EconStor >
Freie Universität Berlin >
Fachbereich Wirtschaftswissenschaft, Freie Universität Berlin >
Diskussionsbeiträge, FB Wirtschaftswissenschaft, FU Berlin >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/28052
  

Full metadata record

DC FieldValueLanguage
dc.contributor.authorRendtel, Ulrichen_US
dc.contributor.authorBasic, Edinen_US
dc.date.accessioned2007-09-05en_US
dc.date.accessioned2009-09-25T13:28:28Z-
dc.date.available2009-09-25T13:28:28Z-
dc.date.issued2007en_US
dc.identifier.isbn393836954Xen_US
dc.identifier.urihttp://hdl.handle.net/10419/28052-
dc.description.abstractThe German Microcensus (MC) is a large scale rotating panel survey over three years. The MC is attractive for longitudinal analysis over the entire participation duration because of the mandatory participation and the very high case numbers (about 200 thousand respondents). However, as a consequence of the area sampling that is used for the MC , residential mobility is not covered and consequently statistical information at the new residence is lacking in theMCsample. This raises the question whether longitudinal analyses, like transitions between labour market states, are biased and how different methods perform that promise to reduce such a bias. Based on data of the German Socio-Economic Panel (SOEP), which covers residential mobility, we analysed the effects of missing data of residential movers by the estimation of labour force flows. By comparing the results from the complete SOEP sample and the results from the SOEP, restricted to the non-movers, we concluded that the non-coverage of the residential movers can not be ignored in Rubin’s sense. With respect to correction methods we analysed weighting by inverse mobility scores and loglinear models for partially observed contingency tables. Our results indicate that weighting by inverse mobility scores reduces the bias to about 60 percent whereas the official longitudinal weights obtained by calibration result in a bias reduction of about 80 percent. The estimation of loglinear models for nonignorable nonresponse leads to very unstable results.en_US
dc.language.isoengen_US
dc.publisherFreie Univ., Fachbereich Wirtschaftswiss. Berlinen_US
dc.relation.ispartofseriesDiskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der Freien Universität Berlin 2007/6en_US
dc.subject.jelC81en_US
dc.subject.jelJ69en_US
dc.subject.ddc330en_US
dc.subject.keywordPanel surveyen_US
dc.subject.keywordlabour market analysisen_US
dc.subject.keywordresidential mobilityen_US
dc.subject.keywordnon-coverage biasen_US
dc.subject.keywordlog-linear modellingen_US
dc.subject.keywordinverse probability weightingen_US
dc.subject.stwPanelen_US
dc.subject.stwBiasen_US
dc.subject.stwWohnungswechselen_US
dc.subject.stwQualitatives Verfahrenen_US
dc.subject.stwSchätzungen_US
dc.subject.stwDeutschlanden_US
dc.titleAssessing the bias due to non-coverage of residential movers in the German microcensus panel: an evaluation using data from the socio-economic panelen_US
dc.typeWorking Paperen_US
dc.identifier.ppn541756648en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-
dc.identifier.repecRePEc:zbw:fubsbe:20076-
Appears in Collections:Diskussionsbeiträge, FB Wirtschaftswissenschaft, FU Berlin

Files in This Item:
File Description SizeFormat
541756648.PDF258.56 kBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.