EconStor >
ifo Institut – Leibniz-Institut für Wirtschaftsforschung an der Universität München >
CESifo Working Papers, CESifo Group Munich >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/18780
  
Title:Alternative approaches to estimation and inference in large multifactor panels : small sample results with an application to modelling of asset returns PDF Logo
Authors:Kapetanios, George
Pesaran, Mohammad Hashem
Issue Date:2005
Series/Report no.:CESifo working papers 1416
Abstract:This paper considers alternative approaches to the analysis of large panel data models in the presence of error cross section dependence. A popular method for modelling such dependence uses a factor error structure. Such models raise new problems for estimation and inference. This paper compares two alternative methods for carrying out estimation and inference in panels with a multifactor error structure. One uses the correlated common effects estimator that proxies the unobserved factors by cross section averages of the observed variables as suggested by Pesaran (2004), and the other uses principal components following the work of Stock and Watson (2002). The paper develops the principal component method and provides small sample evidence on the comparative properties of these estimators by means of extensive Monte Carlo experiments. An empirical application to company returns provides an illustration of the alternative estimation procedures.
Subjects:cross section dependence
large panels
principal components
common correlated effects
return equations
JEL:C33
C13
C12
Document Type:Working Paper
Appears in Collections:CESifo Working Papers, CESifo Group Munich

Files in This Item:
File Description SizeFormat
cesifo1_wp1416.pdf2.08 MBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/18780

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.