EconStor >
Forschungsinstitut zur Zukunft der Arbeit (IZA), Bonn >
IZA Discussion Papers, Forschungsinstitut zur Zukunft der Arbeit (IZA) >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/35636
  

Full metadata record

DC FieldValueLanguage
dc.contributor.authorAaberge, Rolfen_US
dc.date.accessioned2008-12-02en_US
dc.date.accessioned2010-07-07T11:54:40Z-
dc.date.available2010-07-07T11:54:40Z-
dc.date.issued2008en_US
dc.identifier.piurn:nbn:de:101:1-20081202110en_US
dc.identifier.urihttp://hdl.handle.net/10419/35636-
dc.description.abstractThis paper is concerned with the problem of ranking Lorenz curves in situations where the Lorenz curves intersect and no unambiguous ranking can be attained without introducing weaker ranking criteria than first-degree Lorenz dominance. To deal with such situations two alternative sequences of nested dominance criteria between Lorenz curves are introduced. At the limit the systems of dominance criteria appear to depend solely on the income share of either the worst-off or the best-off income recipient. This result suggests two alternative strategies for increasing the number of Lorenz curves that can be strictly ordered; one that places more emphasis on changes that occur in the lower part of the income distribution and the other that places more emphasis on changes that occur in the upper part of the income distribution. Both strategies turn out to depart from the Gini coefficient; one requires higher degree of downside and the other higher degree of upside inequality aversion than what is exhibited by the Gini coefficient. Furthermore, it is demonstrated that the sequences of dominance criteria characterize two separate systems of nested subfamilies of inequality measures and thus provide a method for identifying the least restrictive social preferences required to reach an unambiguous ranking of a given set of Lorenz curves. Moreover, it is demonstrated that the introduction of successively more general transfer principles than the Pigou-Dalton principle of transfers forms a helpful basis for judging the normative significance of higher degrees of Lorenz dominance. The dominance results for Lorenz curves do also apply to generalized Lorenz curves and thus provide convenient characterizations of the corresponding social welfare orderings.en_US
dc.language.isoengen_US
dc.publisherIZA Bonnen_US
dc.relation.ispartofseriesIZA discussion papers 3852en_US
dc.subject.jelD31en_US
dc.subject.ddc330en_US
dc.subject.keywordLorenz curveen_US
dc.subject.keywordLorenz dominanceen_US
dc.subject.keywordpartial orderingsen_US
dc.subject.keywordGini coefficienten_US
dc.subject.keywordrankdependent measures of inequalityen_US
dc.subject.keywordgeneralized Gini families of inequality measuresen_US
dc.subject.keywordgeneral principles of transfersen_US
dc.subject.stwLorenz-Kurveen_US
dc.subject.stwGini-Koeffizienten_US
dc.subject.stwRanking-Verfahrenen_US
dc.subject.stwDisparitätsmaßen_US
dc.subject.stwTheorieen_US
dc.titleRanking intersecting Lorenz curvesen_US
dc.typeWorking Paperen_US
dc.identifier.ppn586153101en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-
Appears in Collections:IZA Discussion Papers, Forschungsinstitut zur Zukunft der Arbeit (IZA)

Files in This Item:
File Description SizeFormat
586153101.pdf292.02 kBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.