EconStor >
Forschungsinstitut zur Zukunft der Arbeit (IZA), Bonn >
IZA Discussion Papers, Forschungsinstitut zur Zukunft der Arbeit (IZA) >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/20442
  
Title:Forecasting Time Series Subject to Multiple Structural Breaks PDF Logo
Authors:Timmermann, Allan
Pettenuzzo, Davide
Pesaran, Mohammad Hashem
Issue Date:2004
Series/Report no.:IZA Discussion paper series 1196
Abstract:This paper provides a novel approach to forecasting time series subject to discrete structural breaks. We propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks over the forecast horizon, taking account of the size and duration of past breaks (if any) by means of a hierarchical hidden Markov chain model. Predictions are formed by integrating over the hyper parameters from the meta distributions that characterize the stochastic break point process. In an application to US Treasury bill rates, we find that the method leads to better out-of-sample forecasts than alternative methods that ignore breaks, particularly at long horizons.
Subjects:structural breaks
forecasting
hierarchical hidden Markov chain model
Bayesian model averaging
JEL:C11
C15
C53
Document Type:Working Paper
Appears in Collections:IZA Discussion Papers, Forschungsinstitut zur Zukunft der Arbeit (IZA)

Files in This Item:
File Description SizeFormat
dp1196.pdf353.04 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/20442

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.