EconStor >
Ludwig-Maximilians-Universität München (LMU) >
Sonderforschungsbereich 386: Statistische Analyse diskreter Strukturen, Universität München (LMU) >
Discussion papers, SFB 386, LMU München >

Please use this identifier to cite or link to this item:
Title:A nonparametric predictive alternative to the Imprecise Dirichlet Model: the case of a known number of categories PDF Logo
Authors:Coolen, F. P. A.
Augustin, Thomas
Issue Date:2006
Series/Report no.:Discussion paper // Sonderforschungsbereich 386 der Ludwig-Maximilians-Universität München 489
Abstract:Nonparametric Predictive Inference (NPI) is a general methodology to learn from data in the absense of prior knowledge and without adding unjustified assumptions. This paper develops NPI for multinominal data where the total number of possible categories for the data is known. We present the general upper and lower probabilities and several of their properties. We also comment on differences between this NPI approach and corresponding inferences based on Walley's Imprecise Dirichlet Model.
Subjects:Imprecise Dirichlet Model
imprecise probabilities
interval probability
known number of categories
lower and upper probabilities
multinominal data
nonparametric predictive inference
probability wheel
Persistent Identifier of the first edition:urn:nbn:de:bvb:19-epub-1857-4
Document Type:Working Paper
Appears in Collections:Discussion papers, SFB 386, LMU München

Files in This Item:
File Description SizeFormat
51717927X.PDF201.73 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.