EconStor >
Technische Universität Dortmund >
Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen, Technische Universität Dortmund >
Technical Reports, SFB 475: Komplexitätsreduktion in multivariaten Datenstrukturen, TU Dortmund >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/36602
  
Title:Kernelized design of experiments PDF Logo
Authors:Rüping, Stefan
Weihs, Claus
Issue Date:2009
Series/Report no.:Technical Report // Sonderforschungsbereich 475, Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund 2009,02
Abstract:This paper describes an approach for selecting instances in regression problems in the cases where observations x are readily available, but obtaining labels y is hard. Given a database of observations, an algorithm inspired by statistical design of experiments and kernel methods is presented that selects a set of k instances to be chosen in order to maximize the prediction performance of a support vector machine. It is shown that the algorithm significantly outperforms related approaches on a number of real-world datasets.
Document Type:Working Paper
Appears in Collections:Technical Reports, SFB 475: Komplexitätsreduktion in multivariaten Datenstrukturen, TU Dortmund

Files in This Item:
File Description SizeFormat
600486184.PDF125.82 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/36602

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.