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Nontechnical Summary

The threat of climate change, potentially produced by the growing accumulation of

greenhouse gases (GHG) in the atmosphere, has led to an increasing number of empirical

models for climate change policy analysis. Numerous modeling studies have shown the

sensitivity of mid- and long-run climate change mitigation cost and benefit projections to

assumptions about technology. Technological change is in general considered to be a non-

economic, exogenous variable in energy-economy models. Economic activities and policies

have then no impact on research, development, and diffusion of new technologies. However,

there is overwhelming evidence that technological change is not an exogenous variable, but to

an important degree endogenous, induced by needs and pressures. Hence, a new generation of

environmental-economic models treats technological change as endogenous, i.e. responding

to socio-economic (policy) variables, e.g. prices, investment in R&D, or cumulative

production.

The aim of this paper is to provide an overview of how exogenous and endogenous

technological change is represented in applied environment-economy models. First, a

taxonomy of different model types (bottom-up, top-down, integrated assessment models) is

given. Then, exogenous specifications of technical change such as the autonomous energy

efficiency parameter, the specification of backstop technologies and technology snapshots are

explored. Even though the theory of induced technological change is still in development at

present, three main approaches to incorporate induced technical progress can be identified: (i)

corporate investment in research and development, (ii) spillovers from R&D and (iii)

technology learning, especially learning-by-doing. It is shown how technical change is

accounted for in well-known economic models of climate change. The incorporation of

induced technological change tends to reduce the costs of environmental policy, accelerates

abatement and may lead to positive spillover and negative leakage.

Future extensions of the presented approaches should be targeted towards a further

endogenization and an improved realism in the modeling of the process of technological

change, e. g., the incorporation of path-dependence and inertia, the discontinuity in the

process of technological change, and the heterogeneity in firm behavior and investment

incentives. In addition, the need for calibration of R&D related model parameters requests

extended econometric studies to provide an empirical background for modeling.
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1. Introduction

The threat of climate change, potentially produced by the growing accumulation of

greenhouse gases (GHG) in the atmosphere, has led to an increasing number of empirical

models for climate change policy analysis. Numerous modeling studies have shown the

sensitivity of mid- and long-run climate change mitigation cost and benefit projections to

assumptions about technology (EMF 1996). Technological change (TC), that is increases in

outputs without increases in productive inputs, can lower the cost of GHG abatement policies

through product innovations, i.e. higher energy-efficiency of existing and new products, and

process innovations, i.e. higher energy efficiency of manufacturing processes, cost reductions

in low-emission energy conversion and improvements in fossil energy conversion.

Technological change is in general considered to be a non-economic, exogenous variable in

energy-economy models. Economic activities and policies have then no impact on research,

development, and diffusion of new technologies. The emphasis is placed upon showing the

mere effect of technical change, but not on how technology development occurs. However,

there is overwhelming evidence that technological change is not an exogenous variable, that

can be simply defined outside the model, but to an important degree endogenous, induced by

needs and pressures (Grubb et al. 1995). Especially over the longer time horizon typical for

climate policy analysis, models incorporating induced technological change may project total

costs of abatement that are substantially lower than those reported by conventional models

with exogenous technical change. Hence, a new generation of environmental-economic

models treats technological change as endogenous, i.e. responding to socio-economic (policy)

variables, e.g. prices, investment in R&D, or cumulative production. This approach is much

more difficult than the conventional approach, since the processes of technical change are

very complex and empirical understanding of the determinants of technological change is still

lacking.

Schumpeter (1942) distinguishes three stages in the process of technological change.

Invention of a new product or process; innovation, which is the transformation of an invention

into a commercial product, accomplished through continual improvement and refinement of

the new product or process; diffusion, which is the process of gradually adoption of the

innovation by other firms or individuals from a small niche community to being in

widespread use. The technological change process is usually initiated by a public or private
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investment activity called research and development (R&D) in the subsequent phases of

invention and innovation.
1
 The output of the R&D activities is an intangible asset to the firms,

“knowledge capital”, which is used together with other inputs to generate revenues. The

magnitude and direction of corporate investment in the knowledge sector is governed by

private profit incentives from (at least partly) appropriable innovations. However, it is

difficult to exclude others from knowledge embodied in an industry’s innovation. It

contributes to the innovation process of other industries and results in knowledge spillovers,

or positive externalities, to competing firms (Griliches 1979). The diffusion of new,

economically superior technologies is never instantaneous, but typically follows an S-shaped

(sigmoid) curve that measures the rate of diffusion of innovations over time (Rogers 1995).

The fraction of potential users that adapt the new technology rises only slowly in the early

stage, then gets faster, then slows down again as the technology reaches maturity and

approaches saturation. Experience with a technology leads to a gradual improvement over

time as a function of learning processes: learning in R&D stages, learning at the

manufacturing stage (“learning-by-doing”) and learning as a result of use of the product

(“learning by using”) (Rosenberg 1982).

Virtually all studies of induced technological change in environmental economics have

been theoretical (e.g. Bovenberg and Smulders 1995). Since the effects of environmental

policy on the rate and direction of technological change and, in particular, the costs of

reducing GHG emissions cannot be resolved at a purely theoretical level, there is a need for

empirical analyses. The aim of this paper is to provide an overview of how exogenous and

endogenous technological change is represented in applied environment-economy models and

what implications the different specifications have for modeling results. Section 2 gives a

taxonomy of different model types (bottom-up, top-down, integrated assessment models).

Section 3 explores exogenous specifications of technical change such as the autonomous

energy efficiency parameter, the specification of backstop technologies and technology

snapshots. Section 4 discusses different approaches to incorporate induced technical progress.

Even though the theory of induced technological change is still in development at present,

three main elements in models of technological innovation can be identified: (i) corporate

investment in research and development (R&D) in response to market conditions, (ii)

                                               
1
 For an overview of different innovation models, such as the technology-push approach or the

demand-pull model, see Rothwell (1992).
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spillovers from R&D and (iii) technology learning, especially learning-by-doing (LBD).

Section 5 shows how technical change is accounted for in well-known economic models of

climate change. Section 6 summarizes the quantitative results obtained from modeling

exercises and the implications of different specifications of technological change. Section 7

suggests different model extensions and concludes.

2. Modeling approaches: Bottom-up vs. top-down

Models of complex socio-economic systems require simplifying assumptions on

system boundaries and system relationships. They operate under the assumption that the

underlying economic structure will remain unchanged, or else it will change in a specified

way. Technological change can be integrated to economic models of climate change as it

relates to this assumption. There are two broad approaches for modeling the interaction

between energy, the environment and the economy. They differ mainly with respect to the

emphasis placed on a detailed, technologically based treatment of the energy system, and a

theoretically consistent description of the general economy. The models placing emphasis on

the former are purely partial models of the energy sector, lacking interaction with the rest of

the economy. In general, they are bottom-up engineering-based linear activity models with a

large number of energy technologies to capture substitution of energy carriers on the primary

and final energy level, process substitution, process improvements (gross efficiency

improvement, emission reduction), or energy savings. They are mostly used to compute the

least-cost method of meeting a given demand for final energy or energy services subject to

various system constraints such as exogenous emission reduction targets. Bottom-up models

embed new technologies and model the penetration of these technologies based on costs and

performance characteristics. Technological change occurs as one technology is substituted by

another.

The models emphasizing the above-mentioned description of the general economy are

general economic models with only rudimentary treatment of the energy system. Using the

top-down approach, they describe the energy system (similar to the other sectors) in a highly

aggregated way by means of neoclassical production functions that capture substitution

possibilities through substitution elasticities. They usually do not rely on direct descriptions of

technologies. Technological change, rather, alters the costs of production at a commodity or
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industry level. Top-down models may be classified as open (demand driven Keynesian) or

closed (general equilibrium) models (for a model classification see e.g. Weyant 1999).

Macroeconometric models are based on long-run time series data. They consist of

econometrically estimated equations without equilibrium assumptions. Macroeconometric

models offer a lot of economic detail, but little structural detail. Because of their structural

features, they are especially suited for short-run or medium-run evaluation and forecasting.

Computable general equilibrium (CGE) models have become the standard tool for the

analysis of the economy-wide impact of greenhouse gas abatement policies on resource

allocation and the associated implications for incomes of economic agents (Grubb et al.

1993). They are well-known Arrow-Debreu models that concern the interaction of consumers

and producers in markets. The household preferences as well as the production of

commodities are usually captured by nested constant elasticity of substitution (CES)

functions. General equilibrium provides a consistent framework for studying price-dependent

interactions between the energy system and the rest of the economy. This is important, since

carbon abatement policies not only cause direct adjustments on fossil fuel markets; they also

produce indirect spillovers to other markets which in turn feed back to the economy

(Böhringer and Löschel 2002). There are also various mixes of these broad types. Sometimes

a top-down representation of the economy is linked with a bottom-up description of

technologies in energy markets (Manne 1981). A synthesis of bottom-up and top-down

modeling with a direct technology description in the energy sectors and top-down regular

functional forms in the other production sectors is presented by Böhringer (1998).

Models for the integrated assessment of climate protection strategies, i.e. Integrated

Assessment Models (IAMs), currently try to approach climate change modeling in a very

comprehensive way, by gathering knowledge from diverse scientific fields. Economic models

are combined with environmental or climate change sub-models. IAMs are divided into two

broad categories, which vary according to the policy options available to the regulator. Policy

evaluation (or simulation) IAMs evaluate the effect of an exogenous policy on biosphere,

climate and economic systems. In contrast, policy optimization IAMs have the purpose of

finding the efficient or cost-efficient climate change policy and simulating the effect of an

efficient level of carbon abatement. Since this is a complex process, such models typically

have relatively simple economic and climate sectors (IPCC 2001).



5

Since top-down models are based on behavioral relations they are well suited for the

analysis of long-term innovation. In addition, they provide a consistent framework for the

assessment of knowledge accumulation and technology spillovers between different sectors.

In contrast to bottom-up models, rebound effects (Binswanger 2001) linked to the

introduction of a new technology - reduced energy prices stimulate consumption - are fully

integrated. Technological change in top-down models is described through the relationship of

inputs and outputs. Existing technologies are gradually replaced as relative prices of

alternative technologies change. Changes in technologies are the result of price substitution

along a given production isoquant (described by price elasticities) and shifts of the isoquant

through changes in factor demand. In contrast, technological change in bottom-up models

often occurs through the sudden penetration of new technologies (snapshot technologies).

New technologies are adapted rapidly, or even instantaneously, in optimizing models, because

they have higher efficiencies. The rate of overall technical change depends on the difference

between snapshots and the pace of adoption (Edmonds et al. 2000). Absolute shifts in bottom-

up models neglect transaction costs, inertia in the energy system and market failures on the

demand side (e.g. information costs, high discount rates) and thus yield too optimistic cost

estimates. The same is true for the inclusion of backstop technologies in top-down models

(see below). Even though the specific class of a model is important for GHG mitigation cost

projections, recent model studies show that the different modeling approaches are less

important than model differences in assumptions about cost and baseline definition, producer

and consumer flexibility and the depiction of technological change dynamics (Hourcade and

Robinson 1996, Weyant 2000). Indeed, the difference in the descriptions of technological

progress seems to be the most important explanation for the inequality between top-down and

bottom-up models in the assessment of economic costs of GHG emissions (Carraro and

Galeotti 1997).

3. Exogenous specification of technological change

Basically all models of climate change agree with Solow (1956) in assuming an

exogenous overall productivity growth of about 2-3 percent per year (Aznar and Dowlatabadi

1999). In addition, exogenous technological change can be introduced to any economic model

of climate change by an autonomous energy efficiency (AEEI) parameter or by assumptions
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about future costs of energy technologies (backstop). Modelers have to make assumptions

about parameter values in the former case, while they make direct assumptions about the

technology in the latter.

3.1 Autonomous energy efficiency improvement

The decoupling of economic growth and energy use is commonly represented by an

exogenous parameter referred to as the autonomous energy efficiency improvements (see e.g.

Manne and Richels 1992, Nordhaus 1994). The AEEI is a heuristic measure of all non-price

driven improvements in technology, which in turn affect the energy intensity. It may be

constant or follow some estimated non-linear time trends. The use of constant AEEI terms in

energy-economy modeling follows the assumption that the innovation of new energy

technologies is related to a large number of minor improvements which come mostly from

applying results from the common, gradually evolving pool of knowledge (Jacobsen 2001).

The AEEI parameter may either represent structural changes in the economy, i.e.

changes in the share of energy in total economic output over time, or sector specific

technological change, i.e. changes in the energy use per unit output of an industry through

time. It is simply included as a separate coefficient in the production or cost functions of the

models (factor augmenting or price diminishing technical change). A constant-elasticity-of-

substitution (CES) unit cost function (c) with exogenous price diminishing technical change

for input i ( i, i > 0) is given by:

( )
1 11

i t
i i

i

c p e
σσγδ

−−− ⋅ = ⋅  ∑ , (1)

where  is the distribution parameter,  is the substitution elasticity, t indexes time, and pi is

the input price. Due to the price effects of the energy efficiency improvement, the AEEI

parameter reduces the energy-output ratio in CES production functions only if the substitution

elasticity is less than unity (Kemfert and Welsch 2000).

Of course, changes in energy (carbon) intensity are also determined by the

responsiveness of energy demand to changes in energy prices, i.e. the price elasticity of the

demand for energy, and simple price-induced factor substitution. As the relative price of
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energy increases, e. g. in response to climate change policies to reduce GHG emissions,

consumers and firms substitute inputs away from energy and towards others (e. g. increased

use of labor instead of machines, or public transport instead of privately owned vehicles, see

Maybey et al. 1997). The degree to which capital or labor can be substituted for energy is

determined by the elasticity of substitution between energy and these factors, creating thus

another important parameter for the development of energy intensity in global models. The

carbon intensity is additionally determined by the substitution possibilities among fossil fuels

(e. g. switching from coal to gas for electricity generation). However, the changes in demand

for production inputs with relative prices represent choices among policy options already

available. In contrast, the AEEI improves the technology available to the producers (and the

consumers) and alters the production function itself. The main problem when including

technical progress with the AEEI is the difficulty to distinguish between technical progress

and long-term price effects (Jones 1994).

3.2 Backstop technologies

Another approach to include technical progress used in many macroeconomic models

is the incorporation of exogenously provided discrete new technologies. These backstop

technologies are energy sources that are already known, but not yet commercial. Since the

price mechanism determines the production technology used, backstop technologies come

into play as, on the one hand, they mature and costs fall with technological progress and, on

the other hand, production costs of conventional technologies rise, either due to the depletion

of conventional energy resources or environmental policies and associated prices increases. It

is commonly assumed that a backstop technology is available in unlimited supply at a

constant - and usually relatively high - marginal cost, i.e. price of the backstop. The high costs

of the backstop technologies reflect the associated costs of R&D investments. The upper limit

to which energy prices increase is then given by the production cost of the speculative future

technologies. Backstop technologies eliminate the effect of increasing energy costs reported

by other models. In long-term model projections, backstop technologies often provide a large

percentage of global energy by the middle of the century. Consequently, the assumed

availability and cost of backstop technologies have important impacts on model outcomes

(Manne and Richels 1994). Energy-economic models typically include either or both fossil
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and non-fossil backstop technologies. Backstop technologies are sometimes purely generic,

synthetic technologies. Sometimes they are more fully specified or existing technologies.

Examples are carbon-free electric power generation with solar power technologies such as

photovoltaic or fuel cells, ethanol from biomass, nuclear fusion, and advanced fossil fuel

generation technologies such as shale oil (see, for instance, Babiker et al. 1999, Manne and

Richels 1992 and 1999 and Peck and Teisberg 1992 and 1999).

Backstop technologies in macroeconomic models are a special form of so-called

“technology snapshots”. Technology snapshot models describe in considerable detail future

available technologies. Particularly bottom-up engineering models specify many alternative

technologies for energy production. This can be also done in hybrid top-down and bottom up

models (Böhringer 1998). The different technology snapshots substitute each other according

to some economic criteria over time (Edmonds et al. 2000). Discrete technology choice

models make assumptions about the technological diffusion, i.e. assumptions about the degree

of penetration for existing technologies together with assumptions on individual technological

progress. Exogenous technological change, specified in one of these ways, is able to assess

the effects of replacing the existing capital stock with more energy efficient technologies, i.e.

the effect of technical progress, but it can not model aspects like innovation or diffusion.

Especially, it can not consider technologies potentially developed in the future.

4. Endogenous specification of technological change

 

4.1 Investment in R&D

A newer class of modeling approaches treats innovation as a product of explicit

investment in research and development. This approach is inspired by macro models of

induced technological change (Romer 1990, Lucas 1988 and Grossman and Helpman 1994).

The new growth theory builds on the recognition that technological innovation is an economic

activity. It arises from the efforts of profit-maximizing agents within the economy and is an

endogenous response to Schumpeterian profit incentives. Knowledge is explicitly treated as

non-rival and not (fully) appropriable. Investment in R&D generates spillovers, or positive

externalities, which allow an economy to grow infinitely. These implications of the new

growth theory for technological change and long-run economic growth stand in contrast to
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conventional neoclassical growth models with exogenous technical change and decreasing

returns to investment in physical capital in which income per capita does not grow in the

steady-state. In the new growth theory literature, endogenous technological change focuses on

neutral technological change and aggregate R&D expenditure, while induced technological

change focuses on the direction of R&D efforts and biases in technological change (Jaffe et

al. 2000). The induced innovation hypothesis is presented in climate change models by

Carraro (1998), Nordhaus (1999), Goulder and Schneider (1999), Buonanno et al. (2000) and

Goulder and Mattai (2000).

Goulder and Mathai (2000) use a partial equilibrium model of knowledge

accumulation in which a firm chooses the time paths of abatement and R&D investment that

minimize the costs of achieving a certain emission target. Induced technological progress is

incorporated in the abatement cost function (C) that depends on the level of abatement (A) and

on the stock of knowledge (H) (cost-function model). Knowledge accumulation and thus

technological progress may either be R&D based or based on learning-by-doing (LBD) in

carbon abatement. In the first case, the evolution of the knowledge stock is described by:

( ),t t t t tH H k I Hα= + Ψ� , (2)

where I is investment in knowledge, i.e. R&D expenditure,  is the rate of autonomous

technological progress and  is the knowledge accumulation function. The evolution of the

knowledge stock in the latter case is given by:

( ),t t t t tH H k A Hα= + Ψ� . (3)

The parameter k describes whether R&D-based or LBD-based induced technological progress

is present. While knowledge accumulation is costly in the R&D-based case, it is free in the

LBD-based representation.

Nordhaus (1999) and Buonanno et al. (2000) describe the endogenous reaction of

innovations in different sectors to price variations (or regulation) in a neoclassical optimal

growth framework (the RICE model, see below). The economic agent chooses the optimal

level of investment and R&D effort. R&D is the source of technical change. Resources

directed to R&D improve the state of knowledge (called “innovation”). The innovation-
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possibility frontier, i.e. the production function for new knowledge, is given by a constant-

elasticity function of the level of research in the sector. This function is calibrated to empirical

studies of the inventive process. It is assumed that current innovations build on past

innovations (“building on shoulders” model of innovation). There are diminishing returns to

inventive activity in the particular period but the innovation possibilities are replenished in the

next period.

Nordhaus (1999) adds an energy/carbon input to the DICE Cobb-Douglas production

function. The rate of energy efficiency improvement varies with the amount of additional

R&D expenditure in the energy sector. Carbon abatement in this framework is either due to

induced technological change or factor substitution. Buonanno et al. (2000) describe

economic output (Q) as a function of the stock of knowledge capital (KR), physical capital (K)

and labor (L):

( )1
RQ A K L Kβ γ γ−= ⋅ ⋅ ⋅ , (4)

where A indicates exogenous technological change. Since the stock of knowledge is a factor

of production, changes in knowledge capital through R&D efforts raise the productivity of

resources and result in non-environmental technical progress. As long as the output elasticity

of knowledge  is positive, the production will be characterized by increasing returns to scale,

i.e. by endogenous technological change as referred to by the new growth theory. In addition,

the knowledge stock affects the emission-output ratio (E/Q):

( )1RKE
e

Q
ασ χ µ− ⋅ = + ⋅ ⋅ −  , (5)

where  is an exogenous parameter describing the technology in abatement,  is the rate of

abatement effort and  describes the elasticity of the emissions-output ration with respect to

���������	 
��
����	 ��	 ����	 ��	 ���	 �
��
��	 
����


���	 	 
�	 ���
�
���	 ���	 �������	 �
��	 ����

result in induced environmental technological change in form of an improvement in energy-

efficiency, i.e. a reduction in the influence of energy and carbon inputs on output. Thus, R&D

and increased knowledge extend the productivity of the firm and reduce the negative impact

on the environment.
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Another economy-wide analytic approach to model induced technical change in

greenhouse gas abatement is given by Goulder and Schneider (1999). They construct a

dynamic general equilibrium model in which firms in each sector employ labor, physical

capital and knowledge capital, fossil-based (conventional) and non-fossil based (alternative)

energy, energy-intensive materials and other materials to produce output. Induced

technological change is achieved – similar to (4) - through a shift term in the neoclassical

production functions that is influenced by the industries’ R&D. Investment in new physical

capital and expenditure on R&D activities expand the respective capital stocks. Knowledge

accumulation reduces the input requirements for the industries. The accumulation of

knowledge is costly. The model considers the connections between the demand and the

supply of R&D and, accordingly, of the scarce knowledge-generating resources (e.g. labor),

the rate of technological change and the policy initiative. Goulder and Schneider emphasize

the importance of accounting for opportunity costs of inducing technological change, i.e. the

costs of redirecting R&D resources from one sector to another. An increase in conventional

fuel prices in response to a carbon tax increases the markets for carbon free technologies and

creates an incentive for increased R&D in these sectors. This induce technical change thus

lowering the costs of carbon free technologies. But increased investment in R&D by one

sector reduces investment in R&D by other sectors since it demands scarce knowledge-

generating resources (crowding-out). Rapid technological change in one sector will thus be

accompanied by less rapid technological progress in other industries.

4.2 Spillover effects

Spillover effects from investment in R&D, or positive technological externalities,

provide the source for long-term growth in the macro-level new growth theory. Empirical

studies demonstrate the significance of spillovers (Griliches 1992). With external economies,

the social rate of return exceeds the private rate of return on investment in R&D. There is

evidence that research has a social return of 30 to 70 percent per annum as compared to

private returns on capital of 6 to 15 percent per annum (Nordhaus 1999). The fundamental

role of spillovers makes their incorporation in the modeling of induced technological change

imperative. However, in firm-level innovation theory, spillovers affect investment incentives

prior to innovation, since innovations are not fully appropriable with spillovers. In this
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framework, spillover effects are no longer strictly positive externalities. Since the underlying

mechanisms of innovation and spillovers are currently incompletely understood, Weyant and

Olavson (1999) suggest the use of spillovers only as a heuristic modeling tool that accounts

for the macro-level observation. Appropriability and spillovers should be separated: Firms

invest in R&D given some expected approbiability of knowledge as described in the previous

section. Spillovers are overlaid on this models as an add-on, strictly positive feature resulting

from previous investment decisions. The level of investment in R&D is then governed by

private investment incentives, but the rate of innovation with spillovers may be higher than

the respective rate without. Spillovers may be intrasectoral or intersectoral, local or

international.

Goulder and Schneider (1999) introduce knowledge spillovers to an individual firm in

an industry by a scale factor ( ) in a CES production technology that is an increasing function

of (non-excludable) spillover knowledge enjoyed by all firms (H):

( ) ( )1
X H N G

ρρ ργ= ⋅ ⋅ , (6)

where X is output, N is appropriable knowledge, G is an aggregate of all other production

inputs and  is the substitution parameter. The spillover benefit is given by

1t t tH H Rβ+ = + , (7)

where R is the industry-wide expenditure on R&D and  shows the magnitude of potential

spillovers. It is assumed that firms regard H as exogenous.

Buonanno et al. (2000) account for international knowledge spillovers by introducing

the stock of world knowledge ( W RK K=∑ ) both in the production function and in the

emissions-output ratio of the DICE model:

( )1
R WQ A K K L Kβ ε γ γ−= ⋅ ⋅ ⋅ ⋅ , (4’)

( )1R WK KE
e

Q
α θσ χ µ− ⋅ − ⋅ = + ⋅ ⋅ −  . (5’)
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This spillover modeling takes into account that technologies and institutional structures

diffuse internationally as the world economies are increasingly linked through international

trade, capital flows, and technology transfers. With spillovers, each region learns from the

knowledge (technology) of the rest of the world. Advanced technologies developed in

industrialized countries are gradually adopted by developing countries. Multi-regional top-

down models that account explicitly for international trade flows are – in contrast to bottom-

up models - generally well suited to assess these effects of geographical diffusion of new

technologies (Botteon et al. 1994).

4.3 Technology learning

Initial installations of technological innovations are often expensive. Costs decline as

individuals, enterprises and industries gain experience with them. The learning or experience

curve describes technological progress as a function of accumulating experience with the

production (learning-by-doing for manufacturers) and the use (learning-by-using for

consumers) of a technology during its diffusion. Technological learning has been observed

historically for many different industries and is a well-established empirical concept. Several

authors suggest learning curves as a meaningful presentation of technological change in

global energy models (e.g. Grübler et al. 1999 and Azar and Dowlatabadi 1999). Learning-by-

doing in technologies or systems as a source of technical change was first emphasized by

Arrow (1962). The Boston Consultancy Group (BCG 1968) established the experience curve

concept, relating total costs and cumulative quantity. It takes into account all parameters that

influence the total costs of a product such as production improvements (process innovations,

learning effects and scaling efforts), product development (product innovation, product

redesign, and product standardization), and decreases in process input costs (Neij 1997, IEA

2000) and traces them through technological and product evaluation. Kline and Rosenberg

(1986) show that technology learning may have a larger impact on technological progress

than the initial process of development itself.

In the basic model with a learning mechanism, technological progress is expressed in

terms of decreasing specific costs of a technology (C) as a function of cumulative (installed)

capacity (K). The cumulative capacity is used as a measure of the knowledge accumulation
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that occurs during the manufacturing (learning-by-doing) and the use of the technology

(learning-by-using) (Christiansson 1995). A commonly used learning-by-doing function is:

C K βα −= ⋅ , (8)

where α is a normalization parameter and β is the learning elasticity (or learning index)

(Anderson 1999). With this definition, every doubling of total installed capacity reduces

specific costs by a factor of 2-β. This factor is also called progress rate (PR) and defines the

speed of learning. The complementary learning rate (LR = 1 - PR) gives the percentage

reduction in the specific capital cost of newly installed capacity for every doubling of

cumulative capacity. A recent overview of experience accumulation and cost reduction for a

number of energy technologies is given by McDonald and Schrattenholzer (2001). Learning

rates for different energy technologies given by IEA (2000) are summarized in Table 1. The

variation is significant; there must be a 19-fold increase in the cumulative installed capacity

for biomass, but only a 3-fold increase for photovoltaics in Europe for a 50 percent reduction

in costs. Accordingly, the time span until the new technologies become competitive differs

considerably.

Table 1 Learning rates for energy technologies (in percent)

___________________________________________________________________________

Energy technology Europe USA Elsewhere

___________________________________________________________________________

Photovoltaics 35 18 -

Wind power 18 32 -

Biomass (electricity) 15 - -

Ethanol production - - 20

Supercritical coal 3 - -

Natural gas-fired combined cycle 4 - -

___________________________________________________________________________

Source: IEA (2000) and own calculations.
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Technology learning often shows different phases (Mackay and Probert 1998). In the

research, development and deployment phase (RD&D), high learning rate can usually be

observed as technologies first seek a market niche. In the commercialization or diffusion

phase, learning rates are lower. When market saturation is reached, the learning rate may fall

close to zero and technology learning is hardly noticeable (IEA 2000). To avoid both

overestimation and underestimation of the future progress ratios, the different phases of

technologies must be taken into account when extrapolating historical data. Photovoltaics

(mostly module) have had a learning rate of roughly 20 percent since 1975. This is also true

for wind and gas turbines in their research, development and deployment phase. However, gas

turbines show a learning rate of about 10 percent in the commercialization phase. The

learning rates of technologies, such as photovoltaics, may also fall to 10 percent when the

technology and market mature (UNDP 2000).

4.4 Other approaches

There have been a number of other ad hoc attempts to model technological change.

Since technological progress cannot be observed directly, various econometric studies infer

technological change by observing the dynamics of other variables (latent variable approach).

The estimation equations describe the economic mechanism through which economic

variables affect technical progress. Technical progress in this approaches is non-autonomous,

but not explicitly modeled as the outcome of optimizing behavior of economic agents. Rather,

technical change is often modeled as an empirical function replacing the deterministic AEEI

as a proxy of technological change. The advantage is that all types and sources of

technological development are included in these models (Weyant and Olavson 1999).

However, since the empirical models build on historical data, they are suitable only for short-

or medium term cost assessments.

Dowlatabadi and Oravetz (1996) and Dowlatabadi (1998) construct a model of price-

induced energy efficiency. The empirical analysis of the historical rate of technical change

embodied in the AEEI parameter showed that it has been strongly influenced by energy price

changes over the period from 1954 through 1994. The assumption of a deterministic technical

progress may thus not be correct for long periods of time. They replace the exogenous AEEI

by an energy efficiency response model of induced technological change that reacts to energy
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prices. In the period of declining energy prices up to 1974 the price induced energy efficiency

improvement (PIEEI) was about –1.6 percent, but only about 1 percent in the period of rising

energy prices thereafter. This confirms the intuition that price increases spur greater

innovation and a greater diffusion of energy-saving technologies. Empirically, the linkage of

efficiency improvement to energy prices demands a distinction between price-induced shifts

in factor inputs and price-induced improvements of efficiency, which is difficult to establish.

Jorgenson and Wilcoxen (1990) present the most complete empirical model of

endogenous technological change. They include technological progress by allowing input

prices to interact with a time trend. For each industry, they use a translog unit cost function

(ci) in which costs depend on the prices of all inputs (pj) and an autonomous technological

(time) trend (t):

( ) 21 1
ln , ln ln ln ln

2 2
i i t i i t t i t i

i o j j T jk j k jT j TT
j j k j

c p t p t p p t p tα α α β γ δ= + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅∑ ∑∑ ∑ . (9)

The input coefficients are derived by Shephard’s lemma. They vary to implicitly capture the

effects of induced technological change:

lnji i i t i i
j jk k jT

ki j

x c
p t

x p
α β γ = + ⋅ + ⋅ ⋅ 

 
∑ . (10)

Differentiating the cost function with respect to t shows the components of technical progress:

ln
lni i t i

T jT j TT
j

c
p t

t
α γ δ∂ = + ⋅ + ⋅

∂ ∑ . (11)

The parameters αT and δTT are exogenous and represent the neutral component of technical

progress. Technical progress becomes endogenous because of the second term. An increase in

the price of input i reduces cost reduction due to productivity growth if the bias of technical

change is input i using (γiT > 0). Hence, price induced productivity growth partially

endogenizes technological development (“factor price bias”). Jorgenson and Wilcoxen

statistically estimated productivity growth for 35 industries from observed changes of input
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prices and the index of technology using extensive time series data on inter-industry

transactions from 1947 to 1985. Different industries exhibit different rates of technical

change. They found energy saving technical change (γiT < 0) only for three industries. The

approach is often called semi-endogenous, since it does not really endogenize technical

change. The biased productivity growth parameter γiT is still exogenous and there is no

explicit explanation for the assumed relationship.

Another approach to incorporate technical change in environmental models is the use

of macroeconometric vintage models with capital vintages involving different technologies

(Solow 1959). These technologies may have effects on the production function, the input

structure (energy efficiency), or the flexibility of the vintage. For example, substitution

possibilities among inputs of production may be higher with new vintages than with old

vintages (Bergman 1990, Burniaux et al. 1992), or the parameterization of each vintage’s cost

function may differ (Conrad and Henseler-Unger 1986). Hence, with different vintages, the

input structure not only depends on the substitution possibilities for the vintages when relative

prices change but also on the input structure of the new vintage and the rate at which new

investment goods disperse into the economy. If new capital brings better technology, then

productivity should rise as capital investment accelerates and as the average age of the capital

stock declines. Disembodied technical progress in the vintage concept comes from adjusting,

for example, an energy coefficient by the decay of old vintages and by adding the input

coefficient of the new vintage. The price dependent input coefficient for energy based on the

new relative prices in the following period is

( ) ( )1 1 1

1 1 1

1
1

1

NVK
t t t

t t
t t t

E PE PE
g

X g PX PX

σ
σ σ

σδ α δ β
− −

+ + +

+ + +

    
 = − ⋅ ⋅ + + ⋅ ⋅   +      

, (12)

where �is the rate of capital depreciation, g is the growth rate of output, X is the output with

price PX, E is the energy input, PE and PENVK are the energy prices associated with the

respective vintage, and  and  are distribution parameters for energy of the old and new

production process, respectively (Conrad 2001). Currently, there are many established vintage

models, either macroeconometric models, dynamic general equilibrium models or technically

based bottom-up models. However, the vintage approach that embodies technological
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progress in each year’s capital vintage is - except for the pace and the size of capital

investment - again an exogenous specification of technological progress.

Lee et al. (1990) incorporate induced technological change following the neo-

Keynesian approach by using Kaldor’s technical progress function that links productivity

growth and capital accumulation (Kaldor 1957). Technological progress (Tt) simply follows a

recursive relationship with gross investment and R&D expenditure:

1t o tT dα α= + ⋅ , (13)

( )1 (1 ) lnt t t td d I RDβ β γ−= + − ⋅ + . (14)

In these equations, 0 and 1 are constants,  measures the impact of past quality-adjusted

investment on the current state of technical advance (i.e. R&D and gross investment form a

technological index designed to represent the stock of knowledge accumulated over time),  is

a weighting parameter for R&D expenditure, I is gross investment, and RD is R&D

expenditure. However, this very simplistic modeling of endogenous technological change has

no microeconomic underpinning (Grubb and Köhler 2000).

Carraro and Galeotti (1996 and 1997) infer technological progress from the dynamics

of the capital stock (K), which is split into an energy-saving one (Ke) and an energy

consuming one (Kp). A new vintage of the capital stock is added to the two components each

year. The growth rate of the total capital stock (g) is given by:

 = + − ⋅ 
e

p e p

K
g g g g

K
, (15)

where ge and gp are the growth rates of the different capital stocks that are econometrically

estimated. The amount of R&D carried out by firms is endogenously determined by relative

prices, market demand, and policy variables such as environmental taxes or R&D subsidies.

R&D activities affect the firms’ decision to install energy-saving capital and, thereby, the

composition of their capital stock. An increase in R&D expenditure is likely to produce

investment in environment-friendly capital. The ratio of the stock of the environmental

friendly capital to polluting capital is used as an indicator of technological progress. That is,

there is a quantified relationship between R&D and technological progress. It should be noted,
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however, that most of the observed increase in energy efficiency is not related to the choice

between energy extensive and energy intensive capital.

5. Economic models of environmental policy

This section surveys recent developments in technological modeling within economy

wide models. As already pointed out, the incorporation of endogenous technical change is

difficult and thus commonly neglected. It requires the modeling of economic processes with

externalities and increasing returns to scale. Introducing endogenous technical change makes

the models highly non-linear systems and significantly increases the computational

complexity. The non-convex optimization raises the difficult computational problem of

finding a unique optimum.

Most top-down models rely on exogenous technological change. They usually

incorporate an AEEI parameter and allow for backstop technologies. Typical CGE models are

GEM-E3, GREEN, PACE and MIT-EPPA. The General Equilibrium Model for Energy–

Economics–Environment (GEM-E3) is a computable general equilibrium model for the

European Union member states that links the macro-economy with details of the interaction

with the environment and the energy system (Capros et al. 1997). Technological change in

GEM-E3 is characterized by a constant AEEI parameter. The same is true for PACE, a large-

scale modeling system designed to analyze the economic implications of environmental

policies (Böhringer 1999), and the OECD GREEN model, which assumes an AEEI parameter

of 1 percent (Burniaux et al. 1992). In addition, the GREEN model has a so-called

putty/semiputty dynamic structure. Two kinds of capital goods coexist in each period: capital

installed in previous periods, and new capital as a result of investment in the current period.

To include endogenous technological change, a vintage re-calibration is applied at the

beginning of each period and parameters of the production structure are modified to reflect

the changing composition of capital (Beghin et al. 1995). Substitution between energy and

labor is more feasible in the most recent vintages. Hence, increased capital adjustment or

replacement rates increase technological progress since energy can be better substituted by

other inputs (Burniaux et al. 1992). The RICE integrated assessment model for climate change

policy analysis (Nordhaus 1994) assumes an exponential slowdown in productivity growth

rate for each region gj over time (t):
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( ) ( )0 jd t
j jg t g e

− ⋅= ⋅ , (16)

where d is its constant rate of decline calibrated to historical growth rates of output per capita.

Carbon-saving technological change is introduced with the assumption that decarbonization

(decline in the global carbon-emissions-to-output ratio) is about 1 percent until 2005 and

reduces to zero over subsequent decades (Nordhaus and Boyer 1999). The MIT-EPPA model

considers a reference AEEI parameter of 0.75 percent and backstop technologies for oil, gas

and electricity. The oil and gas technologies are hydrocarbon-based, representing coal

gasification and shale oil. The electricity technology is a carbon-free renewable alternative

representing a combination of solar, wind, and other technologies. There is a mark-up above

the base-year cost of the substituted commercial fuel for the backstop technologies. For

example, the markup for synfuel oil in the USA is 2.8, i.e. ceteris paribus the shale backstop

technology becomes a competitive energy supply technology after a 2.8-fold increase in oil

prices.

In the macroeconometric energy-environment-economy model for Europe (E3ME),

induced technological change is modeled using Kaldor’s technical progress function. E3ME is

an econometric input-output model with 32 sectors and 14 EU regions (Barker and Köhler

1998). The main endogenous variables in E3ME, e. g. technological change, are determined

from functions estimated on historical data for European energy use and the economy.

Carraro and Galeotti (1996 and 1997) include induced technical change in the WARM model

using again a latent variable approach with respect to the capital stock. WARM is an

econometric general equilibrium model estimated for 12 EU countries. In WARM, an

increase in a firm’s R&D expenditure, which depends inter alia on policy variables such as

environmental taxation and innovation subsidies, leads to more environment-friendly capital.

The factor price bias of Jorgenson and Wilcoxen (1990) is included in DGEM.

Bottom-up models are almost exclusively technology snapshot models that examine a

suite of technological alternatives over time. A number of bottom-up models have integrated

endogenous technological change that assumes LBD. Examples are MESSAGE (Messner and

Schrattenholzer 1998, Seebregts et al. 1999) and market allocation, called MARKAL (Barreto

and Kypreos 1999, Kypreos and Barreto 1998). MESSAGE and MARKAL are dynamic

linear programming models of the energy sector (bottom-up), that are generally used in a

tandem with the MACRO (top-down) macro-economic model which provides economic data
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for the energy system (Manne 1981). They optimize a choice between different technologies

using given abatement costs and carbon emission targets. Both models account for the

substantial uncertainty associated with the time of arrival and performance of new

technologies by employing a stochastic rather than a deterministic optimization technique.

Cost and performance information of a variety of advanced renewable and fossil-fuel-based

alternative energy technologies are put into the model (technology snapshots). However, there

is no modeling of technological change, just adoption of different available technologies.

MARKAL considers 13, MESSAGE 77 technologies. Both include six learning technologies.

Learning technologies in MESSAGE and MARKAL are displayed in Table 2. POLES adds

other features of the innovation process. The share of technical potential that is realized as

economic potential for a technology is described by a logistic curve and depends on the

payback period. The payback period also influences the coefficient describing the speed of

diffusion in a logistic diffusion curve (Kouvaritakis et al. 2000).

Table 2 Learning rates in MARKAL and MESSAGE (in percent)

___________________________________________________________________________

Energy technology MARKAL MESSAGE

___________________________________________________________________________

Advanced coal 6 7

Natural gas combined cycle 11 15

New nuclear 4 7

Fuel cell 13 -

Wind power 11 15

Solar PV 19 18

Solar thermal - 15

___________________________________________________________________________

Source: Seebregts et al. (1999).

Dowlatabadi and Oravetz (1997) implemented the PIEEI relationship in the Integrated

Climate Assessment Model (ICAM 3). ICAM 3 is a non-optimizing, sequential, stochastic

decision model with a fairly complex structure. Endogenous technological change (Tt) in

ICAM is written as:
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, (17)

where A is the base energy efficiency as a function of per capita income y, α is a constant

coefficient and pt is the average price of energy. Expectations of energy price increases lead to

technological innovation and diffusion. The autonomous energy efficiency parameter A

accounts for the historical fact that energy intensity has dropped in most sectors even under

falling energy prices. Dowlatabadi (1998) added LBD and included endogenous technological

progress not only for energy efficiency in conversion and end-uses, but also in the discovery

and recovery of oil and gas. The integrated model to assess the greenhouse effect (IMAGE)

also uses AEEI and PIEEI to endogenize technological change. In IMAGE, the AEEI

parameter is assumed to decline exponentially and is linked to the capital turnover rate

(Alcamo et al. 1998). Nordhaus (1999) incorporates induced innovation as a function of the

R&D-based knowledge stock and spillover effects in the R&DICE model. The model then

determines carbon taxes, capital investment and the level of R&D in the energy/carbon sector

that maximizes discounted per-capita consumption. FUND, another IAM, deals with

technological development through running different scenarios about technological progress

(Tol 1999). Table 3 summarizes the treatment of technical change in well-known climate

change models.
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Table 3 Technical change characteristics in energy-economy models

___________________________________________________________________________

  Model            Type*      Representation of TC**                 Reference

___________________________________________________________________________

DGEM CGE Factor price bias Jorgenson and Wilcoxen (1990)

DICE/RICE IAM AEEI Nordhaus (1994)

E3ME ME Latent variable (Investment) Barker and Köhler (1998)

ETC-RICE CGE R&D, Spillovers Buonanno et al. (2000)

FUND IAM TS, Scenarios Tol (1999)

GEM-E3 CGE AEEI Capros et al. (1997)

GOULDER ME

CGE

LBD, R&D, Spillovers

R&D, Spillovers

Goulder and Mathai (2000)

Goulder and Schneider (1999)

GREEN CGE AEEI, Vintages Burniaux et al. (1992)

ICAM3 IAM LBD, PIEEI, TS Dowlabadi (1998)

IMAGE IAM AEEI, PIEEI Alcamo et al. (1998)

MARKAL ES LBD, TS Barreto and Kypreos (1999)

MESSAGE ES LBD, TS Grübler and Messner (1998)

MIT-EPPA CGE AEEI, Backstops Babiker et al. (2001)

PACE CGE AEEI, Backstops Böhringer (1999)

POLES ES LBD, Diffusion curves Kouvaritakis et al. (2000)

R&DICE IAM R&D, Spillovers Nordhaus (1999)

WARM ME Latent variable (Capital stock) Carraro and Galeotti (1997)

___________________________________________________________________________
* CGE: computational general equilibrium model, ES: energy system model,

IAM: integrated assessment model, ME: macroeconometric model
** AEEI: autonomous energy efficiency improvements, LBD: learning-by-doing,

PIEEI: price induced energy efficiency improvements, TS: technology snapshot,
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6. Implications of exogenous and induced technical change

Long-term projections are very sensitive to differences in assumed AEEI rates. Even

small changes in the AEEI parameter result in large differences for energy demand and

emissions in the baseline and, hence, the total costs of emissions reductions (Manne and

Richels 1990, Böhringer et al. 2000). The higher (lower) the AEEI is, the lower (higher) the

baseline emissions and lower (higher) the costs to reach a climate target relative to a given

base year are. There may be uncertainty as to the true value for the AEEI parameter. Given

the multiple factors that influence changes in energy consumption over time, it is difficult to

capture the appropriate value. Estimates for AEEI rates vary widely, ranging from 0.4 per cent

to 1.5 per cent (Grubb et al. 1993 and Weyant 1999). Assumptions about (backstop)

technologies have large impacts on mitigation costs. Hourcade and Robinson (1996) showed

that emissions reduction costs decrease over time, simply because more technologies become

available. The magnitude of this effect depends on the characteristics of the assumed backstop

technologies. The importance of technology assumptions for the costs of achieving different

atmospheric concentrations is backed by Edmonds et al. (1997).

The omission of induced technological change may lead to an overestimation of

abatement costs and the trend increase in emissions. Price induced technical change as studied

by Dowlatabadi and Oravetz (1997) spurs technical progress as energy prices increase. This

leads to a decline in energy use and carbon emissions per unit of energy thereby lowering

emissions and substantially reducing the associated costs of mitigation. Dowlatabadi (1998)

added LBD, which further reduces abatement costs. Carbon taxes may lead to a change to low

carbon technologies from the given menu of alternative technologies, which in turn may

speed up the diffusion and bring down the costs of the new energy technologies (Azar and

Dowlatabadi 1999). However, if technological progress reduces the cost of energy

consumption, endogenous technical change increases business as usual emissions. Therefore,

additional abatement efforts are required to meet some specified target, but the associated

costs will also be lower (Dowlatabadi 1998).

Quantitative results from bottom-up models with relatively cheap low- or non-carbon

technologies and LBD indicate low gross costs of abatement. Long-run stabilization of

emissions may – without accounting for transaction costs - even be achieved at no cost

(Anderson et al. 2000). The structure of energy production and the optimal technology mix
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implemented changes considerably with LBD. While standard coal and nuclear power are still

the dominant technologies in 2050 in the static case, advanced coal, new nuclear and solar

technologies dominate the mix in the LBD case. Investment costs are reduced by about 20

percent in the LBD case in 2050 (Messner and Schrattenholzer 1998). Goulder and Mathai

(2000) find that costs and the required (optimal) carbon tax are generally lower with the

existence of induced technological progress than without, although the impacts of induced

technical change are rather weak. The modest effects of learning-by-doing carbon abatement

in aggregated models contrast the results from bottom-up approaches. This result may be

traced back to the lack of sectoral disaggregation in these model approaches, which do not

take into account the varying impacts of LBD on different industries at different stages of

development. Conventional energy industries tend to be mature industries, in which learning-

by-doing effects may be rather small in contrast e. g. to renewable energy industries

(Anderson 1999).

Unlike learning-by-doing, investment in R&D is associated with opportunity costs.

Models that take into account the opportunity costs of investment in R&D like those by

Goulder and Schneider (1999), Nordhaus (1999) and Buonanno et al. (2000) find only weak

impacts of induced technological change on the gross costs of abatement. Goulder and

Schneider (1999) claim that the opportunity cost of redirecting limited R&D resources to the

energy sector steepens the decline in GDP associated with the introduction of a carbon tax

under induced technological change, i.e. a given tax leads to larger gross costs (25 percent

higher GDP loss). The reason for this is that in equilibrium, the rate of return on R&D is

equalized across sectors and equals the rate of return to other investments. An increase in

R&D expenses on renewables with induced technological change leads to reduced R&D and,

hence, reduced productivity in other sectors. Technical expertise (human capital) is “crowded

out” from other applications. The gross costs rise for a given carbon tax. Since induced

technological change, on the other hand, results in lower costs for the alternative technologies,

greater abatement is achieved and environmental benefits increase. Induced technical change

can thus significantly raise the benefits of a given policy, but can not reduce the costs

substantially. It is shown that the additional benefits outweigh the higher gross costs, yielding

higher net benefits with induced technological change for a given tax than without

technological change. If a target is set, the required tax and, hence, gross costs are lower.

Subsidies on industry-specific R&D lead to over-investment in R&D. However, R&D market
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failures (knowledge spillovers), which lead to under-investment in R&D by firms, justify

R&D subsidies as a second policy instrument besides the carbon tax. Large spillovers to the

benefit of non-energy related industries strengthen the argument for subsidization to

overcome the R&D market failure. Carraro and Galeotti (1996 and 1997) also promote a

policy mix of subsidies for environmentally friendly R&D along with taxes. A counter-

example, building on the crowding out argument, is given by Kverndokk et al. (2000).

In the same vein, Nordhaus (1999) finds that the opportunity cost of R&D (and LBD)

is a severe limitation to the effects of induced technological change. The effects of spillovers,

which provide free progress (as does LBD) and thus lessen the negative impacts of

environmental policies when considered in the models (Goulder and Mathai 2000), are also

reduced by opportunity cost considerations, since high spillovers of R&D lead to high

opportunity costs of redirecting R&D to the energy sector. The costliness of R&D makes the

influence of induced technical change considerations insignificant in the R&DICE model.

Energy R&D increases by less than 2 percent per decade, which reduces the emission-output

ratio by 0.0075 percent per decade and the carbon intensity of energy use in 2100 by about 0.5

percent relative to the base path. Induced innovation seems to be a much less powerful factor

in implementing climate-change policies than substitution of labor and capital for energy,

which accounts for approximately 99 percent of changes in emissions, concentrations, and

temperature.

Grübler and Messner (1998) point out that models with an AEEI typically result in a

deferral of investment decisions until the technology has become cheap enough to be

competitive. Even though absolute abatement requirement increases with late action, it is still

better to wait as abatement becomes cheaper. With induced technological change the

derivation of the shape of the least-cost mitigation pathway becomes more complex (Grubb

1997). Goulder and Mathai (2000) find that with R&D-induced technological change, some

abatement is shifted from the present to the future. Schneider and Goulder (1997) state the

case for the early introduction of carbon taxes, but not necessarily abatement. Wigley et al.

(1996) argue for postponed action. In bottom-up models with LBD, early emissions-reduction

measures are more preferable since they generate knowledge that lowers the relative costs of

future abatement (Anderson 1999, Grübler and Messner 1998, Grubb et al. 1995). The effect

of LBD-induced technological change on the time profile of abatement costs in the cost-

function model of Goulder and Mathai (2000) is ambiguous.
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In the policy debate of climate change, spillovers from Annex-B countries’ abatement

to non-abating developing countries play an important role. Models with exogenous

technological change find negative environmental spillovers from abatement. Unilateral

abatement policies will result in negative spillovers from abatement as abatement action by

one country is partly offset by increased emissions in other countries when energy intensive

industries move (leakage effect) (Böhringer and Löschel 2002). In a more dynamic

perspective, induced technological change influences the leakage effects through the

international diffusion of endogenous technological progress, i.e. technology spillovers as

introduced by Buonanno et al. (2000). In the presence of induced technological change,

cleaner technologies developed as a response to abatement policies in industrialized countries

may internationally diffuse generating positive spillovers for non-abating countries. This

effect arises in ICAM (Dowlatabadi and Oravetz 1997). The diffusion of cleaner technologies

from emission constrained regions outweighs the classical components of leakage and also

results in reduced emission elsewhere. The reason for this is the enormous leverage effect

exerted by diffusion of new technologies over decades (Grubb 2000).

The implications of the different approaches to represent technological change in

economic climate change models for the costs of environmental policy, the appropriate policy

instruments, the timing of mitigation action and international spillovers (leakage) are

summarized in Table 4.

Table 4 Effects of technological change in climate-energy models

___________________________________________________________________________

 Implications                              Exogenous TC                          Endogenous TC

___________________________________________________________________________

Costs of environmental
policy

High / low
(depending on assumptions)

Low / high
(opportunity costs)

Policy instrument Tax Tax / subsidy

Timing implications Defer abatement Accelerate abatement

Spillover / leakage Negative spillover /
positive leakage

Positive spillover /
negative leakage

___________________________________________________________________________
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7. Conclusion

This survey presents different approaches to represent technological change and the

limitations inherent in existing economy-environment models. It highlights the importance of

understanding the process of technological change in global climate change modeling, since

the direction and extent of technological change proves crucial for the environmental impact

of future economic activities. Quantifying the impacts of price-induced technological change,

learning-by-doing and learning-by-using, and exogenous technological change poses a major

challenge. The current state-of-the-art modeling of (endogenous) technological change still

relies heavily on ad-hoc assumptions. Future extensions of the presented approaches should

be targeted towards a further endogenization and an improved realism in the modeling of the

process of technological change. Most important seems to be the incorporation of path-

dependence and inertia, the uncertainty in major innovations, the discontinuity in the process

of technological change, and the heterogeneity in firm behavior and investment incentives

(Weyant and Olavson 1999). In addition, the need for calibration of R&D related model

parameters requests extended econometric studies to provide an empirical background for

modeling.

Climate policy seems highly sensitive to the dynamics of technical change, namely to

path-sensitivity and lock-in phenomena (Grubb et al. 1995, Ha-Duong et al. 1997). The lock-

in effect is mainly determined by direct investment costs as in the case of learning, but also by

other considerations, such as uncertainty or infrastructure and networks that create de facto

standards for a technology (Arthur 1989). Path-dependency means that the sequence of

historical events influences future possibilities. Firms may find it more profitable in the short

run to invest in technologies that are already competitive, or, given high rates of technical

change, investors may just wait and see. Hence, many innovations never reach

commercialization even though they are potentially superior to existing, established

alternatives. These behavioral and strategic issues lead to a highly path-dependent technology

adoption and a path of technological change that evolves with a great deal of inertia. The

models can account for path-sensitivity and lock-in effects by a careful inclusion of LBD,

time lags and assumptions about the diffusion of innovations.

Path discontinuities arise through gradual progress and major innovations. The

processes of technological change are characterized by a substantial uncertainty associated
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with the time of arrival and performance of new technologies. It is, therefore, not possible to

know what specific technologies will be successful in the future. This emphasizes the need of

incorporating uncertainty in the modeling process, for example through the use of stochastic

optimization techniques, the consideration of risk attitudes of decision makers and the

incorporation of a very wide range of energy technologies and resources (Grübler et al. 1999

and Anderson 1999).

Another important aspect of the innovation process not yet accounted for in energy-

economy models is the heterogeneity in firm behavior and innovation incentives. Different

firms respond differently to environmental policies. Additionally, new technologies are

developed by an innovative firm and are not available to all firms, but diffuse over time.

Heterogeneity is also addressed in a number of recent game theoretical studies related to

strategic R&D investments (Ulph 1997). It is not easy to capture these evolutionary firm level

processes in a neoclassical framework. In addition, top-down models do not provide the

degree of disaggregation for firm level analysis, while bottom-up models are not well suited

to study strategic considerations. Given these model limitations, current applied models look

at homogenous, “representative” firms or industries and include spillovers and diffusion as

demonstrated. An interesting approach to account for heterogeneity, though not heterogeneity

of firms, but more general heterogeneity of industries and technologies, is the hybrid

modeling that synthesize bottom-up and top-down approaches in energy-economic models.
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