EconStor >
Ludwig-Maximilians-Universität München (LMU) >
Sonderforschungsbereich 386: Statistische Analyse diskreter Strukturen, Universität München (LMU) >
Discussion papers, SFB 386, LMU München >

Please use this identifier to cite or link to this item:

Full metadata record

DC FieldValueLanguage
dc.contributor.authorCoolen, F. P. A.en_US
dc.contributor.authorAugustin, Thomasen_US
dc.description.abstractNonparametric Predictive Inference (NPI) is a general methodology to learn from data in the absense of prior knowledge and without adding unjustified assumptions. This paper develops NPI for multinominal data where the total number of possible categories for the data is known. We present the general upper and lower probabilities and several of their properties. We also comment on differences between this NPI approach and corresponding inferences based on Walley's Imprecise Dirichlet Model.en_US
dc.publisherTechn. Univ.; Sonderforschungsbereich 386, Statistische Analyse Diskreter Strukturen Münchenen_US
dc.relation.ispartofseriesDiscussion paper // Sonderforschungsbereich 386 der Ludwig-Maximilians-Universität München 489en_US
dc.subject.keywordImprecise Dirichlet Modelen_US
dc.subject.keywordimprecise probabilitiesen_US
dc.subject.keywordinterval probabilityen_US
dc.subject.keywordknown number of categoriesen_US
dc.subject.keywordlower and upper probabilitiesen_US
dc.subject.keywordmultinominal dataen_US
dc.subject.keywordnonparametric predictive inferenceen_US
dc.subject.keywordprobability wheelen_US
dc.titleA nonparametric predictive alternative to the Imprecise Dirichlet Model: the case of a known number of categoriesen_US
dc.typeWorking Paperen_US
Appears in Collections:Discussion papers, SFB 386, LMU München

Files in This Item:
File Description SizeFormat
51717927X.PDF201.73 kBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.