Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/22306
Authors: 
Schulze, Peter M.
Year of Publication: 
2004
Series/Report no.: 
Arbeitspapier / Institut für Statistik und Ökonometrie, STATOEK 28
Abstract: 
Granger unterstellt in seinem Kausalitätskonzept stationäre Daten. Zeitreihendaten weisen aber oft Trend- und/oder Saison-Einflüsse auf, die vor einer Schätzung eliminiert oder modelliert werden müssen. Ausgangspunkt der Stationaritätsprüfung im VAR-Modell sind meist Einheitswurzeltests. Die Eliminierung von Trend/Saison bedeutet einen Informationsverlust, weshalb bei differenzstationären Prozessen die Formulierung von Fehlerkorrekturmodellen angezeigt ist, die die Unterscheidung von lang- und kurzfristiger Granger- Kausalität erlauben. Toda/Yamamoto zeigen einen VAR-Ansatz mit Niveauvariablen, ohne daß die herkömmlichen Tests zur Granger-Kausalitätsprüfung ihre Anwendbarkeit verlieren.
Abstract (Translated): 
For the testing of Granger-causality stationarity of data is obligatory. But economic time series data often contain trend and/or seasonal factors. Several procedures are known to model or eliminate these influences. Unit root tests are often used to construct trend- or differencestationary processes in a VAR-model. Considering the error correction approach (VARECM) it is possible to distinguish between short- and long-run Granger-causality. Toda/Yamamoto reveal a way how traditional tests for Granger-causality can be used in a VAR-model with the original variables.
Document Type: 
Working Paper

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.