EconStor >
Universität Augsburg >
Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Augsburg >
Arbeitspapiere zur mathematischen Wirtschaftsforschung, Universität Augsburg >

Please use this identifier to cite or link to this item:

Full metadata record

DC FieldValueLanguage
dc.contributor.authorEtschberger, Stefanen_US
dc.contributor.authorHilbert, Andreasen_US
dc.description.abstractMultidimensional scaling is very common in exploratory data analysis. It is mainly used to represent sets of objects with respect to their proximities in a low dimensional Euclidean space. Widely used optimization algorithms try to improve the representation via shifting its coordinates in direction of the negative gradient of a corresponding fit function. Depending on the initial configuration, the chosen algorithm and its parameter settings there is a possibility for the algorithm to terminate in a local minimum. This article describes the combination of an evolutionary model with a non-metric gradient solution method to avoid this problem. Furthermore a simulation study compares the results of the evolutionary approach with one classic solution method.en_US
dc.relation.ispartofseriesArbeitspapiere zur mathematischen Wirtschaftsforschung 181en_US
dc.subject.stwHeuristisches Verfahrenen_US
dc.subject.stwMathematische Optimierungen_US
dc.titleMultidimensional Scaling and Genetic Algorithms : A Solution Approach to Avoid Local Minimaen_US
dc.typeWorking Paperen_US
Appears in Collections:Arbeitspapiere zur mathematischen Wirtschaftsforschung, Universität Augsburg

Files in This Item:
File Description SizeFormat
Heft181.pdf430.87 kBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.