EconStor >
Technische Universität Dortmund >
Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen, Technische Universität Dortmund >
Technical Reports, SFB 475: Komplexitätsreduktion in multivariaten Datenstrukturen, TU Dortmund >

Please use this identifier to cite or link to this item:
Title:An exact upper limit for the variance bias in the carry-over model with correlated errors PDF Logo
Authors:Sailer, Oliver
Issue Date:2009
Series/Report no.:Technical Report // Sonderforschungsbereich 475, Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund 2009,01
Abstract:The analysis of crossover designs assuming i.i.d. errors leads to biased variance estimates whenever the true covariance structure is not spherical. As a result, the OLS F-Test for treatment differences is not valid. Bellavance et al. (Biometrics 52:607-612, 1996) use simulations to show that a modified F-Test based on an estimate of the within subjects covariance matrix allows for nearly unbiased tests. Kunert and Utzig (JRSS B 55:919-927, 1993) propose an alternative test that does not need an estimate of the covariance matrix. However, for designs with more than three observations per subject Kunert and Utzig (1993) only give a rough upper bound for the worst-case variance bias. This may lead to overly conservative tests. In this paper we derive an exact upper limit for the variance bias due to carry-over for an arbitrary number of observations per subject. The result holds for a certain class of highly efficient carry-over balanced designs.
correlated errors
crossover designs
fixed effects model
upper limit
variance estimation
Document Type:Working Paper
Appears in Collections:Technical Reports, SFB 475: Komplexitätsreduktion in multivariaten Datenstrukturen, TU Dortmund

Files in This Item:
File Description SizeFormat
600485838.PDF201.18 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.