EconStor >
Humboldt-Universität zu Berlin >
CASE - Center for Applied Statistics and Economics, Humboldt-Universität Berlin >
Papers, CASE - Center for Applied Statistics and Economics, HU Berlin >

Please use this identifier to cite or link to this item:

Full metadata record

DC FieldValueLanguage
dc.contributor.authorBühlmann, Peteren_US
dc.description.abstractEnsemble methods aim at improving the predictive performance of a given statistical learning or model fitting technique. The general principleof ensemble methods is to construct a linear combinationof some model fitting methods, instead of using a single fit of the method.en_US
dc.relation.ispartofseriesPapers / Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE) 2004,31en_US
dc.titleBagging, boosting and ensemble methodsen_US
dc.typeWorking Paperen_US
Appears in Collections:Papers, CASE - Center for Applied Statistics and Economics, HU Berlin

Files in This Item:
File Description SizeFormat
31_pb.pdf5.17 MBAdobe PDF
No. of Downloads: Counter Stats
Show simple item record
Download bibliographical data as: BibTeX

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.