EconStor >
ifo Institut – Leibniz-Institut für Wirtschaftsforschung an der Universität München >
CESifo Working Papers, CESifo Group Munich >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/19037
  
Title:Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints PDF Logo
Authors:Asheim, Geir B.
Buchholz, Wolfgang
Hartwick, John M.
Mitra, Tapan
Withagen, Cees A.
Issue Date:2005
Series/Report no.:CESifo working papers 1573
Abstract:In the Dasgupta-Heal-Solow-Stiglitz model of capital accumulation and resource depletion we show the following equivalence: If an efficient path has constant (gross and net of population growth) savings rates, then population growth must be quasi-arithmetic and the path is a maximin or a classical utilitarian optimum. Conversely, if a path is optimal according to maximin or classical utilitarianism (with constant elasticity of marginal utility) under quasiarithmetic population growth, then the (gross and net of population growth) savings rates converge asymptotically to constants.
Subjects:constant savings rate
quasi-arithmetic population growth
JEL:Q10
Q32
Document Type:Working Paper
Appears in Collections:CESifo Working Papers, CESifo Group Munich

Files in This Item:
File Description SizeFormat
cesifo1_wp1573.pdf273.83 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/19037

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.