EconStor >
Institut für Weltwirtschaft (IfW), Kiel >
Publikationen von Forscherinnen und Forschern des IfW >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/3407
  

Full metadata record

DC FieldValueLanguage
dc.contributor.authorLux, Thomasen_US
dc.date.accessioned2009-01-28T14:26:47Z-
dc.date.available2009-01-28T14:26:47Z-
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/10419/3407-
dc.description.abstractMulti-fractal processes have recently been proposed as a new formalism for modelling the time series of returns in finance. The major attraction of these processes is their ability to generate various degrees of long memory in different powers of returns - a feature that has been found in virtually all financial data. Initial difficulties stemming from non-stationarity and the combinatorial nature of the original model have been overcome by the introduction of an iterative Markov-switching multi-fractal model in Calvet and Fisher (2001) which allows for estimation of its parameters via maximum likelihood and Bayesian forecasting of volatility. However, applicability of MLE is restricted to cases with a discrete distribution of volatility components. From a practical point of view, ML also becomes computationally unfeasible for large numbers of components even if they are drawn from a discrete distribution. Here we propose an alternative GMM estimator together with linear forecasts which in principle is applicable for any continuous distribution with any number of volatility components. Monte Carlo studies show that GMM performs reasonably well for the popular Binomial and Lognormal models and that the loss incured with linear compared to optimal forecasts is small. Extending the number of volatility components beyond what is feasible with MLE leads to gains in forecasting accuracy for some time series.en_US
dc.language.isoengen_US
dc.publisherEconomics working paper / Christian-Albrechts-Universität Kiel, Department of Economics 2004,11en_US
dc.relation.ispartofseriesEconomics working paper / Christian-Albrechts-Universität Kiel, Department of Economics 2004,11en_US
dc.subject.jelC20en_US
dc.subject.jelG12en_US
dc.subject.ddc330-
dc.subject.keywordMarkov-switchingen_US
dc.subject.keywordMultifractal-
dc.subject.keywordForecasting-
dc.subject.keywordVolatility-
dc.subject.keywordGMM estimation-
dc.subject.stwKapitalertragen_US
dc.subject.stwBörsenkursen_US
dc.subject.stwVolatilitäten_US
dc.subject.stwPrognoseverfahrenen_US
dc.subject.stwPhysiken_US
dc.subject.stwMarkovscher Prozessen_US
dc.subject.stwZeitreihenanalyseen_US
dc.subject.stwTheorieen_US
dc.titleThe Markov-switching multi-fractal model of asset returns: GMM estimation and linear forecasting of volatilityen_US
dc.typeWorking Paperen_US
dc.identifier.ppn475074467en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-
dc.identifier.repecRePEc:zbw:cauewp:2442-
Appears in Collections:Publikationen von Forscherinnen und Forschern des IfW
Economics Working Papers, Department of Economics, CAU Kiel

Files in This Item:
File Description SizeFormat
EWP-2004-11.pdf646.83 kBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.