EconStor >
Universität Augsburg >
Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Augsburg >
Arbeitspapiere zur mathematischen Wirtschaftsforschung, Universität Augsburg >

Please use this identifier to cite or link to this item:

Full metadata record

DC FieldValueLanguage
dc.contributor.authorHilbert, Andreasen_US
dc.description.abstractDecision trees are used very successfully for the identification resp. classification task of objects in many domains like marketing (e.g. Decker, Temme (2001)) or medicine. Other procedures to classify objects are for instance the logistic regression, the logit- or probit analysis, the linear or squared discriminant analysis, the nearest neighbour procedure or some kernel density estimators. The common aim of all these classification procedures is to generate classification rules which describe the correlation between some independent exogenous variables resp. attributes and at least one endogenous variable, the so called class membership variable.en_US
dc.relation.ispartofseriesArbeitspapiere zur mathematischen Wirtschaftsforschung 180en_US
dc.titleSome Remarks about the Usage of Asymmetric Correlation Measurements for the Induction of Decision Treesen_US
dc.typeWorking Paperen_US
Appears in Collections:Arbeitspapiere zur mathematischen Wirtschaftsforschung, Universität Augsburg

Files in This Item:
File Description SizeFormat
Heft180.pdf142.63 kBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.