EconStor >
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) >
Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW), Universität Erlangen-Nürnberg >
IWQW Discussion Paper Series, FAU Erlangen-Nürnberg >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/29547
  

Full metadata record

DC FieldValueLanguage
dc.contributor.authorKlein, Ingoen_US
dc.contributor.authorGrottke, Michaelen_US
dc.date.accessioned2009-11-09en_US
dc.date.accessioned2010-01-13T14:01:50Z-
dc.date.available2010-01-13T14:01:50Z-
dc.date.issued2008en_US
dc.identifier.urihttp://hdl.handle.net/10419/29547-
dc.description.abstractKeynes (1911) derived general forms of probability density functions for which the "most probable value" is given by the arithmetic mean, the geometric mean, the harmonic mean, or the median. His approach was based on indirect (i.e., posterior) distributions and used a constant prior distribution for the parameter of interest. It was therefore equivalent to maximum likelihood (ML) estimation, the technique later introduced by Fisher (1912). Keynes' results suffer from the fact that he did not discuss the supports of the distributions, the sets of possible parameter values, and the normalising constants required to make sure that the derived functions are indeed densities. Taking these aspects into account, we show that several of the distributions proposed by Keynes reduce to well-known ones, like the exponential, the Pareto, and a special case of the generalised inverse Gaussian distribution. Keynes' approach based on the arithmetic, the geometric, and the harmonic mean can be generalised to the class of quasi-arithmetic means. This generalisation allows us to derive further results. For example, assuming that the ML estimator of the parameter of interest is the exponential mean of the observations leads to the most general form of an exponential family with location parameter introduced by Dynkin (1961) and Ferguson (1962, 1963).en_US
dc.language.isoengen_US
dc.publisherUniv., Inst. für Wirtschaftspolitik und Quantitative Wirtschaftsforschung Erlangenen_US
dc.relation.ispartofseriesIWQW discussion paper series 07/2008en_US
dc.subject.jelC13en_US
dc.subject.jelC16en_US
dc.subject.ddc330en_US
dc.subject.keywordML estimatoren_US
dc.subject.keywordcriterion functionen_US
dc.subject.keywordmedianen_US
dc.subject.keywordquasi-arithmetic meanen_US
dc.subject.keywordexponential familyen_US
dc.subject.stwStatistische Verteilungen_US
dc.subject.stwMaximum-Likelihood-Methodeen_US
dc.subject.stwMaßzahlen_US
dc.subject.stwTheorieen_US
dc.titleOn J.M. Keynes' The principal averages and the laws of error which lead to them: refinement and generalisationen_US
dc.typeWorking Paperen_US
dc.identifier.ppn612501434en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-
dc.identifier.repecRePEc:zbw:iwqwdp:072008-
Appears in Collections:IWQW Discussion Paper Series, FAU Erlangen-Nürnberg

Files in This Item:
File Description SizeFormat
612501434.pdf242.74 kBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.