EconStor >
Universität Konstanz >
Center of Finance and Econometrics (CoFE), Universität Konstanz >
CoFE-Diskussionspapiere, Universität Konstanz >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/23563
  
Title:A Quasilinear Parabolic Equation with Quadratic Growth of the Gradient modeling Incomplete Financial Markets PDF Logo
Authors:Düring, Bertram
Jüngel, Ansgar
Issue Date:2004
Series/Report no.:Discussion paper series / Universität Konstanz, Center of Finance and Econometrics (CoFE) 04/01
Abstract:We consider a quasilinear parabolic equation with quadratic gradient terms. It arises in the modelling of an optimal portfolio which maximizes the expected utility from terminal wealth in incomplete markets consisting of risky assets and non-tradable state variables. The existence of solutions is shown by extending the monotonicity method of Frehse. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution. The in uence of the non-tradable state variables on the optimal value function is illustrated by a numerical example.
Subjects:Quasilinear PDE
quadratic gradient
existence and uniqueness of solutions
optimal portfolio
incomplete market
Persistent Identifier of the first edition:urn:nbn:de:bsz:352-opus-11686
Document Type:Working Paper
Appears in Collections:CoFE-Diskussionspapiere, Universität Konstanz

Files in This Item:
File Description SizeFormat
dp04_01.pdf338.16 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/23563

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.