EconStor >
Humboldt-Universität Berlin >
CASE - Center for Applied Statistics and Economics, Humboldt-Universität Berlin >
Papers, CASE - Center for Applied Statistics and Economics, HU Berlin >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/22204
  

Full metadata record

DC FieldValueLanguage
dc.contributor.authorBühlmann, Peteren_US
dc.date.accessioned2009-01-29T14:54:22Z-
dc.date.available2009-01-29T14:54:22Z-
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/10419/22204-
dc.description.abstractEnsemble methods aim at improving the predictive performance of a given statistical learning or model fitting technique. The general principleof ensemble methods is to construct a linear combinationof some model fitting methods, instead of using a single fit of the method.en_US
dc.language.isoengen_US
dc.publisheren_US
dc.relation.ispartofseriesPapers / Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE) 2004,31en_US
dc.subject.ddc330en_US
dc.titleBagging, boosting and ensemble methodsen_US
dc.typeWorking Paperen_US
dc.identifier.ppn495308447en_US
dc.rightshttp://www.econstor.eu/dspace/Nutzungsbedingungen-
dc.identifier.repecRePEc:zbw:caseps:200431-
Appears in Collections:Papers, CASE - Center for Applied Statistics and Economics, HU Berlin

Files in This Item:
File Description SizeFormat
31_pb.pdf5.17 MBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.