EconStor >
Christian-Albrechts-Universität Kiel (CAU) >
Department of Economics, Universität Kiel  >
Economics Working Papers, Department of Economics, CAU Kiel >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/27738
  

Full metadata record

DC FieldValueLanguage
dc.contributor.authorAßmann, Christianen_US
dc.contributor.authorBoysen-Hogrefe, Jensen_US
dc.date.accessioned2009-04-28en_US
dc.date.accessioned2009-09-07T14:31:22Z-
dc.date.available2009-09-07T14:31:22Z-
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/10419/27738-
dc.description.abstractConsideration of latent heterogeneity is of special importance in non linear models for gauging correctly the effect of explaining variables on the dependent variable. This paper adopts the stratified model-based clustering approach for modeling latent heterogeneity for panel probit models. Within a Bayesian framework an estimation algorithm dealing with the inherent label switching problem is provided. Determination of the number of clusters is based on the marginal likelihood and out-of-sample criteria. The ability to decide on the correct number of clusters is assessed within a simulation study indicating high accuracy for both approaches. Different concepts of marginal effects incorporating latent heterogeneity at different degrees arise within the considered model setup and are directly at hand within Bayesian estimation via MCMC methodology. An empirical illustration of the developed methodology indicates that consideration of latent heterogeneity via latent clusters provides the preferred model specification compared to a pooled and a random coefficient specification.en_US
dc.language.isoengen_US
dc.publisherUniv., Dep. of Economics Kielen_US
dc.relation.ispartofseriesEconomics working paper / Christian-Albrechts-Universität Kiel, Department of Economics 2009,03en_US
dc.subject.jelC11en_US
dc.subject.jelC23en_US
dc.subject.jelC25en_US
dc.subject.ddc330en_US
dc.subject.keywordBayesian Estimationen_US
dc.subject.keywordMCMC Methodsen_US
dc.subject.keywordPanel Probit Modelen_US
dc.subject.keywordMixture Modellingen_US
dc.subject.stwProbit-Modellen_US
dc.subject.stwPanelen_US
dc.subject.stwBayes-Statistiken_US
dc.subject.stwSchätztheorieen_US
dc.subject.stwTheorieen_US
dc.titleA bayesian approach to model-based clustering for panel probit modelsen_US
dc.typeWorking Paperen_US
dc.identifier.ppn598701265en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-
dc.identifier.repecRePEc:zbw:cauewp:200903-
Appears in Collections:Economics Working Papers, Department of Economics, CAU Kiel

Files in This Item:
File Description SizeFormat
598701265.PDF1.01 MBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.