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Abstract

We deal with two-way contingency tables having ordered column cate-

gories. We use a row effects model wherein each interaction term is assumed

to have a multiplicative form involving a row effect parameter and a fixed

column score. We propose a methodology to cluster row effects in order to

simplify the interaction structure and enhancing the interpretation of the

model. Our method uses a product partition model with a suitable specifi-

cation of the cohesion function, so that we can carry out our analysis on a

collection of models of varying dimensions using a straightforward MCMC

sampler. The methodology is illustrated with reference to simulated and

real data sets.

Keywords: Clustering; Contingency table; Log-linear model; Markov Chain Monte

Carlo; Mixture of Dirichlet process prior; Partition; Product partition model;

Row effects model.

1 Introduction

The aim of this paper is to propose a novel Bayesian methodology for the analysis

of a two-way contingency table with ordered column categories. Ordered cate-

gorical variables are common in many applied areas of research, ranging from the
∗Address for correspondence: Claudia Tarantola, Dipartimento di Economia Politica e

Metodi Quantitativi, Via S. Felice 7, 27100 Pavia, Italy. E-mail: claudia.tarantola@unipv.it
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social to the biomedical sciences, see for example Clogg and Shihadeh (1994), Et-

zioni et al. (1994) and Agresti (1999, 2002). They have been widely examined in

the Bayesian literature, see for example Agresti and Chuang (1989), Evans et al.

(1993, 1997), Brink and Smith (1996), Johnson and Albert (1999), Lang (1999),

Congdon (2001) and Dellaportas and Tarantola (2005). Further references are

provided in the Discussion in Section 5 of this paper.

We consider a two-way table having ordered column categories and we apply

a row effects model, Goodman (1979). In a row effects model each interaction

term is given by the product of a specific row parameter, called row effect, and a

fixed column score. This model is appealing because it allows for an interaction

term between rows and columns without becoming saturated as in the standard

log-linear modelling. In this way one hopes to accommodate patterns of trend

in the table, through the introduction of a set of monotone increasing column

scores. On the other hand, model interpretation and parameter estimates would

benefit if one could further simplify the interaction structure. In particular, as we

detail in Section 2.1, it is interesting to find out which row effects can be deemed

to be equal. In this case, the conditional distribution of the column variable given

the row variable is identical for all row levels having equal effects.

We propose to achieve this objective by means of a particular clustering of

the row effects, in a such a way that each cluster only contains identical row

effects. To implement our clustering procedure, we suggest to adopt a Bayesian

approach, which is model-based, produces a result which affords a probabilistic

interpretation, and is highly flexible. To this end we rely on a product partition

model, Hartigan (1990) and Barry and Hartigan (1992). Although our model

allows to incorporate prior information about the clustering structure of the row

effects (if this is available), we shall assume weak prior information, and let the

data mostly determine the output even for moderate sample sizes.

The plan of the paper is the following: in Section 2 we describe the row effects

model, establish the corresponding notation and present product partition mod-

els; in Section 3 we propose an MCMC sampling algorithm to produce a Bayesian

clustering of the row effects; in Section 4 we apply our method to simulated and
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real examples; finally, in Section 5, we conclude with a brief discussion.

2 Bayesian analysis of row effects models

2.1 A suitable parameterization

Consider an a × b contingency table that cross-classifies a sample of N sub-

jects on two categorical variables A (nominal) and B (ordinal). We assume

that each cell count nij is a Poisson random variable with expectation µij , i.e.

nij |µij
ind∼ Po(µij). The row effects model has the form

log µij = λ̃∅ + λ̃A
i + λ̃B

j + η̃ivj ,

with {vj , j = 1, . . . , b} fixed column scores, v1 ≤ v2 ≤ . . . ≤ vb. The column scores

are assigned following an integer-scoring method (Powers and Xie, 2000), that

is we assume that the distance between any two adjacent categories is uniform

across all possible values. The particular values assigned are inconsequential, as

long as they are uniformly spaced. That is vj = j yields to the same model as

vj = M × j for any integer M . In the following, without loss of generality we set

vj = j. For identifiability reasons zero-sum constraints are typically imposed, i.e.
∑a

i=1 λ̃A
i = 0,

∑b
j=1 λ̃B

j = 0 and
∑a

i=1 η̃i = 0.

For our clustering problem, it is convenient to consider the following alterna-

tive parameterization

log µij = λA
i + λB

j + ηivj , (1)

with
∑a

i=1 λA
i = 0,

∑b
j=1 λB

j = 0, so that λA
1 = −∑a

i=2 λA
i , and similarly for λB

1 .

In this way no constraints are imposed on the η−parameters.

The parameters ηi are called row effects (not to be confused with the main

effects for rows, λA
i with i = 1, . . . , a), and they represent the main object of

our analysis. It is therefore instructive to provide an interpretation of their role

within model (1), see also Agresti (2002, sect. 9.5.2).

Recall that A is the nominal row variable and B the ordinal column variable.

It is easy to check that the logit for adjacent categories of variable B takes the
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form

log
Pr(B = j + 1|A = i)

Pr(B = j|A = i)
= (λB

j+1 − λB
j ) + ηi. (2)

Because of the additive structure exhibited by (2), plots of these adjacent logits

against the levels of A, are parallel piece-wise linear functions. For this reason

Goodman (1983) referred to (1) as a parallel odds model. For an illustration of this

feature of the model see Section 4.2. Notice that the logarithm of odds-ratios for

adjacent categories of variable B result in differences between the corresponding

row effects, e.g.

ηk − ηi = log
Pr(B = j + 1|A = k)

Pr(B = j|A = k)
− log

Pr(B = j + 1|A = i)
Pr(B = j|A = i)

with k > i, (3)

independently of j. In particular, when ηi = ηk rows i and k have identical

conditional distributions, while if ηi > ηk B is stochastically larger in row i than

in row k. For an interesting interpretation of the equality ηi = ηk in terms of

mergings of rows see the Discussion in Section 5 of this paper. The above remarks

motivate our objective of clustering the row-effects ηi: not only will the ensuing

model be more parsimonious but interpretability will be significantly enhanced,

especially if the clustering is substantial.

For computational purposes, model (1) can be written in matrix notation as

follows

log µ = Dθ = Xλ + V η, (4)

where D is the design matrix having full column rank, D = [X
...V ], θ = [λ′, η′]′,

λ = [λA
2 , λA

3 . . . , λA
a , λB

2 , λB
3 . . . , λB

b ]′, η = [η1, η2, . . . , ηa]′. Note that the matrices

X and V have both full column rank, but only matrix X satisfies the sum-to-zero

constraints.

For example, a model for a 4× 2 contingency is given by
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log(µ11)

log(µ21)

log(µ31)

log(µ41)

log(µ12)

log(µ22)

log(µ32)

log(µ42)




=




−1 −1 −1 −1 1 0 0 0

1 0 0 −1 0 1 0 0

0 1 0 −1 0 0 1 0

0 0 1 −1 0 0 0 1

−1 −1 −1 1 2 0 0 0

1 0 0 1 0 2 0 0

0 1 0 1 0 0 2 0

0 0 1 1 0 0 0 2




×




λA
2

λA
3

λA
4

λB
2

η1

η2

η3

η4




.

2.2 Product partition models

Product partition models (PPMs) are related to partition models, although the

latter term seems to refer to a variety of situations, see for example Malec and

Sedransk (1992), Consonni and Veronese (1995), Denison et al. (2002). More

recent papers on PPMs include Crowley (1997), Loschi et al (2003), Quintana

and Iglesias (2003).

We now briefly review the theory on PPMs with reference to our specific

problem. Let S0 = {1, . . . , a} be the set of rows of a contingency table. To each

row i is associated a vector of counts ni = (ni1, . . . , nib)
′. We indicate with n =

(n′1, . . . , n
′
a)
′ the combined vector of cell counts. A partition ρ = {S1, . . . , S|ρ|} of

the set S0 is defined by the property that Sd ∩ Sd′ = ∅ for d 6= d′ and ∪dSd = S0

(for a given finite set U we denote with |U | the number of elements in U). Given a

partition ρ, we assume that all ηi pertaining to the same set Sd ∈ ρ are equal. In

the following, see in particular Section 3.1, we shall use the term cluster to denote

a collection of ηi whose value is the same since their subscripts belong to the same

subset within a given ρ. The number of all possible partitions is given by B(a),

the Bell number of order a, recursively defined by B(a+1) =
∑a

k=0

(
a
k

)
B(k) with

B(0) = 1.

Each partition ρ is assigned a prior probability given by

P (ρ = {S1, . . . , S|ρ|}) = K

|ρ|∏

d=1

C(Sd), (5)
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where C(Sd) is a cohesion function and K is the normalizing constant. Equation

(5) is referred to as the product distribution for partitions.

Let nSd
= {ni : i ∈ Sd} denote the vector of cell counts for all rows belonging

to the same set Sd. For a given ρ, the conditional distribution of nSd
, pSd

(nSd
|ρ),

is assumed to depend only on Sd and not on the other sets of the partition.

Moreover, given ρ = {S1, . . . , S|ρ|}, the counts nS1 , . . . , nS|d| are assumed to be

independent with distribution

p(n|ρ) =
|ρ|∏

d=1

pSd
(nSd

|ρ). (6)

Equations (5) and (6) uniquely determine the joint law of (n, ρ). The cor-

responding posterior distribution of ρ is again of the form (5) with (posterior)

cohesions C(Sd)pSd
(nSd

|ρ).

The cohesions can be specified in different ways; here we follow the approach

presented by Quintana and Iglesias (2003) and set

C(Sd) = c× (|Sd| − 1)!, (7)

with c > 0. This choice can be justified considering the connection between para-

metric PPMs and the class of Bayesian nonparametric models based on mixture of

Dirichlet Processes (Antoniak, 1974). Under the latter prior, the marginal distri-

bution of the observables is a specific PPM with the cohesion functions specified

by equation (7), see Quintana and Iglesias (2003). Efficient MCMC algorithms

have been developed for Bayesian nonparametric problems based on Mixtures of

Dirichlet Processes, see e.g. West et al. (1994), Escobar and West (1995), Bush

and MacEachern (1996), MacEachern and Müller (1998, 2000) and Jan and Neal

(2004). The connection between parametric PPMs and nonparametric models

with a Dirichlet process prior suggests to adapt these algorithms to our problem.
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2.3 A hierarchical model

We consider the following model

nij |ρ, (φ1, . . . , φ|ρ|), λ
ind∼ Po(µij)

log µ = Xλ + V η

λ ∼ N(0, σ2
λI)

φ1, . . . , φ|ρ||ρ, σ2
φ

iid∼ N(0, σ2
φ)

ρ ∼ product distribution, with C(Si) = c× (|Si| − 1)!

σ2
φ ∼ IG(cφ, dφ),

where φ = (φ1, . . . , φ|ρ|)′ is the vector of all distinct values of η = (η1, . . . , ηa)′

for a given partition ρ, the parameter σ2
λ is fixed, the product distribution is

defined in (5), and IG(cφ, dφ) is an inverted gamma distribution with expectation

dφ/(cφ − 1), cφ > 1 and dφ > 0.

The joint distribution of the variables involved in the model is thus given by

p(n, λ, η, ρ = {S1, . . . , Sk}, σ2
φ) ∝





a∏

i=1

b∏

j=1

(µij)nij



 exp



−

a∑

i=1

b∑

j=1

µij





× exp

{
−1

2
λ
′
λ

σ2
λ

}
× 1

(σ2
φ)

|ρ|
2

exp



−

1
2σ2

φ

|ρ|∑

d=1

(φd)
2





× (
σ2

φ

)−(cφ+1) exp

{
−dφ

σ2
φ

}
×

|ρ|∏

i=1

C(Sd).

3 MCMC computation

We propose to sample from the joint posterior distribution of model and param-

eters using the following MCMC algorithm.

STEP 1. Update (ρ, η) applying the No Gaps Algorithm described in Section 3.1

STEP 2. Update λ using a Metropolis step. We apply a random walk Metropolis

algorithm with proposal density q(·), a multivariate normal distribution

with mean equal to the current value of λ and variance matrix equal to

the (properly scaled) conditional maximum likelihood estimated covariance
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matrix. The latter is computed using a profile likelihood with η set to the

current value and applying a Newton-Raphson algorithm.

STEP 3. Sample from the full conditional of σ2
φ which is

IG

(
cφ +

|ρ|
2

, dφ +
∑|ρ|

d=1(η
Sd)2

2

)
.

3.1 “No Gaps Algorithm”

To update the partition structure ρ we apply the No Gaps Algorithm by MacEach-

ern and Müller (1998, 2000). We briefly review this sampling scheme and illus-

trate it with reference to our specific problem.

We start out by fixing the notation. For given ρ, let (φ′F , φ′E)′ be the vector of

all clusters, with φF = (φ1, . . . , φ|ρ|)′ the set of distinct values of ηi (full clusters)

and φE = (φ|ρ|+1, . . . , φa)′ the set of potential but not yet used cluster locations

(empty clusters). Let s = (s1, s2, . . . , sa)′ denote the vector of configuration

indicators, that is si = ` if and only if ηi = φ`, i = 1, . . . , a, ` = 1, . . . , |ρ|,
and let |S`| be the number of all si that equal `. We recall that with the term

cluster we refer to the set of all ηi with identical configuration location. There

are no gaps in the values of si, that is |S`| > 0 for ` = 1, . . . , |ρ| and |S`| = 0 for

` = |ρ|+ 1, . . . , a. In the following formulas, a vector with subscript “−i” means

that the ith element has been removed; the superscript “−i” instead refers to a

summary index with the ith element removed. In particular, η−i is the vector η

without the ith component, while |ρ−i| refers to the number of clusters formed

by η−i and |S−i
` | represents the number of elements in cluster ` when the element

i is removed.

The algorithm is described below. For i = 1, . . . , a, do Step (i) then do Step

(ii).

Step (i) : If |Ssi | > 1, then resample si from

Pr(si = `|s−i, φ, λ, n) ∝



|S−i

` | × f(ni|φ`, λ) for ` = 1, . . . , |ρ−i|
C({i})
|ρ−i|+1

× f(ni|φ`, λ) for ` = |ρ−i|+ 1.
, (8)

with C({i}) defined in (7).
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If |Ssi | = 1 then with probability (|ρ| − 1)/|ρ| leave si unchanged. Oth-

erwise relabel clusters in such a way that si = |ρ| and then resample si

with probability (8). Note that if a cluster ` with |S`| = 1 is removed by

resampling si, we keep the old value of φ` recorded as φ|ρ|. The values of

(φ1, . . . , φa)′ are never changed during the execution of Step (i), except for

relabeling the indexes if necessary.

Step (ii) : Resample φ` conditionally on the configuration s and all the other pa-

rameters. For ` = |ρ|+ 1, . . . , a we simply sample from the prior g0(φ`|σ2
φ).

For ` = 1, . . . , |ρ| we sample from the conditional posterior of φ`

g(φ`|n, λ, σ2
φ) ∝


∏

i∈S`

f(ni|λ, φ`)


× g0(φ`|σ2

φ)

∝
∏

i∈S`








b∏

j=1

µ
nij

ij



 exp



−

b∑

j=1

µij






× exp

{
− 1

2σ2
φ

(φ`)
2

}
, (9)

with µij = exp{λA
i + λB

j + ηivj}.

To sample from (9) we apply a Metropolis step. The proposal distribution is

a normal density with parameters based on maximum likelihood estimates

of the current model calculated with a Newton-Raphson algorithm.

After drawing a new vector of locations s through Step (i), the corresponding

vector η is obtained together with partition ρ = {S1, . . . , S|ρ|}.

4 Examples

The methodology described in the previous sections is now illustrated on a sim-

ulated 10 × 5 table and on two real data sets. Following Quintana and Iglesias

(2003) we set c = 1 in equation (7) in order to favour partitions with a small num-

ber of large subsets. We used a weakly informative prior on λ setting σ2
λ = 10 000,

and set cφ = 3 and dφ = 2. The results obtained are rather insensitive to different

choices of cφ and dφ.

Convergence of the MCMC algorithm was assessed using diagnostics imple-

mented in the package BOA, see Smith (2001). In particular, the multivariate
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scale reduction factor proposed in Brooks and Gelman (1998) for the three exam-

ples was equal to 1.0013, 1.0015 and 1.0521 respectively. Other diagnostic checks

(not reported here) showed no specific indication of abnormal behaviour. Finally,

convergence has been also checked by means of several plots of output values.

For the three examples discussed in the next sections, involving a 10 × 5,

a 4 × 4 and a 12 × 2 contingency table, the algorithm required 20, 15 and 30

minutes respectively per 100 000 iterations on a Pentium 4 3.4 GHz personal

computer. The programs were written in MATLAB; it is expected that a lower

level programming language could speed up the execution time by a factor of at

least 5.

4.1 Simulated data

We report here one out of the many simulated examples we experimented with.

We considered model (4) with fixed parameters

λ = (2.5,−1.5, 1,−1.5, 2,−1.5, 1,−1, 1, 2.5,−0.5,−1.5,−3)′

η = (2, 0.5, 2, 0.5, 2, 0.5, 2, 0.5, 2, 1)′,

calculated the vector of expected cell counts µ, and used them (suitably rounded)

as cell counts (see Table 1). This was done to avoid possible confoundings due

to simulation error. Notice that the true partition for the set of 10 rows is given

by ρ = {{1, 3, 5, 7, 9}, {2, 4, 6, 8}, {10}}. We considered a run with 300 000 sweeps

and a burn-in of 30 000. Table 2 presents the results for those “models”, i.e.

partitions, whose posterior probabilities exceed the threshold 0.01. The MCMC

standard errors of the model probability estimates were calculated by splitting

the Markov chain output into batches, see Geyer (1992). Notice that almost 94%

of the posterior probability is concentrated on the true partition.

In Fig. 1 we report the ergodic means for the highest four posterior model

probabilities (the three bottom traces can hardly be distinguished because of

their very similar low values).

TABLE 1 ABOUT HERE
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TABLE 2 ABOUT HERE

FIGURE 1 ABOUT HERE

Conditionally on the partition with highest posterior probability we obtained

the following parameter estimates

λ = (2.51,−1.51, 1.01,−1.50, 2.01,−1.51, 1.01,−1.01, 1.00, 2.50,−0.50,−1.50,−3.00)′

η = (2.00, 0.49, 2.00, 0.49, 2.00, 0.49, 2.00, 0.49, 2.00, 1.00)′,

which can be seen to be in excellent agreement with the true input values.

4.2 Premarital sex data

We consider a 4×4 table presented in Agresti (2002, p. 368). Subjects were asked

their opinion about a man and woman having sexual relations before marriage

(Always wrong, Almost always wrong, Wrong only sometimes, Not wrong at all).

They were also asked whether methods of birth control should be available to

teenagers between the age of 14 and 16. The data are the top number in each

cell of Table 3 (source: General Social Survey, National Opinion research Center,

Chicago, 1991).

TABLE 3 ABOUT HERE

Notice that both the row and column variable in this data set are ordinal and

they play a symmetric role. For the sake of this analysis, we set the variable rep-

resenting the opinion on Teenage birth control as column variable, whereas the

levels of the variable on premarital sex represent the rows. Since our clustering

method does not use the information contained in the ordinal nature of the row

variable, we concede that more specialized models could be applied to this data

set; in particular, within our setting, only the set of contiguous partitions of row

levels should be taken into account (for instance {{1}, {2, 3}, {4}} is a contiguous

partition, while ({{1, 3}, {2}, {4}} is not). On the other hand, our method does

not forbid such partitions, and it is interesting to verify to what extent contigu-

ous partitions might emerge empirically through our clustering procedure. The
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results are encouraging in this respect: based on 100 000 sweeps with a burn-in

of 10 000, Table 4 shows that the posterior distribution on the space of partitions

is concentrated on two elements only, namely partition {{1, 2}, {3}, {4}} (with a

probability of 91%), and the “trivial” partition {{1}, {2}, {3}, {4}}. Notice that

the prevailing partition is contiguous, since it assigns levels 1 and 2, corresponding

to the opinion on premarital sex “Always wrong” and “Almost always wrong”, to

the same cluster. Fitted values under a standard model which assumes indepen-

dence of A and B, as well as those under our model corresponding to partition

{{1, 2}, {3}, {4}} are reported in Table 3: clearly our product partition model fits

much better. Fig. 2 depicts the ergodic means for the two most probable models.

TABLE 4 ABOUT HERE

FIGURE 2 ABOUT HERE

To better appreciate the implications of our product partition model we report

in Table 5 the posterior expectations of the model parameters together with their

posterior standard deviations.

TABLE 5 ABOUT HERE

The estimated odds of Disagree instead of Strongly disagree, or Agree in-

stead of Disagree, or Strongly agree instead of Agree, on the issue of Teenage

birth control are the same both for people who believe that Premarital sex is

Always wrong or Almost always wrong. The above odds change when consid-

ering people who believe that Premarital sex is Wrong only sometimes or Not

wrong at all. Letting η̂i denote the posterior expectation of ηi, we note that,

since (η̂k − η̂i) > 0 for k = 3, 4 and i = 1, 2, those who believe that Premar-

ital sex is Always wrong/Almost always wrong are also more conservative on

Teenage birth control. For example, since (η̂3 − η̂1) = 0.5125, the estimated

odds of Disagree instead of Strongly disagree, or Agree instead of Disagree, or

Strongly agree instead of Agree, on the issue of Teenage birth control for people

who believe that Premarital sex is Wrong only sometimes is exp(0.5125) = 1.67

12



times the corresponding odds for people who believe that Premarital sex is Al-

ways wrong. Similarly, for those who believe that Premarital sex is Not wrong at

all, the estimated odds of Disagree instead of Strongly disagree, or Agree instead

of Disagree, or Strongly agree instead of Agree, on the issue of Teenage birth con-

trol, is exp(η̂4 − η̂1) = 2.23 times the corresponding odds for people who believe

that Premarital sex is Always wrong. Of course, since η̂1 = η̂2, we could have

equally considered as baseline those who believe that Premarital sex is Almost

always wrong instead of those who consider it Always wrong.

Fig. 3 shows the parallelism of the estimated logits for the row effects model.

FIGURE 3 ABOUT HERE

4.3 Marine corps data

We consider a data set examined by Leonard and Novick (1986) which cross-

classifies 5 646 marines by School attended and Grade reported on a military

aptitude test. The original table had 12 rows (School: A through L) and 8

columns (Grade: 1 highest and 8 lowest). A preliminary analysis performed by

the Authors suggested that the dimension of the table might be usefully reduced

by grouping together grades 1-3, corresponding to scores “above average”, into a

single score which we call “High”, and similarly for the remaining five grades 4-8,

corresponding to “below average” scores, which we denote by “Low ”, so that the

resulting table has dimension 12 × 2 (see Table 6). Furthermore, Leonard and

Novick (1986) proposed a clustering of the schools in three groups {B, C, E, I}
{A,D, G,H} and {F, J,K, L}, based on a descriptive analysis of the interaction

structure between School and Grade.

TABLE 6 ABOUT HERE

The first output of our analysis is presented in Table 7. It reports those

models whose posterior probability exceeds the threshold 0.01. The results are

based on 500 000 iterations with a burn-in of 50 000 iterations.

TABLE 7 ABOUT HERE

The top partition, whose probability is about 58%, presents six clusters, while
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the second partition, whose probability is approximately 20%, contains only five

clusters. The difference between these two partitions is fairly limited: both rec-

ognize that schools {B, E, I} form one cluster and similarly for {F, J}. They also

agree on the fact that schools {A,G, H} should belong to the same group; how-

ever school D which in the top partition belongs to the same cluster as {A,G, H},
is put in a separate cluster (together with C) in the second partition. The reader

can check by himself the remaining differences between the two top partitions.

Notice that none of the partitions listed in Table 7 is equal to the three-cluster

structure identified by Leonard and Novick (1986): indeed all models in Table

7 contain either 5 or 6 clusters. While our method identifies a finer clustering

structure than Leonard and Novick’s, there is however a broad agreement be-

tween our results and theirs: indeed our top partition is a refinement of theirs;

on the other hand the main discrepancy exhibited in our second most probable

partition is the allocation to the same cluster of schools C and D.

The estimated odds of obtaining a Low grade instead of a High grade in school

i is exp{λ̂Grade
Low − λ̂Grade

High + η̂i} = exp{2λ̂Grade
Low + η̂i} (since λ̂Grade

High = −λ̂Grade
Low ),

so that schools belonging to the same cluster have constant odds since their

estimated value for η is the same.

For comparative purposes, we consider for each cluster of the top partition

the odds of Low instead of High grade: schools in clusters {B, E, I} and {C}
perform better (have higher grades) than schools in cluster {A, D, G, H}, whereas

the performance of schools {F, J},{K} and {L} is worse than that of schools

{A,D, G,H}. For example, the odds of a Low instead of High grade in cluster

{B,E, I} and {C} are respectively exp{η̂B − η̂A} = 0.6233 and exp{η̂C − η̂A} =

0.8028 times that of cluster {A,D,G, H}. Of course instead of η̂B we might have

written η̂E or η̂I (since η̂B = η̂E = η̂I) because schools B, E and I belong to

the same cluster. Similarly the odds of a Low instead of High grade in clusters

{F, J}, {K} and {L} are respectively 1.8610, 1.4417, 2.3485 times that of cluster

{A,D, G,H}. These conclusions are in perfect agreement with those presented

by Leonard and Novick (1986, p 47).
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5 Discussion

In this paper we have presented a new method for the Bayesian analysis of two-

way contingency tables based on a row effects model. This model is especially

appropriate when one of the variables, say the column, is measured on an ordinal

scale. The main idea is to assume a multiplicative structure for the interaction

term in the log-linear expansion consisting of a row effect parameter and a col-

umn score, the latter being fixed and monotone increasing with respect to the

arrangement of the column levels. In this way row effects acquire a simple and

intuitive interpretation: differences of row effects represent, on a log scale, odds

ratios relative to any adjacent pair of levels for the column variable.

We focused on methods for clustering the row effects. Our interpretation of

clustering is particularly stringent in this context: namely two row effects are

declared to belong to the same cluster when they are (stochastically) equivalent.

In this way we simplify the interaction structure of the model and enhance its

interpretation in terms of odds that are constant within each cluster. When ap-

plied to synthetic, as well as real data sets, our method shows attractive features

and a very good performance.

Another useful interpretation of the equality between two row effects relates

to the notion of merging in contingency tables, see Wermuth and Cox (1998) and

Dellaportas and Tarantola (2005). Specifically, if ηk = ηi then all log odds for

adjacent categories of variable B in the 2× b subtable relative to rows {i, k} are

equal to zero. This entails independence properties that allow for a merging of

the above rows. The issues of merging in the context of RC-models is dealt with

in Kateri and Iliopoulos (2003).

Our approach is carried-out in a Bayesian framework and is entirely model-

based. The latter feature marks the difference with previous work in the area

that was mostly ad hoc and descriptive, as described in the discussion of the

Marine corps data set in Section 4.3. In particular, the clustering component of

our method is based on a product partition model (PPM) that allows to deal

simultaneously with models of varying dimensions (corresponding to alternative
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clustering structures), without resorting to elaborate MCMC techniques, such

as Reversible Jump. By a suitable choice of the cohesion function in our PPM,

we are able to draw on previous research in the area of computational Bayesian

nonparametrics using mixture of Dirichlet process priors, in order to construct

an MCMC sampler that simultaneously explores the space of parameters and

models. The output of our sampler can be used for a variety of purposes: in

particular estimating features of the posterior distribution of the parameters of

interest as well as calculating posterior probabilities on the space of partitions.

The latter allows to implement a Bayesian Model Averaging analysis which con-

sists in a weighted combination of conditional inferences (on each partition) with

weights equal to the posterior probabilities of the corresponding partitions. For

a Bayesian analysis of row and column effects models (RC models) see Evans et

al. (1993) and Kateri et al. (2005).

Possible future directions of research, along the lines indicated in this paper,

include the specification of alternative cohesion functions for the product distri-

bution, as well as the corresponding MCMC sampler. A more challenging, and

potentially very useful, endeavour would be to extend the scope of our method-

ology to contingency tables wherein also the row variable is ordinal; this would

entail dealing with contiguous partitions, see Section 4.2 for some preliminary

remarks. Finally, our clustering method can be naturally extended to row and

column (RC) effects models; for a Bayesian analysis of RC models, see Evans at

al. (1993) and Kateri et al. (2005).
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Table 1: Simulated data

A B

b1 b2 b3 b4 b5

a1 12 90 33 90 148

a2 245 403 33 20 7

a3 20 148 55 148 245

a4 55 90 7 4 2

a5 20 148 55 148 245

a6 148 245 20 12 4

a7 20 148 55 148 245

a8 55 90 7 4 2

a9 33 245 90 245 403

a10 90 245 33 33 20

Table 2: Posterior model probabilities for the simulated data

Partition Posterior probabilities

{1,3,5,7,9} {2,4,6,8}{10} 0.9378 (16)a

{1,3,5,7,9} {2,6,8} {4}{10} 0.0111 (06)

{1,3,5,7,9} {2,4,6} {8}{10} 0.0111 (06)

{1,3,5,7,9} {2,4,8} {6}{10} 0.0100 (39)

aFigures in brackets are Monte Carlo standard errors ×104.
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Table 3: Premarital sex data

Teenage birth control

Premarital sex Strongly disagree Disagree Agree Strongly agree

Always wrong

81

(42.41)a

[74.93]b

68

(51.21)

[66.78]

60

(86.42)

[73.10]

38

(66.95)

[32.57]

Almost always wrong

24

(15.96)

[27.88]

26

(19.28)

[25.11]

29

(32.54)

[27.79]

14

(25.20)

[12.53]

Wrong only sometimes

18

(30.05)

[24.13]

41

(36.28)

[35.99]

74

(61.23)

[65.93]

42

(47.43)

[49.17]

Not wrong at all

36

(70.57)

[32.32]

57

(85.22)

[64.40]

161

(143.80)

[157.60]

157

(111.40)

[157.00]

aFitted counts under independence model
bExpected posterior counts under the highest-posterior-probability PPM
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Table 4: Posterior model probabilities for the Premarital sex data

Partition Posterior probabilities

{1,2} {3}{4} 0.9054 (65)a

{1} {2} {3}{4} 0.0946 (65)

aFigures in brackets are Monte Carlo standard errors ×104.

Table 5: Premarital sex data, posterior expectations and standard deviations of

parameter estimates under the highest-posterior-probability PPM

Parameter Posterior Expectation Posterior SD

Premarital sex Always wrong 1.0651 0.0427

Premarital sex Almost always wrong 0.0883 0.0571

Premarital sex Wrong only sometimes -0.5782 0.0482

Premarital sex Not wrong at all -0.5752 0.0379

Teenage Birth Control Strongly disagree 2.0435 0.0479

Teenage Birth Control Disagree 0.7280 0.0440

Teenage Birth Control Agree -0.3814 0.0370

Teenage Birth Control Strongly agree -2.3901 0.0434

Row effect (η1) Always wrong 1.2031 0.0029

Row effect (η2) Almost always wrong 1.2031 0.0029

Row effect (η3) Wrong only sometimes 1.7156 0.0040

Row effect (η4) Not wrong at all 2.0051 0.0028
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Table 6: Marine corps data, collapsed table

Grade

School High Low

A
475

(456.70)a [472.44] b

480

(498.29) [482.90]

B
202

(155.90) [199.63]

124

(170.10) [126.60]

C
708

(615.47) [707.78]

579

(671.53) [579.45]

D
90

(81.30) [87.05]

80

(88.70) [83.12]

E
89

(70.78) [90.13]

59

(77.22) [58.07]

F
229

(313.71) [227.23]

427

(342.29) [429.17]

G
410

(403.14) [417.00]

433

(439.86) [426.31]

H
95

(91.82) [95.31]

97

(100.18) [96.86]

I
109

(86.8) [109.72]

71

(93.92) [70.55]

J
78

(11.43) [80.45]

155

(121.57) [152.78]

K
81

(95.64) [80.50]

119

(104.35) [119.75]

L
135

(219.03) [135.24]

323

(238.97) [323.94]

aFitted counts under independence model
bExpected posterior counts under the highest-posterior-probability PPM
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Table 7: Posterior model probabilities for the Marine corps data

Partition Posterior probabilities

{ADGH} {BEI}{FJ} {C}{K}{L} 0.5775 (160)a

{AGH} {BEI} {FJ}{CD}{KL} 0.1979 (120)

{ADGH} {BEI} {FJK}{C}{L} 0.0414 ( 79)

{ADGH} {BEI} {JL}{C}{F}{K} 0.0236 ( 58)

{ADGH} {BI} {EC}{FJ}{K}{L} 0.0177 ( 37)

{AGH} {CDEI} {FL}{B}{F}{K} 0.0176 ( 60)

{AGH} {BEI} {CD}{FJK} {L} 0.0153 ( 39)

{AG} {BEI} {CDH}{FJ} {K}{L} 0.0150 ( 30)

{AGH} {BE} {CDI}{FJ} {K}{L} 0.0121 ( 34)

{AGH} {BI} {CDE}{FJ} {K}{L} 0.0114 ( 29)

aFigures in brackets are Monte Carlo standard errors ×104.
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Figure 1: Simulated data, ergodic means for the posterior model probabilities
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Figure 2: Premarital set data, ergodic means for the posterior model probabilities

for the two most probable models
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Figure 3: Premarital set data, predicted logits for adjacent column categories
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