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Abstract Principal Component Analysis (PCA) is a common procedure for the
analysis of financial market data, such as implied volatility smiles or interest rate
curves. Recently, Pelsser and Lord [11] raised the question whether PCA results
may not be ”facts but artefacts”. We extend this line of research by considering an
alternative matrix structure which is consistent with foreign exchange option mar-
kets. For this matrix structure, PCA effects which are interpreted as shift, skew and
curvature can be generated from unstructured random processes. Furthermore, we
find that even if a structured system exists, PCA may not be able to distinguish be-
tween these three effects. The contribution of the factors explaining the variance in
the original system are incorrect. Finally, for a special case, we provide an analytic
correction that recovers correct factor variances from those incorrectly estimated by
PCA.
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1 Introduction

Principal Component Analysis (PCA) is commonly used as a dimension reduction
technique to reduce a system of many stochastic variables to a parsimonious set
of factors which explain most of the variance. The typical factor loadings found
in PCA analysis for financial markets are commonly interpreted as a level, skew,
twist and curvature effect, represented graphically in figure (1). In the upper left
hand panel, the horizontal line indicates a level/shift effect. The upper right hand
and lower left hand panels show a change of sign, which is often interpreted as a
skew or twist effect. The lower right hand panel indicates two changes of sign and
is usually interpreted as a curvature effect. These effects can be found in most of the
existing work in this area, see for example [1], [2], [4], [5], [7], [17], [18], [21], [14].

Lord and Pelsser [11] question whether these effects are an artefact resulting from
a special structure of the covariance or correlation matrix. They show that there are
some special matrix classes, which automatically lead to a prescribed change of sign
pattern of the eigenvectors consistent with figure (1). In particular, they show that
the PCA analysis on a covariance or correlation matrix which belongs to the class
of oscillatory matrices will always show n− 1 changes of sign in the n-th eigen-
vector of the respective matrix. This is also the case in most PCA results and raises
the question whether the observed effects have a valid economic interpretation. Our
research addresses a related research agenda.
In a similar spirit to Lord and Pelsser, we consider interpretation problems for al-
ternative covariance matrix classes. Looking again at figure (1) it is evident that the
eigenvectors have a symmetric structure relative to a center point. This is consistent
with the eigenvector structure for a bisymmetric matrix which will be introduced in
detail at a later point. In addition, empirical foreign exchange option markets also
have bisymmetric covariance matrices. The choice of this class of matrices allows
us to analytically identify potential problems of a PCA. As opposed to Lord and
Pelsser, who solely restrict the analysis to sign change patterns of factor loadings,
we will impose explicit values for the eigenvector components.
This paper is organized as follows: The next section will review PCA and its appli-
cation in the analysis of financial market dynamics. At this point, we will consider
the paper by Lord and Pelsser [11]. Then we will introduce the class of bisymmetric
matrices and discuss well-known spectral decomposition properties of this matrix
class. The following section demonstrates how the level, slope and curvature ef-
fects can be generated by random variables, which do not explicitly have such a
structure. At that point, we will present an empirical analysis of foreign exchange
smiles, where the PCA shows similar patterns. Then, we will structure a system
where level, slope and curvature effects are present. PCA is applied to assess if the
original structure is correctly recovered. It will be shown that this is not always the
case. Finally, we conclude and make suggestions for further research.
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Fig. 1: Typical Level (upper left), Skew (upper right), Twist (lower left), Curvature (lower right) patterns in PCA

2 Introduction to PCA

The goal of PCA is to reduce the dimensionality of multiple correlated random vari-
ables to a parsimonious set of uncorrelated components. These uncorrelated compo-
nents are a linear combination of the original variables. Suppose that the correlated
random variables are summarized in a n×1 vector x with covariance matrix Σ . Ini-
tially, PCA determines a new random variable y1 which is a linear combination of
the components of x weighted by the components of a vector γ1 ∈ Rn×1. This can
be formally expressed as:

y1 = γ
T
1 x = γ11x1 + γ12x2 + ...+ γ1nxn =

n

∑
j=1

γ1 jx j.
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The vector γ1 is chosen such that y1 has maximum variance V(y1) = V(γT
1 x) =

γT
1 Σγ1. Then, a new variable y2 is determined with a new n× 1 vector γ2 which

maximizes V(y2) = V(γT
2 x) = γT

2 Σγ2, such that y1 is uncorrelated with y2. At the
kth stage, yk is determined such that it is uncorrelated with y1, ...,yk−1 and has the
maximum variance at that point.
The kth derived variable yk is called kth Principal Component (PC), the vectors γk
are called vectors of loadings for the k-th PC. The objective is that most of the vari-
ation in x will be accounted for by m PCs, where m << n.

The maximization problem we have to solve at stage k is

max
||γk||=1

γ
T
k Σγk

subject to
Cov(yk,yk−1) = Cov(γT

k x,γT
k−1x) = 0.

This problem can be solved by the choice of γk as the eigenvector corresponding
to the kth largest eigenvalue of Σ (which is the covariance matrix of x). The eigen-
vectors are chosen to be orthonormal: Each has a length of one and all are mutually
orthogonal. The maximization is subject to the constraint that the length of the vec-
tors γk is one, written as ||γk||= 1. This is a standard approach to avoid infinite values
of the components γk. As a result of this, the variance of the k-th PC yk is the k-th
largest eigenvalue λk of the covariance matrix of x, that is V (yk) = λk. If this analy-
sis is based on a correlation matrix, a similar procedure could be employed. This is
because the correlation matrix is the covariance matrix of the standardized variables
x. Ultimately we will distinguish between PCA based on both correlation and co-
variance matrices. For the sake of convenience we will express the above problem
in matrix form. The random vector x is transformed to a new random vector y via

y = Γ
T x,

where Γ T is a matrix whose k-th row is the vector γT
k . Since Γ T has orthonormal

rows, we have Γ T = Γ−1, since the transpose of an orthogonal matrix is equal to its
inverse. Substituting this in the above equation, we can represent the original vector
x as

x = Γ y = y1γ1 + y2γ2 + ...+ ynγn. (1)

Since the vectors γ1, ...,γn are orthogonal, they form a basis for the vector space
Rn. This shows why PCA is sometimes referred to as a basis transformation proce-
dure. Consequently, we can represent x via a new basis which is equivalent to the
representation of x with Euclidian vectors via

x = x1e1 + x2e2 + ....+ xnen,

where ek is the n-dimensional Euclidian basis vector which has a one as the k-th
component, and is zero anywhere else.
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Some authors define the vector γk as the k-th PC. However, following Joliffe [8],
we will define yk as the Principal Component. We are interested in understanding
when a misleading economic interpretation can result from these vectors. Typical
and representative vectors are plotted in figure (1). A common interpretation in fi-
nancial markets is that vector γk is referred to as the shift, skew or curvature vector.
Recalling that the eigenvalue λk is the variance of the random variable yk, the ex-
plained variance associated with the k-th PC can be expressed as:

λk

∑
n
i=1 λi

,

or in the case of the first three components:

λ1 +λ2 +λ3

∑
n
i=1 λi

.

Empirically, it is common that the first three principal components explain almost
100% of the variance in financial market data. Given this, we will restrict the PCA to
three components and consider potential interpretation problems solely to this case.

Lord and Pelsser [11] were the first to point out that possible PCA interpretation
problems could exist. In their work, they considered level, slope curvature patterns
of interest rate term structures. They define these patterns in terms of sign changes
of the covariance matrix eigenvectors. The level pattern has zero sign changes, the
slope has one sign change and the curvature has two sign changes. Sufficient con-
ditions are developed for the appropriate class of covariance matrices that display
the same sign change patterns as the empirical eigenvectors. The case of a zero sign
change pattern can be covered easily by using the Frobenius-Perron theorem, which
is well known in matrix algebra (see [13, Chapter 8]).

Theorem 1 (Frobenius-Perron).
If A is a n× n strictly positive matrix, there exists a strictly positive eigenvalue of
A with geometric and algebraic multiplicity one which is strictly greater than the
other eigenvalues of A. The corresponding eigenvector is strictly positive.

Furthermore, the vector corresponding to the largest eigenvalue and its strictly pos-
itive multiples are the only vectors of A with strictly positive entries, see [13, Chap-
ter 8]. Consequently, given a strictly positive covariance or correlation matrix, the
eigenvector corresponding to the largest eigenvalue will only have positive entries.
All other eigenvectors will have at least one sign change. Therefore, even before
we run the PCA, one knows a priori what the sign of the eigenvector γ1 will be.
Lord and Pelsser also point out that a sign change pattern exists for the residual
eigenvectors. However, this requires a restriction on the choice of the matrix class.
The authors choose the class of strictly total positive and oscillatory matrices and
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analyze the respective spectral properties.1 It can be shown that a valid covariance
or correlation matrix, which belongs to the class of strictly positive or oscillatory
matrices, automatically has j− 1 sign changes in the eigenvector corresponding to
the j−th largest eigenvalue. Thus, the first eigenvector will have no sign change, the
second will have one sign change (as in the skew case) and the third will have two
sign changes (as in the curvature case). Given that PCA results for financial market
data display the same sign change patterns, there is concern whether these results
are due to a valid economic effect or result from the fact that the financial market
data just happens to produce this particular class of covariance matrices.

Lord and Pelsser note that only knowing the sign change pattern does not provide
sufficient information about the shape of the eigenvectors. For example an eigen-
vector representing skew can be constructed with only positive values. Furthermore,
strictly positive values can also yield an eigenvector which can be interpreted as a
curvature effect. The results in the following sections will address this issue. 2

Furthermore, PCA may not be able to correctly recover factor variances from the
original system. Consider the following toy example: a seven-dimensional case with
a single factor in the original system. One can think of this system as seven stocks
in a CAPM framework where the single source of risk is the market portfolio. This
can be expressed as

σ =



1√
7

1√
7

1√
7

1√
7

1√
7

1√
7

1√
7


a+



ε1
ε2
ε3
ε4
ε3
ε2
ε1


. (2)

Each stock has different degrees of unsystematic risk captured by the ε variables.
Setting V (a) = 0.50, V (ε1) = 0.10, V (ε2) = 0.09, V (ε2) = 0.07, V (ε4) = 0.08 as
the variances, the dominating factor has the following loading vector:

γ = (0.389,0.381,0.366,0.373,0.366,0.381,0.389)T .

This factor can be interpreted as a level effect. However, the variance of the original
system (0.50) is not recovered, but was calculated as 0.59. Thus, PCA overestimates
the variance of the original factor. The additional explained variance is coming from
the error terms and we will show in a later section that this can also impact the vari-
ance contribution of factors in a multiple factor case.

1 We do not introduce the definition of these matrix classes, but rather state the implications, in
case the matrix belongs to the specified class.
2 Parallel work in this area has been published by Salinelli, E. and Sgarra, C. in [16], [15]. The
authors derive similar results to Lord and Pelsser for oscillatory and strictly total positive matrices.
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PCA representative work (although by no means complete) in the analysis of inter-
est rate term structures includes Litterman and Scheinkman [10] for the US market,
Lord and Pelsser [11] for the German government bond market and Pérignon et al.
[14] for international bond markets. The results are similar to the patterns found in
figure (1). PCA analysis has been used particularly in the analysis of implied volatil-
ity surfaces. Alexander [2] examined implied volatilities on the FTSE100, Cont and
da Fonseca [4] also considered the FTSE100 and options on the S&P500. While
Fengler et al. [7] considered options on the DAX index. All three papers found the
level, skew (twist) and curvature effects also similar to figure (1). Dynamics of the
term structure of implied volatilities were considered by Kamal and Derman [6] for
OTC option markets on the S&P500 and Nikkei225, by Skiadopoulos et al. [18] and
Daglish et al. [5] for exchange traded options on the S&P500, and Zhu and Avel-
laneda [21] examined the over the counter foreign exchange option market. All of
these papers found that three components explain the majority of the variance.

3 Bisymmetric Matrices

Bisymmetric matrices3 are objects which are well-known from applications in signal
processing, see [19], [3]. Do such structures exist in financial market data? Every
time, when the analysis considers a two by two correlation matrix, the structure is
bisymmetric. A general definition can be given as follows.

Definition 1. Let J ∈Rn×n be a matrix which has ones on its anti-diagonal and zeros
everywhere else

J =


0 0 ... ... 0 1
0 0 ... ... 1 0
...

. . .
...

0 1 ... ... 0 0
1 0 ... ... 0 0

 . (3)

A bisymmetric matrix A ∈Rn×n is a matrix which is symmetric with respect to both
of its diagonals and thus fulfills the following condition

JAJ = A.

A multiplication of J to the left of A leads to a permutation of the rows of A, while a
multiplication to the right of A leads to a permutation of the columns. A bisymmetric
matrix remains unchanged if the rows and afterwards the columns are permutated
via J.

Let for example A, J be defined as in equation (4).

3 also called symmetric persymmetric or symmetric centrosymmetric matrices
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A =

 1 3 4
3 2 3
4 3 1

 J =

0 0 1
0 1 0
1 0 0

 (4)

Then we have

JA =

4 3 1
3 2 3
1 3 4

 and consequently JAJ =

 1 3 4
3 2 3
4 3 1


which is the same as A. Thus, A is a bisymmetric matrix.

Consider the following empirical correlation matrix of the implied volatilities of
the Euro vs. US Dollar across five strike prices (in delta terms) 4

1.000 0.968 0.953 0.927 0.898
0.968 1.000 0.989 0.968 0.923
0.953 0.989 1.000 0.991 0.951
0.927 0.968 0.991 1.000 0.966
0.898 0.923 0.951 0.966 1.000

 ,

One can see that this matrix represents a highly correlated system with an almost
perfect bisymmetric property.

The matrix J can be used to define symmetric and skew symmetric vectors, which
will be important objects in the following analyses.

Definition 2. A vector γs ∈ Rn is called symmetric, if

Jγs = γs.

A vector γss ∈ Rn is called skew symmetric, if

Jγss =−γss.

Examples of these classes are

γs =

 1
2
1

 , γs =
(

3
3

)
, γss =

 1
0
−1

 , γss =
(

1
−1

)
.

Other examples are plotted in figure (1) for n = 5. One can conclude from the defi-
nition, that a skew symmetric vector which has an odd number of components will
always have a zero as the middle entry.

Our analysis in this work will focus on the properties of the eigenvectors of bisym-
metric matrices, which will be later applied to covariance or correlation matrices.

4 for one month maturity options, using Bloomberg data from 03.10.2003 to 21.01.2009
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It can be shown that the eigenvectors of bisymmetric classes are either symmet-
ric or skew symmetric, see [3]. We will summarize this in the following theorem,
distinguishing between a quadratic matrix with an odd or even numbers of rows.

Theorem 2. Suppose A∈Rn×n is bisymmetric and n is even. Matrix A has n/2 skew
symmetric and n/2 symmetric orthonormal eigenvectors.

Let dxe denote the smallest integer ≥ x, and bxc denote the largest integer ≤ x.
Define

u =:
⌈n

2

⌉
(5)

l :=
⌊n

2

⌋
(6)

to be the upper and lower integer of n
2 respectively.

Suppose A ∈ Rn×n is bisymmetric and n is odd. Matrix A has l skew symmetric
and u symmetric orthonormal eigenvectors.

Because the resulting eigenvectors are orthonormal, they are equal to the loading
vectors of a PCA analysis. Consequently, a PCA analysis on a bisymmetric covari-
ance or correlation matrix will automatically produce skew symmetric and symmet-
ric eigenvectors, just as in figure (1). These eigenvectors have the typical form of
factor loading vectors, which in the empirical literature are usually interpreted as
level, slope and curvature effects. In the simple case of a non-trivial two by two cor-
relation matrix, theorem (2) proves that the eigenvectors are -a priori- known and
unrelated to the original system. The symmetric and skew symmetric eigenvectors
will be

γs = (
1√
2
,

1√
2
) γss = (

1√
2
,− 1√

2
).

These vectors can be interpreted as a shift and skew effect.

Cantoni and Butler provide in [3] partition representations of bisymmetric matri-
ces and state equation systems which characterize the eigenvectors and eigenvalues.
We will not repeat these results, but rather state explicit representations of eigenvec-
tors and eigenvalues for the following general 3×3 matrix A. 5 Matrix A is defined
as follows

A =

 a1 b c
b a2 b
c b a1

 (7)

5 A generalisation to higher dimensions is possible, although the analytical representation of eigen-
vectors of a bisymmetric 5×5 is already difficult. We will concentrate on the 3×3 case as previ-
ously discussed.
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and is clearly bisymmetric. According to theorem (2) , the matrix has one skew
symmetric and two symmetric orthonormal eigenvectors. The eigenvectors can be
stated explicitly by using results from [3] for both, the skew symmetric (Theorem
3) and symmetric case (Theorem 4).

Theorem 3. Matrix A in equation (7) has the following skew symmetric, orthonor-
mal eigenvector vss and its corresponding eigenvalue λss

vss =


1√
2

0
− 1√

2

 λss = a1− c. (8)

It is of particular interest, that the explicit form of the eigenvector does not depend
on any of the variables a,b,c. Also, note that the form of the vector is the typical
form of a skew vector produced by a PCA for financial market data. The symmetric
vectors are somewhat more complicated.

Theorem 4. Define

d :=
√

a2
1−2a1a2 +a2

2 +8b2 +2a1c−2a2c+ c2

and

ws1 =

 a1−a2+c+d
4b
1

a1−a2+c+d
4b

 ws2 =

 a1−a2+c−d
4b
1

a1−a2+c−d
4b

 . (9)

Matrix A in equation (7) has the following symmetric, orthonormal eigenvectors
vs1 ,vs2 and corresponding eigenvalues λs1 ,λs2

vs1 =
1
‖ws1‖

ws1 , λs1 =
1
2
(a1 +a2 + c+d) (10)

vs2 =
1
‖ws2‖

ws2 , λs2 =
1
2
(a1 +a2 + c−d) (11)

where ‖x‖ denotes the Euclidian norm of vector x.

Symmetric vectors are typical representatives of level and curvature effects. With
the explicit form for all eigenvectors/eigenvalues for matrix (7), we can proceed to
the analysis of potential PCA interpretation problems.

4 Potential Interpretation Problems

Assume that we observe three random variables defined as follows
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σ+ = a+b+

σ0 = a+b0

σ− = a+b− (12)

where b+,b0,b− and a are independent random variables with mean zero. Further-
more, assume that the variables b+ and b− have the same variance: V (b+) = V (b−).
The covariance matrix will then have the following form

Σ =

V (σ+) V (a) V (a)
V (a) V (σ0) V (a)
V (a) V (a) V (σ+)

 .

This matrix is bisymmetric, as is the corresponding correlation matrix. Conse-
quently, the system will have an eigenvector which can be interpreted as ”skew”.
We know from the previous section, that this eigenvector will be represented by
equation (8). Therefore, the corresponding eigenvalue, and consequently the vari-
ance of the skew symmetric factor, will be V (σ+)−V (a) = V (b+). However, the
original system is composed of three random variables which do not intuitively sug-
gest the presence of a skew vector.
Furthermore, the system will have two symmetric eigenvectors. While PCA should
indicate the presence of a level factor, generated by variable a, there is no economic
justification for the additional curvature and skew components. These result solely
from the fact that the data matrix is bisymmetric. To verify these theoretical results,
consider the following simulation. We define

a ∼ N(0,0.2)
b+ ∼ N(0,0.25)
b0 ∼ U [0,1]
b− ∼ Exp(2)

where N(µ,σ2) denotes the normal distribution with mean µ and variance σ2,
U [a,b] is the uniform distribution on the interval [a,b] and Exp(λ ) is the expo-
nential distribution with rate λ . We generated n = 50.000 realizations of the vari-
ables σ−,σ0,σ+ by using independent variables a,b−,b0,b+ with the specifications
above. The estimated covariance matrix contained the following values:

Σ =

0.450 0.202 0.201
0.202 0.283 0.200
0.201 0.203 0.450

 .

As can be seen, this is an almost perfect bisymmetric matrix. From the analysis in
the previous section, one knows that a PCA analysis on such a system will produce
one skew symmetric eigenvector vss and two symmetric eigenvectors vs1 ,vs2 . The
resulting factor loading vectors of the PCA on the estimated covariance matrix are:
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vs1 =

 0.62
0.48
0.62

 vs2 =

 0.35
−0.88

0.33

 vss =

 0.70
0.01
−0.71

 .

Note that 1/
√

2≈ 0.707 which corresponds to the first entry of the skew symmetric
vector. The eigenvalues corresponding to the eigenvectors, rounded to the second
decimal place, are

λs1 = 0.81, λs2 = 0.13, λss = 0.25

which are approximately the theoretical values derived previously.

For bisymmetric matrices, a skew effect will result even when variables are ran-
domly generated with no associated skew effect. Note also, that the vector vs2 is a
typical representative of a curvature eigenvector, while vs1 might be interpreted as a
mixture between level and curvature. The system also indicates the typical order in
terms of the explained variance. The first symmetric eigenvector will explain most
of the variance, followed by the skew symmetric eigenvector and finally by the sec-
ond symmetric eigenvector.

The presence of PCA skew and curvature factors does not necessarily provide
a valid interpretation of the original system dynamics. It should be recognized
that when typical PCA patterns are observed, there might not be any underly-
ing economic interactions in the original system. A similar analysis can be ap-
plied to PCA based on the correlation matrix. In this case, it is sufficient to have
Corr(σ+,σ0) = Corr(σ−,σ0) to observe a skew effect.

Consider a PCA performed on the correlation matrix of the implied volatilities of
the EURUSD, which was presented earlier and had an almost perfect bisymmetric
form. The corresponding eigenvectors, representing level, skew and curvature are
shown in figure (2). However, there is a possibility that these effects were generated
by a random structure similar to equation system (12). It is critical to distinguish
between results due to economic factors and results due to purely random processes.

To this end, the next section analyzes a system that actually possesses economic
relationships and has a bisymmetric covariance matrix. We will address the ques-
tion, if PCA can recover the ”true” economic effects.

5 PCA on a Shift, Skew, Curvature System

Let us consider examples where financial market data is modeled with three fac-
tors, which are interpreted as level, skew and curvature effects. For example, Malz
[12] proposes a three factor parametric description of volatility smiles as given by
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Fig. 2: Level (left), skew (center), curvature (right) patterns in a PCA on EURUSD 1 month implied volatilities.

equation (13)
σ(∆) = bl +bs(∆ −∆0)+bc(∆ −∆0)2. (13)

The coefficient ∆ is a moneyness variable and ∆0 is the center of the smile. The b
terms represent the level, skew and curvature effects respectively. 6 From the pre-
vious parabolic representation in equation (13), if only three volatilities are quoted
(two equidistant out of the money options and the at the money option) these would
be equal to:

σ(∆0 +∆) = bl +bs∆ +bc∆
2 (14)

σ(∆0) = bl (15)
σ(∆0−∆) = bl−bs∆ +bc∆

2. (16)

This is consistent with the common practice in the foreign exchange option market
to quote volatilities for fixed degrees of moneyness (delta). In the case when only
three volatility quotations are provided, these are expressed via:

σ+ = σAT M +
1
2

σRR +σST R (17)

σ− = σAT M−
1
2

σRR +σST R (18)

with σRR being the quoted risk reversal volatility and σST R being the smile strangle.7

Market participants interpret σRR as the degree of skew and σST R as the degree of
curvature of the smile, while σAT M represents the overall level. Let us now general-
ize these approaches.

Consider the following general system of 3 random variables

6 For equity index option markets, J. Zhang and Y. Xiang [20] propose an equivalent representation,
with the difference being how moneyness is defined. In this case ∆ is defined as the log-moneyness.
7 A risk reversal in this context is a long call, short put position where the absolute delta of both
options is equal. A strangle is a long call, long put position with equal absolute deltas.
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σ+ = al +as +ac

σ0 = al

σ− = al−as +ac (19)

with mutually independent variables al ,as,ac which have zero mean. In this system,
the random variable al represents the level, as represents the skew and ac represents
the curvature variable. We assume that these variables are non-deterministic and
thus V (al) > 0,V (as) > 0,V (ac) > 0.8 Increasing al will lead to an increase of
σ+,σ0,σ− by the same amount. Increasing as will lead to opposite reactions of σ+
and σ−, while σ0 does not change at all. Similarly, an increase in ac will increase
σ+,σ− by the same amount leaving σ0 unchanged. Therefore, this system will - by
design - display level, skew and curvature effects.
Equation (19) is similar to the PCA basis representation in equation (1) since it can
be written as:

σ =

σ+
σ0
σ−

= al

 1
1
1

+as

 1
0
−1

+ac

 1
0
1

 .

Consequently, the random vector σ is a linear combination of the linearly indepen-
dent vectors  1

1
1

 ,

 1
0
−1

 ,

 1
0
1


which are a basis for the three dimensional real space R3. This is an equivalent
representation as in equation (1), with y1 = al ,y2 = as,y3 = ac. The vectors represent
level, skew and curvature respectively and can be classified as symmetric or skew
symmetric vectors. Note that the first and last vector are not orthogonal, while the
level-skew and curvature-skew vector pairs are. We can rewrite the system such that
the basis vectors have unit length, which would yield

σ =

σ+
σ0
σ−

= al
√

3


1√
3

1√
3

1√
3

+as
√

2


1√
2
0

− 1√
2

+ac
√

2


1√
2
0

1√
2

 .

We have now represented the random vector σ as a linear combination of linearly
independent vectors with unit length, where the vectors represent level, slope and
curvature. The only difference to system (1) is that the vectors are not orthogonal,
but both representations include a set of basis vectors with unit length. The vectors
are equivalent to the vectors with factor loadings of a PCA. The skew vector has

8 All of the following calculations can be extended by introducing error terms ε+,ε0,ε− in equation
system (19), such that the level, skew, curvature signals are perturbed by noise terms. However, this
does not change any of the following conclusions.
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exactly the same form as the skew vector resulting from a PCA on a bisymmetric
matrix. The variables

bl = al
√

3 (20)
bs = as

√
2 (21)

bc = ac
√

2 (22)

are independent, scaled random variables equivalent to the principal components of
a PCA. The final system yields

σ =

σ+
σ0
σ−

= bl


1√
3

1√
3

1√
3

+bs


1√
2
0

− 1√
2

+bc


1√
2
0

1√
2

 . (23)

Note that the random variables bl ,bs,bc will explain 100% of the variance of the
vector σ .

To summarize, equation (23) is a random system which has level, skew and curva-
ture effects. This system is a generalization of parametric forms that have commonly
appeared in the financial literature and are used as a volatility quotation mechanism
in financial markets. Therefore we will consider PCA analysis of the system defined
in equation (23) with confidence that these results will proxy interpretation prop-
erties of PCA applications in financial markets. Specifically, the next section will
address the following set of questions:

• Do we still observe loading vectors representing level, skew and curvature if we
perform a PCA analysis on the covariance and correlation matrix of system (23)?

• How much of the variance do the corresponding PCs explain in the original sys-
tem and in the PCA results?

These questions will be addressed by applying the previously introduced analytical
setup of bisymmetric matrices (where variables bl ,bs,bc are independent).9 We will
show, that the structure of equation (23) is not clearly represented in the PCA results
for the covariance matrix. In fact, the first PCA eigenvector represents both, level
and curvature. When the PCA is performed on the correlation matrix, effects are
indicated which are not present in the original system.

5.1 PCA on the Covariance Matrix

The covariance matrix of the ordered variables σ−,σ0,σ+ in equation (23) has the
following form

9 It is possible to relax the independence assumptions and introduce covariances, if the resulting
covariance matrix is still bisymmetric. For the sake of simplicity, we will assume independence
without any loss of generality.
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3V (bl) V (σ+)−V (bs)

1
3V (bl) V (σ0) 1

3V (bl)
V (σ+)−V (bs) 1

3V (bl) V (σ+)

 . (24)

As this is a bisymmetric matrix, we can use the results of the previous sections to
calculate the respective eigenvectors/eigenvalues which would represent those from
a PCA. Noting that matrix (24) has the same structure as matrix (7) we will replace
the corresponding variables and proceed as before. By application of theorem (3),
we can calculate the variance of the skew symmetric factor as

λss = V (bs).

This results in equal variances for both, the principal component representing skew
in the original setup and the PCA setup. In this case the principal component repre-
senting skew is correctly recovered.

For the other PCs the analysis is somewhat more complicated. The first eigenvec-
tor does not always produce a parallel eigenvector, as will be demonstrated in the
following simple example. Consider setting the variances of the variables bl ,bs,bc
in matrix (24) equal to 0.20. Figure (3) displays the eigenvectors in this case (skew
vector not included). Is is clear that both loading vectors display some degree of cur-
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Fig. 3: Loading vectors for the 1. and 3. PC for V (bl) = V (bs) = V (bc) = 0.20.
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vature. The dominant curvature effect is clearly seen in the third factor. However,
factor one explains both level and some degree of curvature. We will coin this prop-
erty as bi-explanatory. Therefore, PCA analysis on such a system could potentially
not recover a clear parallel shift of the original system.

The eigenvalue corresponding to the first symmetric eigenvector of matrix (24) is

λs1 =
1
2

V (bc)+
1
2

V (bl)+
1

2
√

3

√
3V (bl)2 +3V (bc)2 +2V (bc)V (bl).

One can easily show that λs1 is always greater than V (bl). The implication of this is
that the first skew symmetric factor will always explain more variance than the orig-
inal level component. Similarly, λs2 will always be smaller than V (bc). This implies
that the second skew symmetric factor will always explain less variance than the
original curvature component. Therefore the PCA will either over or underestimate
the contributed variance of the corresponding factors.

Let us now consider the circumstance where the original system is dominated by
a single factor: either skew, shift or curvature. We would expect the corresponding
PC to explain 100% of the variance and the loading vectors will display similar
shapes as the vectors in the original system.

We will first consider the analysis of the skew symmetric vector, which is trivial.
It has already been shown above that the variance of the skew factor is identical in
both systems. Furthermore, the eigenvector shapes are the same.
Now consider a dominating shift case. Let vs1 again be the first symmetric eigen-
vector of matrix (24) and λs1 the corresponding eigenvalue. It can be shown (see
Appendix), that

lim
V (bl)→∞

vs1 =


1√
3

1√
3

1√
3

 and lim
V (bl)→∞

λs1

λs1 +λs2 +λss
= 1.

In this case, PCA will recover the same loadings vector as in the original system (in
the limit). In addition, the corresponding PC will explain 100% of the total variance.

Finally, let us consider the curvature. As opposed to the skew and shift results, the
curvature result is surprising. It can be shown that

lim
V (bc)→∞

λs2

λs1 +λs2 +λss
= 0 = lim

V (bl)→∞

λs2

λs1 +λs2 +λss
= lim

V (bs)→∞

λs2

λs1 +λs2 +λss
.

(25)
In this case, the second symmetric factor is not the dominating PC. Of greater con-
cern is that, in the limiting case, the second symmetric factor does not explain any
variance. It turns out that all the variance is being explained by the first symmetric
factor, which we previously identified as a shift. This is due to:
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lim
V (bc)→∞

vs1 =


1√
2

0
1√
2

 and lim
V (bc)→∞

λs1

λs1 +λs2 +λss
= 1,

which is derived in the Appendix. The first symmetric factor is bi-explanatory; it can
explain two effects simultaneously. If the sole effect is curvature and its variance
approaches infinity, the first factor will explain 100% of the total variance, which
is exactly the same outcome as if the sole effect was a shift. Therefore, the first
symmetric eigenvector represents both level and curvature at the same time (moving
to one of them in the limiting case). This leads to problematic interpretation of the
first symmetric loadings vector when we have a situation as represented in figure
(3). This occurs because the first symmetric eigenvector is not completely flat, but
displays some degree of curvature.10

The significance of this bi-explanatory misinterpretation is related to the relative
contributions of the variances V (bl) and V (bc). To better understand this functional
relationship to V (bl),V (bc), consider the eigenvector component differences as a
function of the variances which is displayed in figure (4). We define the first and
second eigenvector component differences as

γs1(1)− γs1(2). (26)

Figure (4) plots this as a function of V (bl) and V (bc) where γs1(i) is the i-th com-
ponent of the vector γs1 . When equation (26) is zero, there is no difference between
the first and second component of the level vector and this implies that the first
symmetric eigenvector is completely flat. It should be noted that the equation will
be positive (and the eigenvector no longer flat) when the variance of the curvature
factor is positive. It is of further interest that it will still remain curved even for
large level variances V (bl). This is somewhat counterintuitive as one would expect
the difference to be close to zero for large variances V (bl). In this case, the level
variance is dominating the original system and PCA should solely produce a pure
level effect. When the line is not flat, the amount of the explained variance by the
level factor will be more and for the curvature factor will be less than in the original
system. We want to know how much this error is. This is displayed in figure (5),
where we consider explained variance biases as a function of V (bl),V (bc). One can
see, that the PCA level factor always overestimates the true explained variance of
a shift at any time, except for the case where V (bc) = 0. This is true even for very
high variances V (bl). Consider the case that V (bc) = 0.1,V (bl) = 0.8 then the PCA
level vector will be vs1 ≈ (0.60,0.53,0.60)T and the explained variance by the cor-
responding factor is overestimated by 7%.

To summarize, the PCA skew factor explains the same proportion of the total vari-
ance as the skew factor in the original system. The PCA skew factor also has the
correct limiting behavior. However, the first symmetric eigenvector is bi-explanatory
for both, level and curvature. Furthermore, this vector can be interpreted as a level

10 In many papers that use PCA for financial market data this is a common result.
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Fig. 5: Difference of explained Variance of the symmetric PCA vector and original level factor.V (bs) = 0.20.

factor when the coefficients are sufficiently close to each other. Given that in the
empirical literature the shift eigenvector usually displays some curvature effect, this
could lead to misinterpretation.

Of importance is how this can be corrected. Consider the 3× 3 case11, with three

11 It is clear that this case is somewhat artificial. Firstly, we have exogenously defined the factors
(level, skew and curvature). Normally, PCA will recover the factors endogenously. Secondly, the
objective of PCA is parsimonious dimension reduction. Normally, we have many more variables
than factors. However, in the toy example with seven variables and one factor (which was also
exogenously defined), we found that the factor variance was also overestimated. This will occur in
our 3× 3 case. The advantage of the 3× 3 case is that we can correct these overestimation errors
analytically. In the higher dimensional case we can not. Nevertheless, the 3× 3 case will provide
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variables and three factors. This original system is defined by equation (23). The first
step is to estimate a covariance matrix from data generated by this system. Then, we
perform the PCA analysis and obtain eigenvalues λs1 ,λs2 and λss. While we can es-
timate the covariance matrix of the original system, we do not know the variances of
the individual factors. Using the eigenvalues, however, we can calculate the original
variances V (bl),V (bc),V (bs) of the factors. The skew factor variance is correctly
recovered and requires no further modification. For the other two variances, the ap-
propriate modification is (see Appendix): 12

V (bl) =
1
2

(
λs1 +λs2 ±

√
λ 2

s1
−10λs1λs2 +λ 2

s2

)
, (27)

V (bc) = λs1 +λs2 −V (bl). (28)

Then, both the level and curvature variances are correctly recovered.

Let us consider a simple numerical example, using the following parameter inputs:

V (bl) = 0.41, V (bs) = 0.10, V (bc) = 0.11. (29)

We generated 50,000 realizations of the variables σ+,σ0 and σ− from equation (23)
using independent, normally distributed random variables bl ,bs,bc. The eigenvec-
tors and eigenvalues of the estimated covariance matrix were

vs1 =

 0.62
0.48
0.62

 vs2 =

 0.34
−0.88

0.34

 vss =

 0.71
0.00
−0.71


λs1 = 0.49, λs2 = 0.03, λss = 0.10.

The results appear in table (1). In this table, the left columns represent the original
variances of the factors, the middle columns show the PCA variances and the right
columns display the corrected factor variances. These are presented both in levels
and as a percentage contribution of the total variance.
The PCA indicates that the curvature effect (second symmetric factor) explains the
smallest amount (0.03) of the original variance, even though it has the second largest
variance (0.11) in the original system. As we surmised, the first symmetric eigenvec-
tor (level vector) explains more variance (0.49) than in the original system (0.41).
This could lead to the misleading conclusion that curvature was the least important
contribution. As was indicated previously, the skew factor was correctly recovered.
To correct the other errors, we apply formulas (27) and (28) with λs1 = 0.49 and
λs2 = 0.03 which yields the original variances of 0.41 and 0.11 for the level and

insights into the nature of the correction. Finally, the motivation for the exogenously defined factors
is that these factors are commonly found in the financial literature.
12 As can be seen in equation (27), V (bl) has two solutions. To obtain the correct solution, we cal-
culate the eigenvectors for both and compare them to the empirical level eigenvector. The solution
that matches the eigenvector is selected.
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Table 1: Comparison of explained variances by level, skew, curvature factors.

Original PCA Corrected

Variance % of Total Variance % of Total Variance % of Total
Level 0.41 66.1% 0.49 79.0% 0.41 66.1%
Skew 0.10 16.1% 0.10 16.1% 0.10 16.1%
Curvature 0.11 17.7% 0.03 4.83% 0.11 17.7%

curvature factor respectively. Consequently, PCA results can be used indirectly to
draw conclusions about the original system.

5.2 PCA on the Correlation Matrix

To this point we have considered PCA interpretation problems associated with a
covariance matrix. However, as it is more common to conduct a PCA analysis on
the correlation matrix, we will now consider this case. Lardic, S., Priaulet, P. and
Priaulet, S. [9] suggest that PCA should generally be conducted using correlation
matrices. Previously, we presented analytical representations of the covariance ma-
trix eigenvectors and eigenvalues which appear in theorems (3) and (4). In a similar
vein, we will now state analytic representations for the correlation matrix eigenvec-
tors and eigenvalues. If matrix A in equation (7) is a valid correlation matrix, e.g.
a1 = a2 = 1 and the matrix is positive definite, theorems (3) and (4) simplify to:

Theorem 5. If matrix A in equation (7) is a positive definite correlation matrix,
then it has the following skew symmetric, orthonormal eigenvector vss and its cor-
responding eigenvalue λss

vss =


1√
2

0
− 1√

2

 λss = 1− c (30)

with c ∈ [0,1].

Theorem 6. Let the vectors ws1 ,ws2 be defined as follows

ws1 =

 c+
√

8b2+c2

4b
1

c+
√

8b2+c2

4b

 ,ws2 =

 c−
√

8b2+c2

4b
1

c−
√

8b2+c2

4b

 .

If matrix A in equation (7) is a correlation matrix, it has the following symmetric,
orthonormal eigenvectors vs1 ,vs2 and corresponding eigenvalues λs1 ,λs2
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vs1 =
1
‖ws1‖

ws1 λs1 =
1
2
(2+ c+

√
8b2 + c2)

vs2 =
1
‖ws2‖

ws2 λs2 =
1
2
(2+ c−

√
8b2 + c2) (31)

with b ∈ [0,1] and c ∈ [0,1].

Consider a system with three standardized random variables. This will have a to-
tal variance of three. Intuitively, the variance contribution of any of the three PCA
factors can be between zero and three. Surprisingly, in the case of a PCA on a bisym-
metric correlation matrix, ranges for the eigenvalues (the variances of the principal
components) can be specified and the range for each factor is not [0,3]. To achieve
this, simply substitute 1.0 or −1.0 for each of the variables b and c in equations
(30), (31) yielding:

Lemma 1. Let λss be the eigenvalue corresponding to the skew-symmetric eigen-
vector of a bisymmetric 3×3 correlation matrix and λs1 ,λs2 the eigenvalues corre-
sponding to the symmetric eigenvectors. Then we have

λss ∈ [0,2], (32)
λs1 ∈ [1,3], (33)
λs2 ∈ [0,1]. (34)

Equation (32) shows that the skew factor explanatory percentage is bounded from
zero to 66.67%. Equation (33) shows that the first symmetric factor always explains
at least 33.33% of the variance. Finally, equation (34) indicates that the maximum
explanatory percentage is 33.33%. As long as the correlation matrix is bisymmetric,
these variance explanatory percentage bounds are predefined. Therefore, the use of
a correlation matrix (which is bisymmetric) does not remedy the potential interpre-
tation problems with PCA. In fact, the problems are worsened as will now be shown.
Let us return to the system defined in equation (23). The correlation matrix of the
variables σ−,σ0,σ+ has the following form:

1 V (bl)
3
√

V (σ+)V (σ0)
V (σ+)−V (bs)

V (σ+)
V (bl)

3
√

V (σ+)V (σ0)
1 V (bl)

3
√

V (σ+)V (σ0)
V (σ+)−V (bs)

V (σ+)
V (bl)

3
√

V (σ+)V (σ0)
1

 . (35)

As before, let vss be the skew symmetric eigenvector of matrix (35), and vs1 ,vs2 the
symmetric eigenvectors. Consider the corresponding eigenvalues λss,λs1 ,λs2 . Due
to the standardization, these sum to:

λss +λs1 +λs2 = 3.
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It can be shown that (see Appendix)

lim
V (bl)→∞

λss

3
= 0 = lim

V (bc)→∞

λss

3
.

Furthermore, the explanatory proportion of the skew symmetric factor in the limiting
case is equal to:

lim
V (bs)→∞

λss

3
=

2
3
,

as was previously indicated in lemma (1). In a similar manner, for the second skew
symmetric eigenvector the limiting explanatory proportion is:

lim
V (bl)→∞

λs2

3
= 0 = lim

V (bs)→∞

λs2

3

lim
V (bc)→∞

λs2

3
=

1
3
.

This differs from the results in the case of a covariance matrix (in equation (25)).
The final analysis of the first symmetric eigenvalue yields

lim
V (bl)→∞

λs1

3
= 1,

lim
V (bc)→∞

λs1

3
=

2
3
,

lim
V (bs)→∞

λs1

3
=

1
3
.

As was the case for the covariance matrix, the first symmetric factor will possess
multi-explanatory power. In this case, this factor can potentially explain all three
effects in the underlying system, whereas the PCA on the covariance matrix is only
bi-explanatory. It is clear, that the more effects a factor explains, the more prob-
lematic the PCA interpretation. In a similar spirit to the analysis of the covariance
matrix case, let us consider the shape of the eigenvectors in the limit for the corre-
lation matrix case.

lim
V (bs)→∞

vss =


1√
2

0
− 1√

2

 and lim
V (bc)→∞

vs2 =

 0
1
0

 .

The analysis of the first symmetric eigenvector yields
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lim
V (bl)→∞

vs1 =


1√
3

1√
3

1√
3

 , lim
V (bc)→∞

vs1 =


1√
2

0
1√
2

 , lim
V (bs)→∞

vs1 =

 0
1
0

 .

As expected, the first symmetric eigenvector converges to an eigenvector represent-
ing a parallel shift for large V (bl). Furthermore, for large curvature variances, the
first symmetric eigenvector converges to a different shape than the second symmet-
ric eigenvector. In contrast with the covariance case, two eigenvectors contribute
to the variance in the limiting case (previously there was only one). Surprisingly
and unexpectedly, even when the sole effect in the original system is a skew effect
(explaining 100% of the variance), the first symmetric eigenvector will show a sig-
nificant curvature effect which is not in the original system (explaining 33.3% of the
total variance).

As a side point, many of these results are not solely due to problems with PCA
but are also due to the method of the standardization. It has been pointed out in the
literature, that standardization is an appropriate step in PCA analysis. However, we
show in the Appendix that the shape of the level vector will be corrupted after stan-
dardization. This occurs for both, orthonormal and non-orthonormal systems. With
or without standardization, PCA interpretation problems will exist.

6 Conclusion

In this research, we have considered PCA interpretation problems for option mar-
ket data. Having found that the covariance matrix structures of foreign exchange
implied volatilities display bisymmetry, we consider this case. A further benefit of
the bisymmetric assumption is that the analysis is analytically tractable. Finally, the
eigenvectors associated with this system display similar patterns to empirical PCA
loading vectors. We show that even if a random system exists, but the covariance
matrix is bisymmetric, PCA will indicate the existence of factors which could be
interpreted as level, skew and curvature. Our first contribution is to point out this po-
tential interpretation problem. We also find that when a bisymmetric system exists
where level, skew and curvature is exogenously given, PCA will not correctly re-
cover these effects. The level factor explains more variance than the original system,
the skew factor is correctly recovered and the curvature factor variance contribution
is reduced. Our next contribution is to show how this can be analytically corrected
in a restricted case. We recognize that the system we have considered is somewhat
simplistic, restricted to three variables and three factors. However, we show that the
resulting patterns are also present in more realistic cases (i.e. with any dimension).

It should be pointed out that not all financial market data displays the bisymmet-
ric property. The most important case is for interest rates. However, the absence of
bisymmetry does not necessarily preclude the potential for PCA interpretation prob-
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lems. Lord and Pelsser point this out for other covariance matrix structures.

Study of such alternative systems remains for future research. However, our final
contribution is to provide a systematic framework for analysis that should prove
helpful.
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8 Appendix

8.1 Implications of a Standardization

Assume that the following orthogonal system is given:

σ =

σ+
σ0
σ−

= al

1
1
1

+as

 1
0
−1

+ac

 1
−2

1

 .

The random vector σ is a linear combination of the orthogonal vectors1
1
1

 ,

 1
0
−1

 ,

 1
−2

1


which have a level, skew curvature interpretation. Standardizing the variables σ+,σ0,σ−
yields

σ =

σ+
σ0
σ−

= al


1√

V (σ+)
1√

V (σ0)
1√

V (σ+)

+as


1√

V (σ+)
0

−1√
V (σ+)

+ac


1√

V (σ+)
−2√
V (σ0)
1√

V (σ+)

 .

A simple standardization thus corrupts the original orthogonal system. The new ba-
sis vectors are not orthogonal anymore and the original level vector has a curvature
effect. The same can be shown for the system
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σ =

σ+
σ0
σ−

= al

 1
1
1

+as

 1
0
−1

+ac

 1
0
1

 ,

where standardization results in

σ =

σ+
σ0
σ−

= al


1√

V (σ+)
1√

V (σ0)
1√

V (σ+)

+as


1√

V (σ+)
0

−1√
V (σ+)

+ac


1√

V (σ+)
0

1√
V (σ+)

 .

Again, the first basis vector cannot be identified as a level vector anymore, since
1√

V (σ+)
will in general differ from 1√

V (σ0)
.

8.2 Covariance Matrix Variance Ratio Limits

We will first analyze the limiting behavior of the variance ratios. Remember that
by assumption all variances V (bl),V (bs),V (bc) are strictly positive. First of all we
repeat, that

λs1 +λs2 +λss = V (bl)+V (bs)+V (bc).

The skew symmetric case is trivial, since

lim
V (bs)→∞

λss

λs1 +λs2 +λss
= lim

V (bs)→∞

V (bs)
V (bl)+V (bs)+V (bc)

= 1.

The limit of the ratio with V (bl),V (bc) instead of V (bs) is zero. For λs1 we have

λs1 =
1
2

V (bc)+
1
2

V (bl)+
1

2
√

3

√
3V (bl)2 +3V (bc)2 +2V (bc)V (bl). (36)

The limit can be calculated by using l’Hospitals rule. For general x > 0,y > 0 and
residual terms r1,r2 which do not depend on x we observe that

lim
x→∞

√
(x+ y)2 + r1

x+ r2
= lim

x→∞

x+ y√
(x+ y)2 + r1

= lim
x→∞

√
(x+ y)2 + r1

x+ y

= lim
x→∞

√
1+

r1

(x+ y)2 = 1.

This can be applied to equation (36) by factoring out
√

3 from the square root and
transforming the rest into the desired form. We thus have
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lim
V (bl)→∞

λs1

λs1 +λs2 +λss
=

1
2

+
1

2
√

3

√
3 = 1.

The same argumentation yields

lim
V (bc)→∞

λs1

λs1 +λs2 +λss
=

1
2

+
1

2
√

3

√
3 = 1.

For λs2 we have the same representation as for λs1 , except for the negative sign
in front of the root:

λs2 =
1
2

V (bc)+
1
2

V (bl)−
1

2
√

3

√
3V (bl)2 +3V (bc)2 +2V (bc)V (bl).

With the same arguments as above, we conclude that

lim
V (bl)→∞

λs2

λs1 +λs2 +λss
= lim

V (bc)→∞

λs2

λs1 +λs2 +λss
= 0.

8.3 Covariance Matrix Eigenvector Limits

We will analyze the non normalized eigenvector ws1 first. According to equation
system (9) we have

ws1(1) = ws1(3) =
3V (bc)+V (bl)+

√
9V (bl)2 +9V (bc)2 +6V (bc)V (bl)

4V (bl)
(37)

where ws1(i) is component number i in the vector ws1 . This limit can be calculated
in the same way as before to yield

lim
V (bl)→∞

ws1(1) =
1
4

+
√

9
4

= 1 = lim
V (bl)→∞

ws1(3).

Since ws1(2) = 1 we have ‖ws1‖=
√

2ws1(1)2 +1. We then conclude

lim
V (bl)→∞

ws1(1)
‖ws1‖

=
1√
3

= lim
V (bl)→∞

ws1(2)
‖ws1‖

= lim
V (bl)→∞

ws1(3)
‖ws1‖

.

Thus
lim

V (bl)→∞

ws1

‖ws1‖
= (

1√
3
,

1√
3
,

1√
3
).

The analysis of the limit with respect to V (bc) yields
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lim
V (bc)→∞

ws1(1) = ∞ and ws1(1) > 0.

We are interested in the limit

lim
V (bc)→∞

ws1(1)
‖ws1‖

= lim
V (bc)→∞

ws1(1)√
2ws1(1)2 +1

.

Since both, the numerator and denominator converge to infinity we can apply
l’Hospitals rule, to get

lim
V (bc)→∞

ws1(1)
‖ws1‖

= lim
V (bc)→∞

√
2ws1(1)2 +1
2ws1(1)

= lim
V (bc)→∞

1
2

√
2

ws1(1)2

ws1(1)2 +
1

ws1(1)2 =
1√
2
.

(38)
Since ws1(2) = 1, we conclude

lim
V (bc)→∞

ws1

‖ws1‖
= (

1√
2
,0,

1√
2
).

8.4 Extracting Original Variances from PCA Eigenvalues

Assume, that the eigenvalues λs1 ,λs2 ,λss are given after performing a PCA. This
section will derive the variances of the variables bl ,bs,bc, given λs1 ,λs2 ,λss. Know-
ing, that

λs1 +λs2 +λss = V (bl)+V (bc)+V (bs)

and
V (bs) = λss

it can be concluded that

λs1 +λs2 = V (bl)+V (bc).

We will define the known variable k1 as

k1 := λs1 +λs2 .

We then have

λs1 =
1
2

V (bc)+
1
2

V (bl)+
1

2
√

3

√
3V (bl)2 +3V (bc)2 +2V (bc)V (bl)

=
1
2

k1 +
1
2

√
V (bl)2 +V (bc)2 +

2
3

V (bc)V (bl)+
4
3

V (bc)V (bl)−
4
3

V (bc)V (bl)

=
1
2

k1 +
1
2

√
k2

1−
4
3

V (bc)V (bl).
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We thus have

λs1 −λs2 =

√
k2

1−
4
3

V (bc)V (bl).

Which leads to

V (bc)V (bl) =
3
4

k2
1−

3
4
(λs1 −λs2)

2 = 3λs1λs2 .

This equation together with λs1 +λs2 =V (bl)+V (bc) can be solved for V (bl) yield-
ing the following two solutions

V (bl) =
1
2

(
λs1 +λs2 ±

√
λ 2

s1
−10λs1λs2 +λ 2

s2

)
.

The variance V (bc) can be obtained via

V (bc) = λs1 +λs2 −V (bl).

The two solutions problem can be fixed by plugging the resulting variances in equa-
tion (37) and check them against the empirical eigenvector.

8.5 Correlation Matrix Variance Ratio Limits

For the skew symmetric eigenvalue we have

lim
V (bl)→∞

λss

3
= lim

V (bl)→∞

6V (bs)
9V (bc)+6V (bl)+9V (bs)

= 0 = lim
V (bc)→∞

λss

3
.

Similarly we have

lim
V (bs)→∞

λss

3
=

2
3
.

The terms for the second skew symmetric eigenvalue are more complicated.

λs2

3
=

1
2
− V (bs)

3V (bc)+2V (bl)+3V (bs)

− 1
2
√

3

√
3V (bc)2 +V (bc)[20V (bl)−6V (bs)]+3[2V (bl)+V (bs)]2

[3V (bc)+2V (bl)+3V (bs)]2
(39)

We then have by l’Hospitals rule

lim
V (bl)→∞

λs2

3
=

1
2
− 1

2
√

3

√
3 = 0,

lim
V (bs)→∞

λs2

3
=

1
2
− 1

3
− 1

2
√

3
1√
3

= 0,
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lim
V (bc)→∞

λs2

3
=

1
2
− 1

2
√

3
1√
3

=
1
3
.

The case
λs1

3
is analogous to the case for the eigenvalue λs2 , the only thing that changes is the
sign in front of the square root term in equation (39). We can thus directly calculate
with the previous results

lim
V (bl)→∞

λs1

3
= 1,

lim
V (bs)→∞

λs1

3
=

1
3
,

lim
V (bc)→∞

λs1

3
=

2
3
.

8.6 Correlation Matrix Eigenvector Limits

The limit of vss is trivial. For the symmetric vectors, we again analyze the non stan-
dardized vectors ws1 ,ws2 first. For ws2 we have

ws2(1) =

√
[3V (bc)+2V (bl)+3V (bs)]

32V (bl)

− 3V (bs)√
8V (bl)[3V (bc)+2V (bl)+3V (bs)]

−

√
9V (bc)2 +6V (bc)[10V (bl)−3V (bs)]+ [6V (bl)+3V (bs)]2

32V (bl)[3V (bc)+2V (bl)+3V (bs)]
(40)

The analysis of term (40) is more involved, since the first and the third term converge
in the opposite direction for V (bc)→ ∞. Let

x1(V (bl),V (bc),V (bs)) :=
3V (bc)+2V (bl)+3V (bs)

32V (bl)

x2(V (bl),V (bc),V (bs)) :=
9V (bc)2 +6V (bc)[10V (bl)−3V (bs)]+ [6V (bl)+3V (bs)]2

32V (bl)[3V (bc)+2V (bl)+3V (bs)]

We clearly have

x1(V (bl),V (bc),V (bs)) > 0,x2(V (bl),V (bc),V (bs)) > 0.
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Applying l’Hospitals rule yields

lim
V (bc)→∞

[x1(V (bl),V (bc),V (bs))− x2(V (bl),V (bc),V (bs))] =−
1
2

+
3
8

V (bs)
V (bl)

. (41)

We now use the following simple relationship for real numbers x1 ≥ 0,x2 ≥ 0.

x1− x2 = (
√

x1−
√

x2)(
√

x1 +
√

x2) (42)

We know from equation (41) that the limit of the left side of equation (42) for
V (bc)→ ∞ is a constant. Furthermore we have

lim
V (bc)→∞

[√
x1(V (bl),V (bc),V (bs))+

√
x2(V (bl),V (bc),V (bs))

]
= ∞. (43)

Consequently

0 = lim
V (bc)→∞

[ x1(V (bl),V (bc),V (bs))− x2(V (bl),V (bc),V (bs))√
x1(V (bl),V (bc),V (bs))+

√
x2(V (bl),V (bc),V (bs))

]
= lim

V (bc)→∞

[√
x1(V (bl),V (bc),V (bs))−

√
x2(V (bl),V (bc),V (bs))

]
.

We have thus shown
lim

V (bc)→∞

ws2(1) = 0.

The normed case is simple since

lim
V (bc)→∞

vs2(1) = lim
V (bc)→∞

ws2(1)
‖ws2‖

= lim
V (bc)→∞

ws2(1)√
ws2(1)2 +1

= 0.

Since ws2(2) = 1 we can conclude

lim
V (bc)→∞

vs2(2) = lim
V (bc)→∞

1√
ws2(1)2 +1

= 1.

Thus we have
lim

V (bc)→∞

vs2 = (0,1,0)T .

For the analysis of ws1 we note that ws1(1) can be represented as in equation (40) as

ws1(1) =
√

x1(V (bl),V (bc),V (bs))−
3V (bs)√

8V (bl)[3V (bc)+2V (bl)+3V (bs)]

+
√

x2(V (bl),V (bc),V (bs)).

The case for V (bc) can be handled easily by applying the same argumentation as in
the covariance case, since
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lim
V (bc)→∞

ws1(1) = ∞.

Thus, we can conclude

lim
V (bc)→∞

vs1 = (
1√
2
,0,

1√
2
)T .

A repeated application of l’Hospitals rules yields

lim
V (bl)→∞

x1(V (bl),V (bc),V (bs)) =
1

16

lim
V (bl)→∞

x2(V (bl),V (bc),V (bs)) =
9

16

Since

lim
V (bl)→∞

3V (bs)
2
√

2V (bl)[3V (bc)+2V (bl)+3V (bs)]
= 0

we follow

lim
V (bl)→∞

ws1(1)=

√
1
16
− lim

V (bl)→∞

3V (bs)
2
√

2V (bl)[3V (bc)+2V (bl)+3V (bs)]
+

√
9
16

= 1.

Standardizing yields

lim
V (bl)→∞

vs1 = (
1√
3
,

1√
3
,

1√
3
)T .

The last term that needs to be analyzed is

lim
V (bs)→∞

ws1(1).

We can summarize the following two terms√
x1(V (bl),V (bc),V (bs)) −

3V (bs)√
8V (bl)[3V (bc)+2V (bl)+3V (bs)]

=
3V (bc)+2V (bl)−3V (bs)√

32V (bl)[3V (bc)+2V (bl)+3V (bs)]
.

This term can be shortened, since we are interested in

−
√

y1(V (bl),V (bc),V (bs)) :=−

√
9V (bs)2

32V (bl)[3V (bc)+2V (bl)+3V (bs)]

only, since

lim
V (bs)→∞

ws1(1) =
√

x2(V (bl),V (bc),V (bs))−
√

y1(V (bl),V (bc),V (bs)).



Potential PCA Interpretation Problems for Volatility Smile Dynamics 33

One can show, that

lim
V (bs)→∞

x2(V (bl),V (bc),V (bs))− y1(V (bl),V (bc),V (bs)) =
3
8
− 3

16
V (bc)
V (bl)

.

Since

lim
V (bs)→∞

√
x2(V (bl),V (bc),V (bs))+

√
y1(V (bl),V (bc),V (bs)) = ∞

we can use the same trick as in equation (42) to get

lim
V (bs)→∞

√
x2(V (bl),V (bc),V (bs))−

√
y1(V (bl),V (bc),V (bs)) = 0.

Concluding, we have
lim

V (bs)→∞

ws1(1) = 0.

And thus
lim

V (bs)→∞

vs1 = (0,1,0)T .
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