EconStor >
Humboldt-Universität Berlin >
CASE - Center for Applied Statistics and Economics, Humboldt-Universität Berlin >
Papers, CASE - Center for Applied Statistics and Economics, HU Berlin >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/22181
  
Title:Prognose mit nichtparametrischen Verfahren PDF Logo
Authors:Härdle, Wolfgang Karl
Chen, Ying
Schulz, Rainer
Issue Date:2004
Series/Report no.:Papers / Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE) 2004,07
Abstract:Statistische Prognosen basieren auf der Annahme, dass ein funktionaler Zusammenhang zwischen der zu prognostizierenden Variable y und anderen dimensionalen beobachtbaren Variablen x=(x1,...,xj)t – Rj besteht. Kann der funktionale Zusammenhang geschätzt werden, so kann im Prinzip für jedes x der zugehörige y Wert prognostiziert werden. Bei den meisten Anwendungen wird angenommen, dass der funktionale Zusammenhang einem niedrigdimensionalen parametrischen Modell entspricht oder durch dieses zumindest gut wiedergegeben wird. Ein Beispiel im bivariaten Fall ist das lineare Modell y=b(0)+b(1)x. Sind die beiden unbekannten Parameter b(0) und b(1) mit Hilfe historischer Daten geschätzt, so lässt sich für jedes gegebene x sofort der zugehörige y Wert prognostizieren. Allerdings besteht hierbei die Gefahr, dass der wirkliche funktionale Zusammenhang nicht dem gewählten Modell entspricht. Dies kann in Folge zu schlechten Prognosen führen.
Document Type:Working Paper
Appears in Collections:Papers, CASE - Center for Applied Statistics and Economics, HU Berlin

Files in This Item:
File Description SizeFormat
07_yc_wh_rs.pdf340.99 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/22181

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.