best way of using this information is to build a single model, for example, an ARMA model with missing observations, that relates data of all frequencies. The implementation of such an approach, however, poses serious practical problems in all but the simplest cases. As a feasible and consistent alternative, we propose a two-stage procedure to obtain pseudo high frequency data and to subsequently use these artificial values as proxies for macroeconomic or financial models. This alternative method yields a sub-optimal forecast in general but avoids the computational problems of a full-blown single model. Our approach differs from classical interpolation since we only use past and current information to get the pseudo series. A proxy, which is constructed by classical interpolation, may fit very well in sample, but it is not useful for out-of-sample forecasts. As applications of linking series generated at different frequencies, we show that the use of monthly proxies of GDP improves the predictability of absolute stock returns and the unemployment rate compared to the use of industrial production as an alternative proxy.
Subjects:Linked ARMA
Kalman Filter
Interpolation
Temporal Transformation
High Frequency Data
Virtual Reality Variable
JEL:C3
C4
C5
Document Type:Working Paper
Appears in Collections:Research Notes, Deutsche Bank Research

Files in This Item:
File Description SizeFormat
266190863.pdf366.65 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/40262

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.