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A Note on the Equilibrium Properties of Locational Sorting Models

Patrick Bayer and Christopher Timmins

Abstract

A central feature of many models of location choice – whether of firms or households, within or across cities

– is the role of local interactions or spillovers, whereby the payoffs from choosing a location depend in part

on the number or attributes of other individuals or firms that choose the same or nearby locations in equilibrium.

The main goal of this paper is to develop the equilibrium properties of a broadly applicable and readily

estimable class of sorting models that allow the location decision to depend on both fixed local attributes

(including unobserved attributes) and such local interactions.  In particular, we prove uniqueness in the case

of congestion effects and use a series of simulations to demonstrate that a unique equilibrium is more likely to

obtain (i) the smaller are any agglomeration effects, (ii) the larger are the set of choices available to the agents,

(iii) the more “meaningful variation” there is in those choices, and (iv) the more heterogeneous are the agents

themselves.  This is encouraging for the use of our model to describe the sorting of individuals and firms over

geographic space, where the number of choices is usually large and variation in exogenous fixed attributes can

be important.  Moreover, these results conveniently coincide with the conditions required for econometric

identification of our model.

JEL Classifications:  H0, R0, R2, R3

Keywords:  Local Spillovers, Social Interactions, Economic Geography, Natural Advantage, Endogenous
Sorting, Discrete Choice Models, Agglomeration, Congestion, Random Utility
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1   INTRODUCTION

Models of location choice – whether of firms or households, within or across cities – have long been

central in urban and public economics.  From the inter-jurisdictional sorting models of Tiebout (1956) to the

models of segregation developed by Schelling (1969, 1971) to the “new economic geography” of Fujita,

Krugman, and Venables (2000), a central feature of these models has been the role of local interactions or

spillovers, whereby the payoffs from choosing a location depend in part on the number or attributes of other

individuals or firms that choose the same or nearby locations in equilibrium.  In some cases, these local

spillovers operate through anonymous channels, with payoffs depending upon simply the number of other

individuals or firms selecting the same location, while in other circumstances, the attributes of one’s

neighbors (e.g., race, income, or education in the case of individuals, and industry classification in the case

of firms) might matter as well.  

It is the interplay between these sorts of spillovers and the natural advantages embedded in the

landscape of alternative locations that can explain, at a regional level, the geographic and size distribution

of cities, and at an urban level, the stratification of households across communities on the basis of income,

education, and race, neighborhood density patterns, ethnic enclaves, ghettos, and problems of inner-city decay

and suburban sprawl.  Recent empirical work aimed at distinguishing the magnitude of local interactions has

focused on subjects as diverse as crime in cities [Glaeser, Sacerdote, and Scheinkman (1996)], racial

segregation [Bayer, McMillan, and Rueben (2002)], interjurisdicational sorting related to schooling [Epple

and Sieg (1999), Bayer, Ferreira, and McMillan (2003)], human capital spillovers in the labor market

[Morretti(2002)], the general equilibrium effects of environmental policy [Sieg et. al. (2003), Timmins

(2003)], welfare participation [Bertrand et. al. (2000)], unemployment spells [Topa (2001)], development

economics [Deichmann et. al.  (2002), Krugman (1995)] and agglomeration economies in firm locations and

investment [Henderson (1999)], among many others.  



1 This is in contrast to pure likelihood-based algorithms for estimating the utility effects of spillovers, which require
uniqueness or an arbitrary equilibrium selection rule when there are more than one.
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In light of this growing empirical literature, the main goal of this paper is to develop the equilibrium

properties of a broadly applicable and readily estimable class of sorting models that includes local spillovers

of the sort found in the contexts described above.  Building on the random utility framework of McFadden

(1978), the key feature of this class of models is that it allows the location decision to depend on both fixed

local attributes (including unobserved attributes) and local interactions or spillovers.  In related work [Bayer

and Timmins (2003)], we develop an estimator for this class of models that provides for the identification of

local spillovers even in the presence of unobservable local attributes.  The goal of this paper is modest in

comparison.  In particular, we define and prove the existence of an equilibrium for this class of sorting models

and explore the uniqueness properties of that equilibrium.  The estimation strategy we develop in Bayer and

Timmins (2003) is based on first-order conditions derived from agents’ optimal location decisions, and at no

point requires a unique equilibrium for estimation purposes.1  Uniqueness becomes a valuable feature of the

sorting problem, however, when the goal is to simulate the equilibrium responses of individuals to a large

policy change.  In this case, the presence of multiple potential equilibria (while an unavoidable feature of

reality in many problems) makes it difficult to draw strong policy conclusions.  When the choice environment

in question contains more than two alternatives, uniqueness can only be guaranteed in the presence of a

congestion effect.  In the presence of an agglomeration effect, whether a unique equilibrium obtains depends

explicitly on the context of a particular data environment in a manner that is not possible to characterize

analytically.  For this reason, we use a series of simulations to explore how the primitives of the economic

environment affect the likelihood that the sorting equilibrium is unique in this case.

The paper proceeds as follows.  In Section 2, we describe the equilibrium model of locational sorting

and demonstrate the existence of an equilibrium with a simple application of Brouwer’s fixed-point theorem.

In Section 3, we describe a set of sufficiency conditions for uniqueness of that equilibrium, and illustrate that

the determination of uniqueness for a particular application will depend upon the size of any agglomeration



2 The model could also easily be adapted to study the spatial sorting of firms, where a profit rather than utility function
would govern behavior.  

3 The basic form of this utility function is based on the random utility model developed in McFadden (1978) and the
specification of Berry, Levinsohn, and Pakes (1995), which includes choice-specific unobservable characteristics.  We
use the linear form for utility to make examining the equilibrium properties of the model as clear as possible.
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effect and the specific features of the data set.  In Section 4, we illustrate how the maximum agglomeration

effect that can sustain a unique equilibrium  (or “uniqueness threshold”) varies with observable features of

simulated data.  Section 5 extends the intuition of that discussion to broader forms of local spillovers in which

individuals care about the type (as opposed to just the number) of their neighbors.  Section 6 concludes.

2   EQUILIBRIUM IN A MODEL OF LOCATIONAL SORTING

This section sets out a model of locational sorting and demonstrates that an equilibrium exists.  To

help fix ideas, we restrict attention to a model of residential location choice with anonymous local spillovers

that can have a positive (agglomeration) or negative (congestion) effect on utility.2  A straightforward

extension of this framework could be used to study spillovers that depend upon both the number and

attributes of other households choosing the same location, as would arise in a model of racial segregation or

sorting due to differences in local public goods provision across communities.  In describing the uniqueness

properties of the model below, we provide intuition for how the results presented here extend to this more

general case.  

Consider a setting in which each individual i chooses a location (indexed by j) in order to maximize

utility, Ui,j given by:3

(2.1)

where each location j is described by (i) an observable vector of attributes, Xj, (ii) the share of individuals who

choose this location j, σj, and (iii) a location-specific unobservable ξj, which we assume to be invariant to the
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location decisions made by the individuals in the model.  The taste parameters in equation (2.1) may vary

with observable Zi, and unobservable υi  individual characteristics:

(2.2)

and individuals can have unobserved idiosyncratic preferences (over and above the shared component ξj) for

location j, εi,j.

The inclusion of σj allows for anonymous local spillovers.  Such spillovers must ultimately derive

from some underlying mechanism.  For example, households may desire to live in large metropolitan areas

because of the size and scope of the labor market or the urban amenities that large cities provide.  At the same

time, the increased congestion may detract from the utility provided by large versus small cities.  When such

mechanisms are observed in the data, they can be included directly in the utility function.   In many empirical

settings, however, the mechanisms through which local spillovers operate are more numerous, more difficult

to characterize, or less easily measured, and the inclusion of σj in the utility function distinguishes the

collective magnitude of these local spillovers.

Finally, it is important to note three simplifying assumptions that we maintain throughout this paper.

First, we assume that an individual’s utility from selecting location j is affected only by the characteristics

of that location, including the share of individuals who also choose it.  In general, the model can be extended

to account for the possibility of spillovers across locations (i.e., where the attributes of nearby alternatives

enter directly into the utility received from choosing location j).  Second, while it is straightforward to include

other endogenous variables in the analysis (the most important of which is a price associated with choosing

each location), we ignore the role of prices and other endogenous variables (e.g., wages, if we consider

equilibrium in local labor markets) in order to focus attention on the key issues concerning the equilibrium



4 See Bayer, McMillan, and Rueben (2002) and Timmins (2003) for explicit analyses of sorting models with local
spillovers and endogenous prices.

5 Note that it is possible to incorporate other assumptions concerning the nature of idiosyncratic preferences and the
equilibrium concept within this framework.  We could, for example, treat each household’s idiosyncratic preferences
as private information and relax the assumption that each household observed in the data represents a continuum of other
households.  In this case, the choice probabilities correspond to the expected decisions of other agents (possibly masking
important elements of strategic interactions between households).  Seim (2001) uses this interpretation of the error
structure, along with a Bayesian-Nash equilibrium concept, in estimating a model of entry in retail markets. In
developing the theoretical properties of the equilibrium, the estimation procedure, and the identification strategy, we
work with the interpretation of  specified above.ε i

6 It is worth noting that the use of choice probabilities does not affect the attractive properties of the choice framework
related to self-selection.  Among the continuum of individuals, those individuals that choose each particular alternative
j will be those that get a relatively high draw of εi,j relative to the other choices.  In this way, the set of individuals
predicted to choose an alternative are those that place the highest value on it, as governed by both their characteristics
and idiosyncratic preferences.  
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properties of the sorting model related to local spillovers.4  Finally, we assume that the coefficient on the

share of the population that selects alternative j, σj, is constant across individuals.  This assumption makes

distinguishing models with agglomeration and congestion interactions a simple matter of determining whether

α is greater than or less than zero, which is helpful in characterizing the equilibrium properties of the model.

Throughout our analysis, we assume that individual i’s vector of unobserved preferences  isε i

observed by all of the other individuals in the model, and that agents play a static simultaneous-move game

according to a Nash equilibrium concept.  Moreover, we assume that a continuum of individuals with

different unobserved preferences exists for each vector of observed characteristics Zi that occurs in the world.

This assumption (which is essentially that the number of agents is sufficiently large to avoid integer

problems) ensures that the unobserved components of preferences can be integrated out.5  The resulting

choice probabilities depict the distribution of location decisions that would result from a continuum of

individuals with a given set of observed characteristics Zi, each responding to his particular unobserved

preferences.6



7 In fact, in this perfect information setting, all potential equilibria must be associated with a distinct fixed point of the
mapping defined in equation (2.5).
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Given the utility specification described in equation (2.1),  the probability Pi,j that individual i chooses

alternative j can be written as a function of the vectors of choice characteristics (both observed and

unobserved) and individual i’s observed characteristics Zi:

(2.3)

Aggregating these probabilities over all individuals yields the share choosing location j:

(2.4)

which, re-written in vector notation, is given by:

(2.5)

where  is the density of individual characteristics in the population.  This system of equations implicitlyh Z( )

defines the vector of population shares  and maps [0,1]J into itself, where J is the total number ofσ

alternatives in the discrete choice set.  We define a sorting equilibrium to be a set of individual location

decisions that are each optimal given the location decisions of all other individuals in the population.  Because

any fixed point of (2.5) is associated with a set of location decisions that satisfy the conditions for a sorting

equilibrium, we are now in position to prove the following proposition.7



8 The expression “meaningful variation” incorporates both the underlying variation in the data and the importance of
the given characteristic in the utility function.  Thus, a choice attribute can have no meaningful variation even it has a
positive variance if individuals do not value this attribute when selecting an alternative.
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Proposition 1  If  is drawn from a continuous, well-defined distribution function and Ui,j, as defined inε i

equation (2.1), is a continuous function of σj œ i, j, a sorting equilibrium exists. 

Proof:  The assumptions imply that equation (2.5) implicitly defines  as a continuous mapping of a closedσ

and bounded interval into itself.   The existence of a fixed point of this mapping, , follows directly fromσ *

Brouwer’s fixed-point theorem.  Any fixed point, , is associated with a unique set of choice probabilitiesσ *

given in equation (2.3) that satisfy the conditions for a sorting equilibrium.  Consequently, the existence of

a fixed point, , implies the existence of a sorting equilibrium.  Q.E.D.σ *

Under the simple set of continuity assumptions described in Proposition 1, which are reasonable in many

empirical settings, an equilibrium will always exist for this class of models.  We now characterize the

conditions under which this equilibrium is unique.

 

3  UNIQUENESS

In general, whether a unique equilibrium arises is related to four features of the choice problem: (i)

the sign and magnitude of the social interaction, α; (ii) the meaningful variation in household tastes; (iii) the

meaningful variation in fixed attributes across choices; and (iv) the total number of choices, J.8  In a slightly

different setting with regards to the information structure and in a model with two alternatives, Brock and

Durlauf (2001) demonstrate that a unique equilibrium arises in the presence of a congestion interaction or

whenever an agglomeration interaction is small relative to the difference in the fixed (private) utility offered



9  That 3k…j |Mgj / Mσk| = |Mgj / Mσj| follows from the fact that Mgj / Mσj +  3k…j  Mgj / Mσk = 0,  Mgj / Mσj is strictly negative, and
Mgj / Mσk is strictly positive for k…j.
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by the two alternatives.  The goal of this section is to demonstrate that the general nature of this result extends

to the sorting model described here.

To facilitate this analysis consider the function that implicitly defines the share of individuals that

choose each alternative:

(3.1)

which can be rewritten in vector notation as:

(3.2)

We begin by considering the case of a congestion interaction (i.e., α < 0).  In this case, it is possible to prove

the following proposition:

Proposition 2  If  is drawn from a continuous, well-defined distribution function and Ui,j is defined as inε i

equation (2.1), the sorting equilibrium is unique in the presence of a congestion interaction, α < 0.  

Proof:  The matrix of partial derivatives of Ψ with respect to , which we label Ψ1, has diagonal elementsσ

(1 - Mgj / Mσj) > 1 and off-diagonal elements Mgj / Mσk < 0.  Moreover, 3k…j |Mgj / Mσk| = |Mgj / Mσj| because

increasing all shares in the utility function by the same amount does not change any individual’s decision and,

consequently, leaves all decisions and, consequently, all shares unchanged.9  Thus, Ψ1 is a matrix with a

positive dominant diagonal, and as a consequence, the equation Ψ = 0 has a unique solution.  Q.E.D.
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In the presence of an agglomeration interaction, the equilibrium is no longer generically unique.  In

this case, the following proposition holds: 

Proposition 3  If  is drawn from a continuous, well-defined distribution function and Ui,j is defined as inε i

equation (2.1), the sorting equilibrium is unique in the presence of a moderate agglomeration interaction,

0 < α < T, where T is a function of the primitives of the model including the distributions of household tastes

and exogenous choice attributes.  In particular, a threshold T can be defined as the maximum α such that 3k

|Mgj / Mσk| < 1 œ j.

Proof:  When 3k |Mgj / Mσk| < 1 œ j , the matrix Ψ1 has diagonal elements (1 - Mgj / Mσj) that are each positive

and exceed the sum of the off-diagonal elements 3k…j |Mgj / Mσk|.  Thus, Ψ1 is again a matrix with a positive

dominant diagonal, and as a consequence, the equation Ψ = 0 has a unique solution. Q.E.D.

Propositions 2 and 3 echo the key result concerning uniqueness developed by Brock and Durlauf

(2001) for the binary choice case.  Proposition 3 also echoes the uniqueness result presented in Glaeser and

Scheinkman (2002) for social multipliers.  We adopt their phrase moderate social interactions (MSI) to refer

to agglomeration interactions below the threshold T.  Note that the threshold value suggested in Proposition

3 is generally not the maximum value of α for which a unique equilibrium obtains as 3k |Mgj / Mσk| < 1 is a

sufficient but not necessary condition for uniqueness.  

4  SIMULATIONS

Proposition 3 is unsatisfying in that it provides no intuition for how the conditions of the economic

environment under study affect the maximum value of α for which a unique equilibrium obtains.  As

described above, Brock and Durlauf (2001) provides an analytical solution for this maximum value for the
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binary choice setting but, as described in Brock and Durlauf (2003), obtaining an analytical solution is

impossible in a multinomial choice setting except in extremely special cases of the model (e.g., for cases

where the private component of utility is constant across both choices and individuals,

(4.1)

for all i, j ).  Moreover, even if one was to fully characterize the distributions that govern the data generating

process describing choice characteristics and tastes (Xj, βi, ξj), the maximum value of α for which a unique

equilibrium obtains varies with the actual realizations of choice characteristics and tastes in the data.

Consequently, in order to explore how the primitives of the model affect the maximum α such that

a unique equilibrium arises for all agglomeration interactions less than that value, we conduct a series of

simulations that calculate this threshold value T for a particular draw of a data set given the primitives of the

empirical setting. The results of these simulations describe the distribution of T for a given empirical setting

and, consequently, by varying the model’s primitives we are able to draw conclusions about how these

primitives affect the likelihood that a unique equilibrium obtains.

For these simulations, we consider the following simplified version of the utility function shown in

equation (2.1):

(4.2)

We assume that xj has only a single dimension and that βi is distributed  i.i.d. normal with mean β0 and

variance σβ2.  We also assume that εi,j is distributed according to the Weibull distribution and that the variance

of x across choices is given by σx
2.  While crucially important for estimation, the distinction between

observable and unobservable (to the econometrician) household and choice characteristics is meaningless
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when studying whether a unique equilibrium arises and thus we drop ξj and observable taste shifters from the

analysis.

The maximum threshold T is generally a function of the particular features of the data and

consequently, cannot be related analytically to a simple moment of the data such as σx
2.  Consequently, we

present a series of simulations that calculate T for a particular draw of a data set given the basic features of

the empirical setting: (i) the number of choices, J; (ii) the meaningful variation in exogenous choice

characteristics, β0 σx
2; and (iii) the heterogeneity in household preferences, σβ2.  By repeating this calculation

for a large number of simulations, we are able to characterize the distribution of T for a given empirical

setting.

For each simulation, the method that we use to calculate the maximum agglomeration interaction for

which a unique equilibrium exists is as follows.  The procedure starts by fixing the three parameters: J, β0σx
2,

and σβ2.  Beginning with α = 0.01 and the share of the population that chooses Choice 1 equal to one, (i.e.,

σ1 = 1; σj = 0, œ j … 1), we calculate the share of individuals that chooses each alternative according to the

utility specification shown in equation (4.2).  This yields a new vector of predicted shares, which we then use

in recalculating the share of individuals that choose each alternative.  We iterate until this procedure

converges to a fixed point , where the superscript refers to the fixed point that results from starting withσ 1,*

σ1 = 1.  We then repeat the procedure, setting the share of the population that chooses Choice 2 equal to one

and again iterating until the procedure converges to a fixed point: .  Repeating this procedure startingσ 2,*

the share of the population at each alternative 1, 2, ... , J, we calculate , , ..., .  If, on the oneσ 1,* σ 2,* σ J ,*

hand,  …  for any k and l, clearly two distinct fixed points exist and we conclude that the sortingσ k ,* σ l ,*

equilibrium is not unique for α = 0.01.  If, on the other hand,   =  for all k and l, we conclude thatσ k ,* σ l ,*

the sorting equilibrium is unique for α = 0.01.  If we determine that the sorting equilibrium is unique for α

= 0.01, we set α = 0.02 and repeat this procedure, increasing α until we find an " that gives rise to distinct
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fixed points.  While one cannot conclude immediately that the sorting equilibrium is unique when  =σ k ,*

 for all k and l, we conjecture that this is indeed so.  We do not prove this conjecture generally, but itsσ l ,*

logic can easily be seen in the two-dimensional case.  With the assumptions made above concerning the utility

specification shown in equation (4.2), we know that 

(4.3)

Two key properties hold for this function.  First, 0 < gj < 1 for all possible vectors  and second, gj is aσ

monotonic, increasing function in σj when α > 0.  Figure 1 illustrates two possible mappings g1(s1) for the

two-dimensional case.   The first property ensures that g1(1) < 1 and thus lies below the 45E line, which when

combined with monotonicity assumption ensures that iterating according to equation (4.3) leads to the fixed

point with the greatest value for σ1, point A in the figure on the right.  Thus, when multiple fixed points are

present, as shown in that figure, iterating equation (4.3) starting from the point σ1 = 1 will converge to the

fixed point A and starting with σ2 = 1 (i.e., σ1 = 0) will converge to the fixed point C.  When a single fixed

point is in fact present (i.e., shown in the figure to the left), iterating on equation (4.3) will converge to it from

either starting point.  We conjecture that the logic of this two-dimensional case extends to the many

dimensional case, but do not prove this conjecture here.

The first set of simulations are designed to demonstrate how the threshold agglomeration effect T

varies with the size of the choice set.  Figure 2, which is based on 100 simulations for each choice set size

J, illustrates the median, minimum, and maximum of the distribution at each choice-set size for β0σx
2 = 1, σβ2

= 0:  In order to characterize how meaningful variation in the exogenous characteristics of the choice set

affects the maximum α that can sustain a unique equilibrium, we conduct additional simulations for integer

values of β0 σx
2  ranging from 1 to 10.  Figure 3 illustrates the results for this case, with J = 5 and σβ2 = 0: 
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Finally, in order to explore how individual heterogeneity affects the maximum value of α that can

sustain a unique equilibrium, we compare the results with σβ2 = 0, 1, and 2.  Cases with σβ2 > 0 are not subject

to the Independence of Irrelevant Alternatives (IIA) property at the aggregate level as in the multinomial logit

case σβ2 = 0.  In this way, these specifications also demonstrate the robustness of the above results to the IIA

property.  The richer individual heterogeneity strengthens the simulation results described above as illustrated

in Figure 4.  The figure is constructed for alternative choice set sizes with β0 σx
2 = 1; solid lines bound the

25th and 75th percentiles of the distributions of the threshold α’s, and moving from bottom to top, dashed

lines denote the medians of the simulated feedback effects when σβ2 = 0, 1, and 2, respectively.  A clear

increase in the maximum sustainable agglomeration effect accompanies increasing heterogeneity in individual

preferences.  Beyond a choice-set size of J = 25, the three confidence bands are practically disjoint.

These simulation results support the following conclusions.  Conditional on the primitives of the

sorting model, the mean T defined over a series of randomly drawn data sets is an increasing function of: (i)

the number of alternatives; (ii) the variation in the contribution to utility made by the exogenous attributes

of the choice set; and (iii) the heterogeneity in individual preferences.

These conclusions echo results found earlier in the network and social effects literatures; Katz and

Shapiro (1994), for example, write that “consumer heterogeneity and product differentiation tend to limit

tipping and sustain multiple networks.  If the rival systems have distinct features sought by certain consumers,

two or more systems may be able to survive by catering to consumers who care more about product attributes

than network size.”  Likewise, in studying uniqueness in a model of Tiebout sorting, Nechyba (1999) points

out that when “communities are sufficiently different in their inherent desirability, the partition of households

into communities is unique.”  Finally, Brock and Durlauf (2001) state, “one is most likely to observe

multiplicity (in equilibria) in those social environments in which private utility renders individuals relatively

close to indifferent between choices.”  
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5   BROADER FORMS OF SOCIAL INTERACTIONS

It is straightforward to extend the model developed above to incorporate broader forms of social

interactions that allow, for example, households from a particular group to prefer to live in neighborhoods

or communities with other households from the same group.  Such a model might be used to describe

neighborhood sorting based on racial preferences [Schelling (1969, 1971)] or community sorting governed

by concerns over the provision of local public goods [Tiebout (1956)].  In these cases, preferences are

naturally defined in terms of the characteristics, rather than the number, of other households that choose the

same location.  Because a complete set of results to describe such sorting would be analogous to those

presented above and would substantially increase the length of the paper, we instead provide intuition for how

the results of the previous section extend to this case.

Consider a simple setting with two types of households (A, B) with preferences defined over the

fraction of households of a particular type that choose the same neighborhood.  Let the preferences of

households of type k for location j be written as:

(5.1)

where σj
A represents the proportion of individuals in neighborhood j of type A.  In this case, self-segregating

preferences would be characterized by a positive value of αA and a negative value of aB.  The intensity of

preference for self-segregation could then be measured by αA - αB.

The uniqueness properties of the model in this setting generally relate to differences in the

preferences of the two types in equation (5.1).  Results analogous to those stated in Conjecture 1 would imply

that, conditional on the primitives of the sorting model, the maximum strength of preferences for self-

segregation (αA - αB) defined over a series of randomly drawn data sets would be an increasing function of

differences in the meaningful variation in preferences for local attributes (Xj, ξj) across households of different
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types.  Consider, for example, the case in which two types of households have preferences for living with

neighbors of the same type and must choose between two otherwise identical neighborhoods.  In this case,

it is easy to see that the model will have multiple equilibria.  In particular, two stable equilibria arise with

households sorting across neighborhoods by type, with indeterminate matching of households of a particular

type to a particular neighborhood.  If, on the other hand, households of one type differ from the other in an

important attribute (e.g., have significantly more income), and if the fixed attributes of the neighborhoods are

significantly different (e.g., one offers a view of the ocean while the other does not), preferences to segregate

will ensure that households will again sort across neighborhoods by type, but the matching of household type

to a particular neighborhood will more likely be determined.  In particular, when self-segregating preferences

are sufficiently weak, a unique equilibrium obtains with richer households always choosing the higher quality

neighborhood.  In this way, the results of the previous section naturally extend to a broader class of models

than those considered above.   

6   CONCLUSION

Models incorporating local spillovers are widespread in economic analysis.  In both theoretical and

empirical work alike, agents’ payoffs are often assumed to be affected by the decisions of other agents in

ways not captured by traditional market channels (e.g., prices).  In this paper, we describe the equilibrium

properties of a model that can be adapted to describe many of these kinds of interactions.  Bayer and Timmins

(2003) show how its structure can be conveniently exploited to estimate the size of spillover effects, even in

the presence of unobserved local attributes, and Bayer, McMillan, and Rueben (2002) and Timmins (2003)

use this approach empirically.  In this paper, we demonstrate that an equilibrium will always exist in this class

of models under a set of easily satisfied conditions, and that the equilibrium will be unique under conditions

encountered in many empirical problems.  While uniqueness is not necessary for estimating the size of local

spillovers, it is a valuable property of the model if interest is in simulating the new equilibrium that arises in

response to a non-marginal policy change.  We show that uniqueness will always be sustained under any sized
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congestion effect (a relevant result, particularly when modeling competition between firms or urban

disamenities), but that the maximum agglomeration effect that can sustain a unique equilibrium is a function

of the idiosyncratic attributes of the data in any particular application.  We can therefore only demonstrate

how that maximum agglomeration effect tends to vary with certain features of the empirical context – a

greater average threshold makes one more confident that, in any particular empirical exercise, the equilibrium

one simulates will be unique.

Similar to other authors writing in a variety of modeling frameworks, we find that uniqueness is

easier to sustain (i) the larger the set of choices available to the agent, (ii) the more “meaningful variation”

there is in those choices, and (iii) the more heterogeneous the agents are themselves.  Conveniently, these also

happen to be the empirical characteristics that facilitate the estimation strategy proposed in Bayer and

Timmins (2003).  This is encouraging for the use of our model to describe the sorting of individuals and firms

over geographic space, where the number of choices is usually large.  As opposed to models of individuals

sorting over clubs whose attributes are defined mainly by the equilibrium membership, there are typically

many local attributes – fixed features of infrastructure and the geographic landscape – that will be important

to agents in deciding where to live or where to locate their firm.  This provides one half of the “meaningful

variation” in the choice set that we require, and makes it increasingly likely that a unique equilibrium will

obtain.  Moreover, continuing improvements GIS mapping and satellite imaging technology will continue

to increase the variety and precision of the spatial data available for analysis in these sorts of applications.
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Figure 1:  Unique and Multiple Equilibria in the Two-Dimensional Case

Figure 2:  Effect of Choice-Set Size

Minimum, Maximum, and Median of the Distribution of Simulated
Threshold Values of α, Constant Meaningful Variation in x (β0σx

2 = 1),
Homogenous Preferences (σβ2 = 0)
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Figure 3:  Effect of Meaningful Variation in Local Attributes

Minimum, Maximum, and Median of the Distribution of Simulated
Threshold Values of α, Constant Choice-Set Size (J = 5),

Homogenous Preferences (σβ2 = 0)

Figure 4:  Effect of Heterogeneity in Individual Preferences

Median, 25th, and 75th Percentiles of the Distribution of Simulated
Threshold Values of α Under Heterogeneous Preferences (σβ2 = 0, 1, 2)

Constant Meaningful Variation in x (β0σx
2 = 1),




