EconStor >
ifo Institut – Leibniz-Institut für Wirtschaftsforschung an der Universität München >
CESifo Working Papers, CESifo Group Munich >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/26224
  

Full metadata record

DC FieldValueLanguage
dc.contributor.authorBosetti, Valentinaen_US
dc.contributor.authorCarraro, Carloen_US
dc.contributor.authorMassetti, Emanueleen_US
dc.contributor.authorTavoni, Massimoen_US
dc.date.accessioned2008-02-14en_US
dc.date.accessioned2009-07-28T08:29:15Z-
dc.date.available2009-07-28T08:29:15Z-
dc.date.issued2007en_US
dc.identifier.urihttp://hdl.handle.net/10419/26224-
dc.description.abstractThe stabilisation of GHG atmospheric concentrations at levels expected to prevent dangerous climate change has become an important, global, long-term objective. It is therefore crucial to identify a cost-effective way to achieve this objective. In this paper we use WITCH, a hybrid climate-energy-economy model, to obtain a quantitative assessment of some cost-effective strategies that stabilise CO2 concentrations at 550 or 450 ppm. In particular, this paper analyses the energy investment and R&D policies that optimally achieve these two GHG stabilisation targets (i.e. the future optimal energy mix consistent with the stabilisation of GHG atmospheric concentrations at 550 and 450 ppm). Given that the model accounts for interdependencies and spillovers across 12 regions of the world, optimal strategies are the outcome of a dynamic game through which inefficiency costs induced by global strategic interactions can be assessed. Therefore, our results are somehow different from previous analyses of GHG stabilisation policies, where a central planner or a single global economy are usually assumed. In particular, the effects of free-riding incentives in reducing emissions and in investing in R&D are taken into account. Technical change being endogenous in WITCH, this paper also provides an assessment of the implications of technological evolution in the energy sector of different stabilisation scenarios. Finally, this paper quantifies the net costs of stabilising GHG concentrations at different levels, for different allocations of permits and for different technological scenarios. In each case, the optimal long-term investment strategies for all available energy technologies are determined. The case of an unknown backstop energy technology is also analysed.en_US
dc.language.isoengen_US
dc.publisherCESifo Münchenen_US
dc.relation.ispartofseriesCESifo working paper 2133en_US
dc.subject.jelH4en_US
dc.subject.jelO3en_US
dc.subject.jelQ4en_US
dc.subject.ddc330en_US
dc.subject.keywordclimate policyen_US
dc.subject.keywordenergy R&Den_US
dc.subject.keywordinvestmentsen_US
dc.subject.keywordstabilisation costsen_US
dc.subject.stwKlimaschutzen_US
dc.subject.stwForschungen_US
dc.subject.stwEnergiewirtschaften_US
dc.subject.stwEmissionshandelen_US
dc.subject.stwWelten_US
dc.titleOptimal energy investment and R&D strategies to stabilise Greenhouse Gas atmospheric concentrationsen_US
dc.typeWorking Paperen_US
dc.identifier.ppn558331432en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-
Appears in Collections:CESifo Working Papers, CESifo Group Munich

Files in This Item:
File Description SizeFormat
558331432.PDF663.94 kBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.