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Abstract

We model 1927–1997 U.S. business failure rates using a time series approach based on
unobserved components. Clear evidence is found of cyclical behavior in default rates.
The cycle has a period of around 10 years. We also detect longer term movements in
default probabilities and default correlations. Our findings have important implications
for portfolio credit risk analysis. First, a static analysis of portfolio credit risk can under-
estimate credit risk significantly by not accounting for the dynamic and cyclical behaviour
of default probabilities. Second, estimating default correlations over long horizons with-
out accounting for time variation may lead to misspecified risk management models. We
highlight the main effects in an actual credit risk experiment, addressing the issue of
pro-cyclicality in ratings and capital buffer formation. It turns out that dynamic models
anticipate much better on required capital buffer increases than rating strategies based
on recent historical data. In this way, dynamic credit risk models may help to alleviate
part of the pro-cyclicality problem.

Key words: credit risk; ; pro-cyclicality; capital requirements; dynamic models; common
factors; credit cycles; time varying parameters.
JEL Codes: G21; C19.

1 Introduction

Credit risk aspects for both corporates and financial institutions appear increasingly important.
The year 2002 appears to become a record high with regards to the number of defaults and
amount of unrecovered debt. The importance of credit risk has led to a recent surge in interest
for credit risk modeling. This has resulted in several interesting lines of research. Both profes-
sional and academic papers appear in the areas of predicting bankruptcies, pricing credit risky
instruments, measuring credit risk for portfolios, managing credit risk, and regulatory aspects
of credit risk, including the issue of pro-cyclicality. For an overview, see Caouette, Altman,
and Narayanan (1998), Basle Committee on Bank Supervision (2001), and Allen and Saunders
(2002). In brief, the pro-cyclicality issue concerns the question whether risk sensitive capital
requirements and contemporary methods for credit risk measurement cause an amplification of
cyclical movements in the economy.

In this paper, we address the issues of credit risk measurement and pro-cyclicality. We use
new data and a new modeling framework. We add to the current literature in three differ-
ent ways. First, we focus on the time series dimension of data rather than the cross-section
dimension to extract information on possible cyclical movements from the data. Most other
studies, by contrast, use cross-sectional or panel data, see Nickell, Perraudin, and Varotto
(2000), Kavvathas (2001), Carpenter, Whitesell, and Zakraǰsek (2001), Bangia, Diebold, Kro-
nimus, Schagen, and Schuermann (2002), Laeven and Majnoni (2002), Das, Freed, Geng, and
Kapadia (2002), Allen and Saunders (2002). We use U.S. business failure rates over the period
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Figure 1: U.S. Business Failure Rates

Data taken from Dun and Bradstreet (1998). The figure also presents the Hodrick-
Prescott trend for the data.

1927–1997 as visualized in Figure 1. The advantage of using time series data over a longer pe-
riod is that more information can be extracted on the dynamics of business failures. Modeling
the dynamics is more difficult for data which have a shorter time span, such as most of the
cross-section and panel data used in earlier work. The fact that panel data tries to compensate
the short time span by an enlarged cross-sectional dimension does not solve the difficulties with
modeling the dynamic structure of business failures, see also Gordy and Heitfield (2002). Natu-
rally, the use of a long time series may jeopardize the stability of the model and its parameters
in time. We pay substantial attention to this in our econometric analysis.

The second contribution of our paper lies in the modeling framework used. We consider
time series models based on unobserved components, see Harvey (1989), that aim at decompos-
ing the business failure series into a stationary autoregressive component and a time-varying
cyclical component. These components have a clear interpretation in the current credit risk
context as systematic risk factors. The literature so far has largely focused on observable con-
ditioning variables to model systematic risk and to link credit cycles to stages of the business
cycle. Nickell, Perraudin, and Varotto (2000) use observed GDP growth to classify individual
quarters as high, medium, or low-growth periods. They compute separate default and rating
transition probabilities for each of these regimes. A similar approach is followed by Bangia,
Diebold, Kronimus, Schagen, and Schuermann (2002), where NBER classifications of months
as recessions and expansions are used. Kavvathas (2001) uses a duration model for rating
transitions and incorporates macroeconomic variables such as the slope of the term structure
to capture systematic effects on transition probabilities. All these studies show that systematic
time-variation in default rates is present and that such time-variation may to some extent be
captured by macroeconomic variables. There are two main drawbacks of an approach based
on using observables as a proxy for systematic risk factors. First, there is little theory as to
which observables would be optimal or even correct as a proxy for systematic risk. Though
the informal argument in favor of using business cycle indicators to model credit cycles is well
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known, a casual inspection of Figure 1 reveals that business cycle peaks and troughs during the
50s and 60s were not accompanied by corresponding pronounced movements in failure rates.
Second, the use of observable conditioning variables implies a two-stage approach for credit risk
management at the portfolio level. A typical credit risk analysis is built upon a model or set
of scenarios for the default rate. Scenarios of future default rates require a model to generate
scenarios for the conditioning variables, such as GDP or the term structure of interest rates.
Models for the conditioning variables are usually estimated independently of the observed de-
fault data. In our latent variable framework, by contrast, we use an integrated approach and
model the dynamics of the (latent) systematic risk component directly. This allows us to disen-
tangle more gradual, long-term shifts in default probabilities from basic credit cycle patterns.
It also helps us to focus on the dynamics of defaults directly, rather than indirectly via studying
the dynamics of default related time series.

As a third contribution, our paper shows that the use of dynamic default rate models
alleviates part of the pro-cyclicality problems. One of the worries of regulators is that during
an upswing of the economy, banks will lower their capital levels. Such a decrease in capital
may be spurred by risk sensitive capital requirements based on recent estimates of default
probabilities. The use of estimated default probabilities based on banks’ internal models is
explicitly allowed in the new Basle Capital Accord, see Basle Committee on Bank Supervision
(2001). As a result, capital levels may be too low at the peak of the cycle to cope with the
subsequent downswing. The capital accumulation during the downswing may also be too slow.
Moreover, the increases in capital may result in a credit crunch and thus worsen already adverse
economic conditions, see Laeven and Majnoni (2002). To study the pro-cyclicality issue, we set
up a simulation experiment for a stylized bank’s balance sheet. We confront the implications
of our dynamic models with an approach that mimics banks’ current practice. The latter
approach calibrates default probabilities and correlations to the recent past (5 and 10 years,
respectively). It turns out that in our experiments the dynamic models result in a much more
timely capital accumulation, especially during late 70s–80s.

Our economic model is a reduced form credit risk model based on normally distributed risk
factors. Though it resembles the CreditMetrics model in appearance, see Gupton, Finger, and
Bhatia (1997), it is not a structural model. The difference can be noted by comparing our
specification with some of the alternative dynamic extensions of the CreditMetrics model put
forward in Finger (2000). The assumption of normality allows us to use the extensive literature
and methodology for linear state space models, see, for example, Durbin and Koopman (2001).
Alternative distributional specifications like those in Credit Suisse (1997) are much more dif-
ficult to handle in such a context. A difference between our model and other reduced form
models such as Jarrow and Turnbull (1995), Jarrow, Lando, and Turnbull (1997), or especially
Duffie and Singleton (1999), is that we model the default hazard rates implicitly rather than
explicitly. As a consequence in our discrete time setting, the dynamics of the hazard rates are
nontrivial. The converse holds for the default probability.

Using our latent modeling approach, we find three main empirical results. First, there is
clear evidence of a stochastic cycle with a period between 9.5 and 11.5 years. This cycle can
be interpreted as a credit cycle. Its period is roughly similar to familiar business cycle periods.
Second, apart from this cycle, we also find more gradual dynamic behavior in default rates.
Given the limited number of data points, there are two competing model specifications that
fit the data equally well. The first model allows for second order dynamics in the long-term
behavior of default rates. The second model has a second, long-term cycle with a period of
about 40 years. As these models are empirically very close, we proceed by investigating whether
they also yield similar implications with respect to dynamic capital requirements. Finally, we
find significant evidence of volatility shifts in the cyclical component of default rates. This, in
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turn, indicates that over longer periods of time default correlations change. In particular, we
find evidence of three different regimes for default correlations, namely up to the 40’s, during
the 50’s up to a large part of the 70’s, and from the late 70’s onwards. Correlations were
highest during the first period, more than halved during the second, and subsequently slightly
increased during the third period.

The rest of the paper is set up as follows. Section 2 discusses the data and the credit risk
model. Section 3 gives a brief exposition of unobserved components (or structural) time series
models and their relation to our credit risk model. Section 4 contains the empirical results.
Section 5 discusses the implications of our models for capital requirements, while Section 6
addresses the issue of pro-cyclicality. Section 7 concludes.

2 Data and modeling approach

The data used in this paper are U.S. failure rates from Dun and Bradstreet (1998). The data
contain business failure frequencies for the United States over the period 1927–1997, see Fig-
ure 1. The numbers indicate businesses that ceased operations after assignment or bankruptcy;
ceased operations with losses to creditors after such actions as foreclosure or attachment; vol-
untarily withdrew leaving unpaid debts; were involved in court actions such as receivership,
reorganization or arrangement; or voluntarily compromised with creditors. This time series
shows peaks in the early 1930’s, the mid 1980’s and the early 1990’s. The series illustrates
some of the well-known stages and developments in the US economy. Standard practice in em-
pirical macroeconomic time series is to use the Hodrick-Prescott filter to extract a trend from
the time series. This trend is also presented in Figure 1. By concentrating on the deviations
from the Hodrick-Prescott trend, we obtain some first indications that the time series may be
decomposed into a trend (or slowly varying) component and a cycle. However, this particular
(”deterministic”) decomposition is not optimal and rather restrictive. We adopt the arguments
of Harvey and Jaeger (1993) and take a model-based approach as discussed further below and
in the next section.

Given the data, we consider the following modeling framework. Let Sjt be an unobserved
surplus variable for firm j at time t. If this variable drops below a critical threshold ct, the firm
defaults. Default can thus be modeled as a Bernoulli process with probability P[Sjt < ct]. This
closely follows the set-up of for example CreditMetrics, one of the prominent models in credit
risk management, see Gupton, Finger, and Bhatia (1997). It also bears close resemblance to
CreditRisk+ (Credit Suisse (1997)), where the Bernoulli distribution is replaced by a Poisson
approximation, see also Gordy (2000).

In order to allow for defaults to be correlated, we decompose Sjt into a systematic and
firm-specific risk factor,

Sjt = ρtft +
√

1 − ρ2
t · ejt, 0 ≤ ρt ≤ 1, (1)

where ft is the systematic risk factor and ejt is the firm-specific risk factor. Both are assumed to
be standard normally distributed. The firm-specific risk factors are assumed to be uncorrelated
across firms. The parameter ρt then determines the amount of correlation between the surplus
variables of different firms at time t, and it thereby influences the correlation between default
events of different firms. The closer ρt approaches one, the more prominent the systematic
risk vis-à-vis the firm-specific risk. Note that the parameterization in (1) is such that Sjt is
standard normally distributed as well. This normalization is needed to identify the model, as
Sjt is not observed directly. Also note that we abstract from firm heterogeneity, as neither
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ct nor ρt depends on j. This seems a natural approach given the limited data set at hand.
Otherwise, the model would be poorly identified as we only observe a single time series.

Our approach bears close resemblance to the exogenous default probability framework of
Jarrow and Turnbull (1995) and Duffie and Singleton (1999), but less to the structural approach
of Merton (1974). At first sight, the close resemblance of (1) to the CreditMetrics modeling
approach might incorrectly lead one to identify it as a structural model, see also Finger (2000).
The difference is easily seen if, as an example, ft is an i.i.d. process. In that case, conditional
on the systematic risk factor ft, the probability of default is P [ejt < (ct − ρtft)/

√
1 − ρ2

t |ft].
A typical structural model would account for the fact that a rise in Sjt in one period, due to
either a high ft or a high ejt, also gives a reduced probability of default in the next period.
Here, by contrast, a higher ejt (with identical ft) will not result in a lower default probability
over the next period. The exogeneity of the default event and the independence of exposures
conditional on the systematic factor ft cause the model to be similar in spirit to the CreditRisk+

framework, which is typically labeled a reduced form model. The main difference lies in the
distributional assumptions made for the risk factors.

Our model for the aggregate time series of actual observed failure rates is based on model
(1) for individual firms. Define

Fnt =
1

n

n∑

j=1

1(Sjt < ct),

where 1(·) is the indicator function. The distribution of Fnt is a sum of correlated Bernoulli
variables, which, in general, is difficult to work with. We therefore consider a simple approxi-
mation1 to Fnt, namely Ft = limn→∞ Fnt. Following Finger (1999) and Lucas, Klaassen, Spreij,
and Straetmans (2001), this approximation should work well given the large number of firms
underlying the aggregate failure rate series. We obtain

Ft = lim
n→∞

1

n

n∑

j=1

1(Sjt < ct)

a.s.
= lim

n→∞

1

n

n∑

j=1

P[Sjt < ct|ft]

= lim
n→∞

1

n

n∑

j=1

Φ

(
ct − ρtft√

1 − ρ2
t

)

= Φ

(
ct − ρtft√

1 − ρ2
t

)
, (2)

where Φ(·) denotes the standard normal cumulative distribution function. We have thus estab-
lished a relationship between the aggregate default rate Ft, which we identify with the observed
US failure rate as depicted in Figure 1, and the unobserved elements of our credit risk model
ft, ct and ρt. Note that the above expression does not explicitly contain firm-specific risk
factors, as it is assumed that idiosyncratic risk has been diversified completely. However, the
functional form of the mapping from ft to Ft is dictated by the distributional assumptions for
the firm-specific risk factors.

1A different approximation is to replace the Bernoulli by a Poisson with the same mean. This works for
sufficiently small default probabilities and is closely linked to the Credit Suisse (1997) approach. This approach,
however, is less easy to generalize to situations where we are not only interested in defaults but also in credit
rating changes, or to situations with large default probabilities.
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As mentioned in the introduction, one approach to identify the unobserved elements of our
credit risk model is to substitute observed macroeconomic variables for ft. This is done in Nick-
ell et al. (2000), Bangia et al. (2002), and Kavvathas (2001). The advantage of this approach is
that (prior) information on these macroeconomic variables can be exploited in the forecasting
stage. The main drawback of using observables is that their relation to the unobserved credit
cycle has to be stable over time. Moreover, there is an increased possibility of model misspeci-
fication because incorrect or insufficient macroeconomic variables are substituted to proxy for
ft. Finally, using observed variables implies that one has to construct a separate forecasting
model for ft in order to forecast failure rates beyond the sample period. Constructing such
models may be difficult and makes credit risk analyses prone to additional model misspecifica-
tion risk. Separation of the modeling processes for defaults and macroeconomic variables also
leads to inefficiencies and possibly even inconsistencies in case of simultaneity. Special testing
procedures should therefore be performed to check for this, see for example Kavvathas (2001).

To circumvent these difficulties, we follow a time series approach in which Ft is modeled
by unobserved components. This approach keeps the middle between the approach based on
observed variables as described above, and a completely reduced form approach based on Box-
Jenkins ARIMA models, see for example Hamilton (1994). The unobserved components time
series model has the advantage over reduced-form models that the various components can be
interpreted in economic terms as we can relate them to ρt and ct. This is shown in the next
section.

3 An unobserved components time series model

3.1 Trend – cycle decompositions

The unobserved components time series model is based on the classic principle that a time series
can be decomposed into interpretable unobserved components such as a trend, seasonal, cycle
and irregular component. For example, macroeconomic time series typically feature a long term
trend with cyclical variations around this trend. Further they are often characterized by trends
with different growth rates for different periods and by cycles with time-varying characteristics.
An appropriate model for such time series is given by

yt = µt + ψt + εt, t = 1, . . . , n, (3)

where yt represents the actual time series and where µt, ψt, and εt are the level, cycle, and
irregular time series components, respectively. The level component is time-varying, and pos-
sibly exhibits a trend. These components are unobserved and modeled by stochastic processes.
For example, one may specify the level component by

µt+1 = µt + ξt, ξt ∼ N(0, σ2
ξ ), (4)

for a random walk process. This reduces to a fixed level model if σ2
ξ = 0. Alternatively, we can

specify the level component as a stationary process by

µ1,t+1 = µ1t,

µ2,t+1 = φµ2t + ξt, ξt ∼ N(0, σ2
ξ ),

µt+1 = µ1t + µ2t, (5)

for a level with autoregressive characteristics. Models of type (3) nest familiar trend extracting
procedures like the Hodrick-Prescott filter; see Harvey and Jaeger (1993) for a discussion.
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Various specifications for the cycle component ψt exist. For example, we may wish to
generate a cycle by an AR(2) model with the coefficients selected in the complex range of
solutions. To enforce this restriction, we represent the model in terms of a trigonometric
specification, that is

(
ψ2,t+1

ψ∗
2,t+1

)
= φ

[
cosλ sinλ
− sinλ cosλ

](
ψ2t

ψ∗
2t

)
+

(
ω2t

ω∗
2t

)
, (6)

with frequency λ and persistence parameter |φ| < 1. The disturbances are serially and mutually
uncorrelated and they are normally distributed with mean zero and variance matrix

Var

(
ωt

ω∗
t

)
= σ2

ωI2,

where Ik is the k × k identity matrix. The disturbances ωt and ω∗
t have a common variance

σ2
ω. This stochastic cycle specification generates a stationary cyclical process with a period of

p = 2π/λ.
The model is completed by taking the irregular component εt as a normally distributed ran-

dom variable with mean zero and variance σ2
ε . The irregular and other disturbances associated

with the various components are mutually uncorrelated, both contemporaneously and between
different time periods. A full discussion of this class of time series models and their dynamic
properties is given by Harvey (1989).

3.2 Model implementation for default risk

The unobserved components modeling approach introduced in the previous subsection is flex-
ible, but has little direct economic content. Therefore, we introduce two specific variants of
model (3) that link directly to the parameters of economic interest for default rates as in (2).
To understand the model’s design, define yt = Φ−1(Ft), with Φ−1(·) the inverse cumulative
standard normal distribution function, and Ft the observed default rate.

Given the limited number of data points, it is non-trivial to distinguish between some of the
non-nested unobserved component models. Therefore, we take a pragmatic route and present
the results for 3 of the most competitive models.2 The first model is an AR(1) plus cycle model
and is given by

µt+1 = φ1µt +
√

1 − φ2
1ξt, (7)

(
ψ2,t+1

ψ∗
2,t+1

)
= φ2

(
cosλ2 sinλ2

− sinλ2 cosλ2

)(
ψ2t

ψ∗
2t

)
+

√
1 − φ2

2

(
ω2t

ω∗
2t

)
, (8)

yt = c
√

1 + a2 + b2
t + aµt + btψ2t, (9)

with (ξt, ωt, ω
∗
t )

′ ∼ N(0, I3). The second model is an AR(2) plus cycle and replaces (7) by

µt+1 = (φ1 + φ3)µt − φ1φ3µt−1 +

√
(1 − φ1φ3)(1 − φ2

1)(1 − φ2
3)

1 + φ1φ3

ξt, (10)

which has unit variance and autoregressive roots φ1 and φ3, respectively. The final model has
a double cycle and reads

yt = c
√

1 + a2 + b2
t + aψ1t + btψ2t, (11)

2We have experimented with other empirical models, including non-stationary models, and models involving
an irregular component. The irregular component, however, was estimated to be zero for all our models and is
therefore omitted. The models we present here have the best interpretation and empirical performance.
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with ψ2t as before, and ψ1t as in (8), but with (φ2, λ2) replaced by (φ1, λ1). We impose λ1 < λ2,
such that ψ1t has a longer period than ψ2t.

All models have in common that they decompose the transformed default rates into a deter-
ministic and possibly time varying level component c

√
1 + a2 + b2

t , a slowly evolving stochastic
component µt or ψ1t, and a (short) cyclical component ψ2t. The fact that the loading bt of the
short cyclical component may be time varying stems from the empirical findings in the next
section.

Given yt = Φ−1(Ft) and the definition of Ft in (2), we obtain for our first and second model
that

ρ2
t =

a2 + b2
t

1 + a2 + b2
t

, (12)

ct = c, (13)

ft =
−aµt − btψ2t√

a2 + b2
t

, (14)

dt =
Φ2(c, c; ρ

2
t ) − Φ(c)2

Φ(c)[1 − Φ(c)]
. (15)

with dt the default correlation, and Φ2(·, ·; ρ2
t ) the bivariate normal distribution function with

correlation parameter ρ2
t . For the third model, only the expression for ft changes to

ft =
−aψ1t − btψ2t√

a2 + b2
t

.

In economic terms, the parameter Φ(c) can thus be interpreted as the long-term default prob-
ability. In (13) it is restricted to be time invariant. Alternatively, one could include the slowly
varying component (µt or ψ1t) into the default threshold ct. This is only relevant from the
perspective of model interpretation, and not for the credit risk analyses based on the model.
We therefore stick to (12) through (14), as the interpretation of c as a long-term unconditional
default probability also seems to be most widely accepted in the literature.

Note that we allow for time varying asset (ρ2
t ) and default (dt) correlations by time variation

in the parameter bt, the loading of the short cyclical component. For bt ≡ b, we are back in
the setting with constant asset (and default) correlations. We use the parameter bt to test for
evidence of any changes in default correlations over longer samples. If this is the case, this adds
yet another dimension to the debate on the difficulty of estimating such correlations reliably,
see Gordy and Heitfield (2002).

4 Empirical results

We present estimation results for the models presented in the previous section. We estimate
the models with (TV) and without (CV) time-variation in the loading bt for the short cycle ψ2t.
Time variation is introduced by 3 time dummies with breaks at 1949 and 1976. These values
were found by optimizing the loglikelihood value of the model over the break dates. We also
present some sensitivity analyses with respect to the choice of break dates.

The unknown parameters in the AR(1) plus cycle model are the component loadings a, bt,
and c, together with the autoregressive coefficients φ1 and φ2 and the cycle frequency λ2. For
the AR(2) plus cycle model and the double cycle model, there is an additional parameter in the
form of the second autoregressive root φ3 and the frequency of the long cycle λ1, respectively.
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For estimation purposes, we transform the parameters to satisfy the restrictions 0 < φ1, φ2 <
1, −1 < φ3 < 1, and λ1, λ2 < π. The transformed parameters will be collected in the parameter
vector θ, and estimated using maximum likelihood. Details on parameter estimation and model
diagnostics can be found in Harvey (1989) and Durbin and Koopman (2001).3

4.1 Results for constant (short) cycle loading bt ≡ b

The estimation results for the models with a constant short factor loading bt ≡ b are given in
Table 1 in the columns headed with CV.

We first discuss the results for the model with AR(1) and cycle component. The parameters
in Table 1 for this model (AR1;CV) indicate that there is statistically significant evidence of
a cycle. The period of the cycle is about 9.5 years, which roughly corresponds to a typical
business cycle period. The dampening factor φ2 is high, 0.947, which indicates that the cyclical
effect is persistent. Consequently, one can expect cycles to be important and present in credit
risk simulations based on this model for horizons as long as 10 years (0.94710 ≈ 0.58 À 0).
Also the AR(1) component is very persistent with a near unit root of 0.979. The implied
asset correlation is 10%, which is economically significant. The confidence interval around this
correlation, however, is large, which shows that it is difficult to obtain a reliable estimate of
the asset correlation given the limited number of 71 data points. This is mainly caused by the
huge confidence interval for the loading a of the (slowly varying) AR(1) component. Through
(12) this translates directly into a wide confidence band for ρ2. Note that the short cyclical
component only explains about 7% (or b2/(a2+b2)) of the time variation in default rates. So the
bulk of variation is captured by longer term movements as captured by the AR(1) component.
With respect to the diagnostics of the model, there is significant evidence of nonnormality
(N) for this model and some evidence of missed dynamics (Q(15)). A close inspection of the
smoothed estimates of the AR(1) and cyclical component revealed that the variance of ψ2t

varies considerably over time. From the 50’s to the 70’s, the cycle is almost flat compared
to the war and pre-war years and the years from the 70’s onwards. This suggests to allow
for a time-varying loading bt of the cyclical component. We consider this further in the next
subsection.

We now turn to the AR(2) model (see the column labeled AR2;CV). Given the results of the
AR(1) model, it is not surprising that there is no sign of missed dynamics (insignificant Q(15))
for the model with AR(2) component. The increase in likelihood value (L) for the addition of
only one parameter is statistically significant at the 1% level. However, there is still a strong
indication of nonnormality (N). The restriction of both AR(2) roots to be real in this model is
not binding. The estimates indicate that the (short) cyclical component ψ2t is nonstationary
(φ2 = 1). The period of the cycle, however, appears reasonable: around 8.5 years. The non-
stationarity appears due to possible misspecification in the constant cycle loading b, see also
the next subsection. The short cyclical component only captures a very small part (6%) of the
total time variation in default rates. The AR(2) roots φ1 and φ3 are smaller than the root (φ1)
for the AR(1) plus cycle model, meaning that the slowly varying component is less persistent.
Also the asset correlation parameter ρ2 is now somewhat lower: 5.7% rather than 10%.

Finally, we consider the double cycle model with constant factor loading b, see the CYC;CV
column in Table 1. The parameter estimates and diagnostics are very similar to the AR(2)
plus cycle model. The main difference lies in the AR(2) versus the long cycle component.
The long cycle has a period of about 38 years and a decay factor of φ1 = 0.977. The long

3The computations are implemented using Ox Professional 3.0, the object-oriented matrix software of
Doornik (2001), and SsfPack 2.2, the Ox package for state space analysis by Koopman, Shephard, and Doornik
(1999). The graphics are produced by the accompanying program GiveWin.
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Table 1: Parameter Estimates

The table contains the parameter estimates for the models in (7) through (11). AR1 gives the results for
model (7)–(9). AR2 gives the results for (8)–(10). CYC gives the result for model (11). The frequency of
cycle i is denoted by λi, from which the period can be derived, and its (autoregressive) dampening factor
is denoted by φi. We estimate models with (TV) and without (CV) a time-varying loading for the short
cyclical component. Time variation is modeled by 3 dummy variables over the ranges 1927–1948, 1949–1975,
1976–1997.
Diagnostics reported are the loglikelihood value L, the Durbin-Watson (DW), the Bowman-Shanton nor-
mality test N which has a χ2(2) distribution, a test for heteroskedasticity H(23) which follows an F (23, 23)
distribution and checks whether the first and last 23 residuals have equal variance, the first and fifteenth
order autocorrelation of the prediction errors r1 and r15, and the Ljung-Box test for serial correlation Q(15)
which has a χ2(15) distribution. The 95% confidence bands are in brackets. The number of observations is
71. Significance for N, H(23), and Q(15) at the 10%, 5%, and 1% level is denoted by a, b, and c, respectively.

MODEL

AR1; CV AR1; TV AR2; CV AR2; TV CYC; CV CYC; TV

period1 38.14 45.43
[27.79,52.64] [28.95,71.98]

λ1 0.16 0.14
[0.12,0.23] [0.09,0.22]

φ1 0.979 0.987 0.799 0.909 0.977 0.983
[0.686,0.999] [0.702,1.000] [0.017,0.974] [0.379,0.990] [0.898,0.995] [0.919,0.997]

period2 9.52 11.40 8.54 11.13 9.72 11.14
[8.14,11.20] [9.62,13.60] [8.19,8.90] [9.76,12.74] [8.31,11.45] [9.94,12.52]

λ2 0.66 0.55 0.74 0.57 0.65 0.56
[0.56,0.77] [0.46,0.65] [0.71,0.77] [0.49,0.64] [0.55,0.76] [0.50,0.63]

φ2 0.947 0.950 1.000 0.953 0.926 0.959
[0.833,0.985] [0.776,0.991] [1.000,1.000] [0.806,0.990] [0.819,0.972] [0.819,0.992]

φ3 0.579 0.535
[-0.104,0.891] [0.008,0.830]

c -2.284 -2.309 -2.437 -2.450 -2.512 -2.486
[-1.817,-2.752] [-1.895,-2.723] [-2.263,-2.612] [-2.260,-2.639] [-2.442,-2.582] [-2.419,-2.553]

Φ(c) 0.0112 0.0105 0.0074 0.0071 0.0060 0.0064
a 0.322 0.258 0.238 0.177 0.209 0.184

[0.072,1.439] [0.046,1.436] [0.149,0.381] [0.088,0.355] [0.110,0.397] [0.086,0.393]
b1927 0.088 0.258 0.058 0.248 0.099 0.261

[0.008,0.677] [0.137,0.485] [0.018,0.188] [0.121,0.508] [0.063,0.156] [0.129,0.528]
b1949 0.000 0.000 0.000

[0.000,0.000] [0.000,0.000] [0.000,0.000]
b1976 0.111 0.119 0.125

[0.057,0.215] [0.056,0.253] [0.059,0.262]

ρ2
1927 0.100 0.118 0.057 0.085 0.051 0.093

[0.008,0.677] [0.021,0.697] [0.022,0.153] [0.022,0.278] [0.016,0.154] [0.024,0.302]
ρ2
1949 0.062 0.030 0.033

[0.002,0.673] [0.008,0.112] [0.007,0.134]
ρ2
1976 0.073 0.044 0.047

[0.005,0.678] [0.011,0.160] [0.011,0.183]

L 75.64 89.50 81.56 93.29 80.32 93.49
DW 1.23 1.36 1.90 1.87 1.58 1.75
N 15.07c 0.65 27.07c 0.83 10.94c 0.53
H(23) 0.43 0.88 0.36 0.90 0.54 0.95
r1 0.38 0.31 0.04 0.05 0.20 0.09
r15 -0.08 -0.09 -0.01 -0.03 0.07 0.02
Q(15) 22.48a 33.06c 9.83 12.19 8.97 13.53

cycle is thus almost nonstationary, similar to the AR(1) component earlier. The short cycle
has a reasonable period of 9.7 years. The cyclical component explains about 18% of the time
variation in default rates, which is substantially more than for the previous two models. Note
that the unconditional default probability Φ(c) for the AR(2) model is the lowest of the models
considered. The asset correlation is again estimated at about 5%. Close inspection of the
smoothed component estimates revealed that there is evidence of volatility changes in the
cyclical component ψ2t. This is the issue we address next.
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4.2 Results for time-varying (short) cycle loadings bt

Given the empirical indications (not shown) for a time-varying variance of the short cyclical
component, we now allow for time variation in the factor loading bt. Given the limited number of
data points, we allow for three levels of bt. The break dates appear to lie around 1950 and 1975.
We vary the break dates between 1947–1952 and 1970–1977, respectively. We choose the set of
dates that yields the highest likelihood value. This gives the break dates 1949 and 1976. The
closest alternatives in terms of likelihood values all lie in the range 1949–1951 and 1974–1976.
We test whether the increase in likelihood value due the addition of two parameters to account
for the change in variance is statistically significant. The p-value for all models considered is
below 0.000008. Note, however, that this is not a formal test, as the break date is unknown.4

To circumvent this issue, we use a pragmatic approach and consider the variation in p-values
over the range of alternative break points considered. It turns out that the maximum p-value
over all the different break dates studied is never above 0.0008 for any of the models. From this
we draw the conclusion that there is sufficient and convincing evidence for the existence of two
breaks in variance. Interestingly, when estimating the AR(2) model unrestrictedly, it yields
complex versus real roots in about 50% of the cases if we vary the break dates. This indicates
that it is difficult to distinguish the long cycle from long non-cyclical movements empirically
given the data at hand. The empirical congruence of the two models with respect to the data
have led us to use both models in the credit risk analyses rather than arbitrarily dropping one
of them. This also allows us to study whether two econometrically similar models also yield
similar financial implications.

The parameter estimates can be found in Table 1 in the columns labeled TV. We also present
the smoothed component estimates c +

√
1 + a2 + b2

t + aµt and btψ2t with corresponding 95%
confidence bands in Figure 2.

Interestingly, we learn from Figure 2 that there is a close agreement between the different
models. In the right-hand plots, there is a pronounced short cyclical effect before 1949, and
somewhat less after 1976. In the intermediate period, no short cyclical component is identified.
This corroborates the empirical pattern mentioned for the models with fixed bt ≡ b. The slowly
varying components in the left-hand panels also reveal very similar patterns: there is a slow
variation in default rates over longer periods, but periodic departures (or cyclical movements)
from these ‘benchmark’ default rates can be substantial.

The estimation results in Table 1, however, present some subtle differences. The parameters
period2, λ2, and φ2 of the short cyclical component are almost identical. Only the confidence
intervals are slightly wider for the AR(1) plus cycle specification. The dominant AR root
φ1 for the slowly varying component is similar for the AR(1) and double cycle model, 0.987
and 0.983, respectively. For the AR(2), however, the dominant root of 0.909 is substantially
smaller. Consequently, the half-life is only about one third of that for the other two models.
Moreover, the parameter φ1 for the AR(2) specification has a much wider confidence interval.
This is in line with well-known results for this class of models: direct modeling of unobserved
components in terms of primitive AR(1) and cyclical components allows for richer dynamics in
a more parsimonious way than unrestricted higher order AR specifications, see Harvey (1989).
The loading a of the slowly varying component also differs between the AR(1) on the one hand,
and the richer AR(2) and double cycle specifications. The wide confidence band for a as found
in the AR(1) specification with constant bt remains. The unconditional default probabilities
Φ(c) for all models are about the same as for the specification with constant short cycle loading

4In principle, one should use a supremum likelihood ratio test, compare Vogelsang (1997) in a different
context. Deriving and studying such a formal testing procedure is, however, beyond the scope of the current
paper.
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Figure 2: Dynamic Model Fit
The figure presents the smoothed component estimates for the slowly varying and short cyclical components
of three alternative dynamic models for the transformed failure rate Φ−1(Ft), with Ft the original failure rate.
The top two graphs give the result for the AR(1) plus cycle, where the right-hand hand plot gives btψ2t, and the
left-hand plot gives yt = c

√
1 + a2 + b2

t + aµt, with µt and ψ2t satisfying (7) and (8). The middle two graphs
are for the AR(2) plus cycle model, where the term µt now has to be interpreted as an AR(2) process with real
roots. The bottom two graphs give the result for the double cycle model, where µt is replaced by ψ1t, a cyclical
component with similar specification as in (8), but longer period. All results take bt to be piecewise constant
over the ranges 1927–1948, 1949–1975, 1976–1997.

b, see the previous subsection. They range from 0.65% for the double cycle model to 1.05% for
the AR(1) plus cycle model.

The time varying factor loadings bt are very similar across all three models. There is a high
bt of about 25% in the years up to 1949. Note that due to the unit variance parameterization
of the short cyclical component in (8), b2

t can be interpreted as the variance of the (short)
cyclical component in the transformed default rates yt. For the AR(1) plus cycle model, this
means that about 50% (or b2

t/(a
2 + b2

t )) of the time variation in default rates during 1927–
1948 can be attributed to cyclical effects. For the other two models, the figure is substantially
higher, namely around 66%. The remaining 50% and 34%, respectively, can be attributed to
more gradual long-term developments in default rates. After the first oil crisis, the standard
deviation of the short cycle in yt more than halves with respect to 1927–1949. This can be seen
from the value of b1976, which is about 11% or 12%. Consequently, the percentage of variation
in default rates over time explained by the cyclical factor decreases dramatically from 50%
and 66% for the AR(1) and the other two models to about 16% and 31%, respectively. The
remainder is explained by gradual longer term developments. If we compare these results to
those of the previous subsection, we see that by not discriminating between different regimes
over time, one may seriously underestimate (pre-1949 and post-1976) as well as overestimate
(1950–1978) the impact of short cyclical movements on the total variation in default rates at
any time.
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5 Capital requirements

So far, we have concentrated on the empirical behavior of failure rates. As argued in the intro-
duction, however, the dynamic behavior of default rates is especially relevant for determining
capital requirements in a multi-period setting. There are at least two reasons why this is an
important topic. First, both regulators and financial institutions themselves are not only in-
terested in a static, one-year horizon for bankruptcy. They also take the dynamic aspects of
their portfolio into account. Second, risk sensitive capital requirements as proposed in the New
Capital Accord, Basle Committee on Bank Supervision (2001), may result in an amplification
of macroeconomic cycles and in an untimely provisioning for loan losses, see Laeven and Ma-
jnoni (2002). To address these issues, we set up a simulation experiment in the present section.
The motivation for this experiment is to test whether dynamic models such as estimated in
Section 4 result in a more timely accumulation of capital when needed.

Let us consider the following simple balance sheet development of a hypothetical bank:

Vt = (1 − pt)Vt−1, (16)

Dt = (1 + h)Dt−1 − (1 − pt)gVt−1 − ptδVt−1, (17)

Et = Vt −Dt, (18)

where Dt, Et, and Vt denote the bank’s debt level, equity level, and the value of its asset
portfolio at time t, respectively, and with D0, E0, and V0 exogenous. Furthermore, g is the
(fixed) coupon on the asset portfolio, h denotes the bank’s funding rate, δ is the recovery rate
as a fraction of Vt, and pt is the default rate during period t for the loan portfolio. The balance
sheet can be interpreted as follows. Starting with a portfolio of nominal value Vt financed by
debt Dt and equity Et, a fraction pt of the portfolio defaults. This results in recovery payments
worth ptδVt. The non-defaulted part of the portfolio (1− pt)Vt pays coupons worth (1− pt)gVt.
We assume that coupon and recovery payments are deducted from debt. Alternatively, we
could assume that they are reinvested in assets with similar cash flow and risk characteristics
as the original portfolio. Adding the funding costs hDt, we arrive at (16) and (17). Equation
(18) then follows directly.

The default rate pt is modeled as
pt = Φ(yt), (19)

with yt given by one of the time series models discussed in Section 4. Given our empirical
results, we concentrate on the AR(2) plus cycle and the double cycle model with time varying
variances. Note that (19) only contains one stochastic variable, the transformed default rate
yt = Φ−1 (Ft). By using (19), we are abstracting from the effect of idiosyncratic risk factors.
This is a reasonable approximation to actual losses if the portfolio is sufficiently fine-grained.

The recovery rate δ is set to 50% in our experiment. The funding cost is fixed at 4.5%,
while the coupon varies between 4.8% and 5.4%. Unreported additional simulations reveal that
alternative parameter values result in qualitatively similar findings to the ones we will report
below. Note that the recovery rate of 50% leads to an expected loss of pt/2. The default
probability in our simulations hovers around 60 or 75 basis points, implying that the difference
between coupon and funding costs is approximately equal to the expected loss. The bank’s
net margin (net of the expected loss) is thus close to zero. By concentrating on this region,
we are able to highlight some of the main features of capital requirement determination in a
multi-period setting.

To perform our test on the relation between dynamic default models, capital requirements,
and pro-cyclicality, we use an unconditional and a conditional approach. In our conditional
approach, we proceed as follows. First, we construct for every year in the sample a perfect
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foresight capital requirement (PFCR) corresponding to a one up to ten year planning horizon.
The PFCR in a specific year equals the amount of initial capital E0 needed to get the bank
safely through the planning period, i.e., without ever having a negative equity value during the
planning period. From a regulatory perspective, this can be thought of as an absolute minimum
capital requirement (for a specific planning horizon) needed if one would observe future default
rates developments with certainty. Next, we consider multi-period capital requirements for three
different approaches. The first two are based on the AR(2) plus cycle model and the double cycle
model of Section 4, respectively. For every year in the sample, we use the model’s parameter
estimates to obtain filtered estimates of the slowly varying and the cyclical component. These
filtered states are the estimates of µt, ψ1t, and ψ2t given all data up to and including time t.
Using the filtered states as initial conditions and the estimated dynamic model, we simulate
10,000 paths of 10 year default rate developments. Using the simulations, we perform a grid
search to determine the initial capital level E0 needed to get the bank safely through the next
one up to ten years with a 99.95% confidence level. The 99.95% confidence level is interpreted
here in the sense that the bank has a fixed annual default hazard rate of 5 basis points. The
computations are performed for both dynamic models and for every year in the sample.

Our approach with fixed default threshold c in (13) can be interpreted as rating through
the cycle, see Carey and Hrycay (2001). Major rating agencies claim this is in broad agreement
with their rating objectives. Banks, however, are arguably claimed to be more aggressive in
their rating activity in the sense that business cycle movements have a direct impact on the
estimated probabilities of default of borrowers. This effect may be amplified if banks estimate
probabilities of default based on recent data only, e.g., five years as a minimum required in the
proposed New Capital Accord, Basle Committee on Bank Supervision (2001). As mentioned
earlier, active re-rating based on recent observed default figures combined with risk sensitive
capital requirements may lead to pro-cyclicality. To mimic this re-rating strategy, we use the
following approach. For every year in the sample, a 5 year window of current and past data is
used to estimate default probability. The default probability over the future planning period is
set to the historical average over the 5 year data window. To estimate the asset correlation ρt

over the planning period, the default rate variability over the past 10 years is used, see Gordy
(2000) and Finger (1999) for formulations of the estimator. This is tantamount to calibrating
the model in terms of default rather than asset correlations, which is the appropriate thing to
do for this class of models, see Frey and McNeil (2001,2002). Note that our present stylized
re-rating strategy only catches part of the practice in the banking industry. Banks may also
use extraneous information, such as balance sheet data or equity volatility as inputs to their
credit scoring methods, see Carey and Hrycay (2001). This is, however, difficult to implement
in our study given the current aggregate data level and the limited number of observations.

Using the estimated default correlation and probability of default, future default probabili-
ties are simulated under the assumption of an i.i.d. systematic risk factor ft. The default figures
can be used to work through the bank’s balance sheet, compute the required levels of initial
capital, and compare the approach to the dynamic models. Figure 3 presents the required levels
of capital for one up to ten year planning periods, conditioned on the filtered states in years
1965, 1980, 1991, and 1997.

We first start with discussing the results for 1965. For low coupons (4.8%), the differences
between the models are clear. Whereas the re-rating approach (top) requires a roughly constant
capital level independent of the planning horizon, the dynamic models require higher levels of
capital at longer horizons. The effects become even more apparent when conditioning on
1980, which was at the start of the junk bond crisis. Given that at the time the recent past
revealed low default figures, the re-rating approach results in very low capital requirements for
all coupon levels. Moreover, even for a low coupon of 4.8%, the capital requirement decreases
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Figure 3: Multi-period capital requirements

The figure contains the capital requirements for a bank to match its pointwise simulated multi-year
cumulative default frequency to 1 − (99.95%)t, t ≤ T , for a planning horizon T = 1, . . . , 10. The
top line of graphs gives the results for the re-rating strategy where probability of default and default
correlation are based on the most recent 5 and 10 year history. The risk factor in this approach is
assumed to be i.i.d. The second line of graphs contains the results for the AR(2) plus cycle model.
The bottom line of graphs gives the results for the double cycle model estimated in Section 4. For
the middle and lower line of graphs, the initial conditions for the model are the filtered estimates
of the states (slowly varying and cyclical unobserved component) in the years 1965, 1980, 1991,
and 1997 (column 1, 2, 3, and 4 respectively). These years give an impression of the range of
possible patterns. The 5th column of graphs gives the results for the different models when using an
unconditional simulation. In this simulation, the initial conditions are drawn from the unconditional
distribution of the states. For the top-right graph, this means that the default probability and
correlation were estimated using the complete sample rather than the most recent 5 and 10 years.
Each graph contains four curves, which relate to different coupon values on the bank’s bond portfolio.
The funding costs are fixed at f = 4.5% in all graphs.

with the planning horizon. This is due to the fact that the re-rating approach is based on
an i.i.d. assumption for the systematic risk factor. A depletion of the initial capital buffer
by two or more consecutive bad realizations of ft is relatively unlikely under this assumption.
Consequently, the 2-year buffer can be set lower because of the projected buffer replenishment
by the coupon payment. By contrast, the AR(2) and double cycle model allow for stickiness
in adverse economic conditions through the dynamical structure of the model. As a result,
buffer depletion by several bad years in a row is much more likely. The losses produced by
this effect cannot be (completely) offset by the coupon payments, such that the initial capital
buffer needs to be increased in order to survive. A nice feature is seen for a coupon level of
5.0%. This curve is slightly hump-shaped. The initial increases in the capital level over longer
horizons has the same intuition as before. Over even longer horizons, however, every downward
cycle must ultimately end. When the cycle stabilizes, the coupon payments on average (more
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than) compensate for the default losses. As a result, the capital requirement at longer horizons
stabilizes or even slightly decreases. Note that the empirical similarity between the AR(2) and
double cycle model found in Section 4 result in similar capital requirements when conditioned
on the states in 1965 and 1980.

A different picture emerges when conditioning on 1991 or 1997. First note that even the re-
rating approach indicates that higher capital levels are needed than in 1965 or 1980. Moreover,
the increasing pattern for a coupon of 4.8% clearly indicate that this coupon is too low to
prevent a continuous buffer erosion by defaults. A second feature evident in the figure is the
large capital levels for the AR(2) model vis-à-vis the double cycle model, despite the empirical
similarity of the two. The main driver of this difference is the downward swing in the long
cycle for the double cycle model, which compensates for the movements in the short cycle.
A similar compensation is lacking for the AR(2) model, such that higher capital levels are
required. For all experiments it is clear that a key role is played by the bank’s net margin,
i.e., the coupon minus funding costs minus expected loss. If this margin is low (e.g., for a
coupon of 4.8%), the capital buffer increases. For higher margins, capital requirements level
off sooner. For even higher coupon levels, the requirement may start decreasing again for long
enough horizons, resulting in the hump-shaped pattern mentioned earlier. This is due to the
deterministic positive drift in the buffer level over time due to the (high) coupon payments.

The final column of graphs in Figure 3 contains the results for the unconditional approach.
For the dynamic models, the estimated default threshold is based on the complete sample. The
initial conditions for the slowly varying and cyclical unobserved component are not fixed at
their filtered estimates, but are drawn from the unconditional distribution. Given for example
(8), this implies that the first value of (ψ2t, ψ

∗
2t) is drawn from the standard bivariate normal.

For the top-right hand graph, the estimates of default probability and asset correlation are
based on the complete data rather than the most recent 5 and 10 years. This results in a
default probability of 62 basis points and an asset correlation ρ2 = 3.31%. The unconditional
capital levels are significantly higher than the ones presented earlier. Even for coupons of 5.4%,
non-trivial buffer levels emerge. For the top-right graph, note that the bank’s net margin is
4.8−4.5−0.62/2 = −1bp < 0. So the coupons do not make up for the expected loss plus funding
costs. As a result, the capital is constantly depleted on average over time, such that in order
to survive the capital requirement must constantly increase with the planning horizon. The
reverse holds for higher coupon levels, which show a clear decreasing pattern. The AR(2) and
double cycle model, by contrast, result in increasing capital levels over short planning horizons.
If the coupon is sufficiently high, the earnings drift ultimately takes over and a hump-shaped
pattern again emerges.

It must be emphasized that all these simulations are stylized in the sense that in reality
banks have the option to issue new equity and to tune the dividend policy in order to strengthen
the capital level. These issues are not taken into account here and may be difficult to model
in general. However, the simulations so far underline the important effects of stickiness in
macroeconomic conditions for default risk and capital buffer formation. Moreover, in our
current dynamic setting the bank’s net margin appears to be of paramount importance for
determining satisfactory levels of capital. This net margin does not appear directly in the new
Basle proposals for capital regulation.

6 Pro-cyclicality

We now turn to the issue of pro-cyclicality. So far, we have determined what capital re-
quirements are implied by the different modeling approaches. The next important question is
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Figure 4: Conditional capital requirements

The figure contains the capital requirements for a bank to match its pointwise simulated multi-year
cumulative default frequency to 1 − (99.95%)t, t ≤ T , for a planning horizon T of 1, 5, or 10 years.
Each graph is for a fixed planning horizon and contains four curves: the perfect foresight capital
requirement (PFCR), the capital requirements based on a re-rating strategy using recent 5 and 10
years of historical data (RE-R), and the capital requirements following from the AR(2) plus cycle
and double cycle (CYC) model models from Section 4. The curves have been obtained by means of
simulation. Each point in a graph contains the initial capital requirement when the initial conditions
for the unobserved components are the filtered estimates of the states. The bank’s balance sheet
evolves according to (16) through (19) with funding cost f = 4.5%, coupon equal to g = 4.8%, and
recovery rate δ = 50%.

whether the model-implied capital levels lag, lead, or coincide with capital levels actually re-
quired. The actual level needed is modeled by the PFCR. For three different planning horizons,
Figure 4 presents the results.

For a planning horizon of one year, the re-rating approach gives somewhat higher and more
volatile capital requirements. All methods give one-year capital levels above the PFCR. The
junk bond crisis is clearly visible by the rising PFCR and model implied capital levels in 1980.
The picture changes dramatically if we look at a planning horizon of five years. Most of the
time, the dynamic models result in higher capital levels than the re-rating approach. There is
an exception during 1983–1990 to which we come later. The most striking feature in the figure
is of course found around the start of the junk bond crises, which appears the most stressing
event in the sample period. The PFCR now starts rising around 1978 rather than 1980 as for
the one-year horizon. The re-rating approach, by contrast, produces increases in the capital
level only as of 1980. The intuition is clear. Only in 1980 the first indications arrive of the
oncoming crises in the form of increased default numbers. These numbers, in turn, increase
the estimated future credit risk and lead to higher capital requirements. A reverse effect is
found after the crisis. The capital levels keep rising for a few years, even if the worst of the
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crisis is over. This follows from the fact that default figures from the recent past at the time
were still very high. The pattern of lagging capital buffer accumulation and decumulation is
typical for the pro-cyclicality problem. It is therefore the more interesting to note that the
dynamic models estimated in this paper already indicate that capital levels should increase
around 1975. This stems from the fact that these models explicitly account for possible future
cyclical effects in default figures. This timely warning allows banks and regulators to increase
buffers earlier and at a more reasonable pace (compare the steep increase for the re-rating curve
from 1980 onwards). We do not claim that the absolute capital levels indicated in the figure
are representative of what should be implemented in an actual regulatory framework. But it
is clear that models that explicitly account for the dynamic structure of defaults may help in
overcoming part of the pro-cyclicality problems by providing early warning mechanisms. Also
note that capital decumulation around 1983 is also much more timely for the dynamic models.
In this way, capital requirements based on them may also provide a more efficient regulatory
framework. If we turn to the last panel in Figure 4 for a horizon of 10 years, the effects are
very similar. Only the absolute capital levels for surviving over 10 years are higher than for 5
years.

For completeness, we also look at the pro-cyclicality issue using an unconditional approach.
In the unconditional approach, we simulate future default path scenarios by generating from
the unconditional distribution rather than conditioning on the filtered states to start the sim-
ulations. As a comparison to our dynamic models, we consider two static alternatives. In
both of these, yt is an i.i.d. process. Given the mean and standard deviation of the failure
rate over 1927–1997 of 0.617% and 0.336%, respectively, we recover the static default threshold
c and correlation parameter ρ. Using the method of moments, note from (2) that the mean
default rate equals Φ(c), whereas the variance of the default rate equals Φ2(c, c; ρ

2) − Φ(c)2,
with Φ2(·, ·; ρ2) the bivariate normal distribution function for two correlated standard normals
with correlation ρ2. This leads to a default threshold of -2.50 and a correlation parameter of
ρ2 = 3.31%. Note that this is slightly lower than the correlations presented in Table 1. Our
second model estimates the default threshold c and asset correlation ρ2 by means of maximum
likelihood, using the fact that the mean and variance of yt are c/

√
1 − ρ2 and ρ2/(1 − ρ2),

respectively. The resulting values for c and ρ2 are c = −2.56 and ρ2 = 5.18%.
The main conclusion to be drawn from Figure 5 is that dynamic models combined with

unconditional capital requirements lead to prudent capital levels given the historical scenario for
planning horizons of more than one year. The re-rating based on recent data is also prudent over
most of the range. Especially in the early 80s, however, capital levels would have fallen short
of the levels needed in a multi-year perspective. This might be undesirable from a regulatory
perspective. Finally note that one has to be cautious in labeling any of the above approaches
too prudent. Given the limited data span of 70 years and the small default probability of 5
basis points or once every 2000 years, we would indeed not expect the historical scenario to
come anywhere near the capital requirement. In this sense, the dynamic models also do a much
better job in the unconditional setting.

7 Conclusions

In this paper we have analyzed US corporate failure rates over the period 1927–1997 using
time series models based on unobserved components. We identify long term movements and
cyclical effects in failure rates. The cyclical effects correspond to so called credit cycles and
have similar periods (9.5 to 11.5 years) as business cycles. The main advantage of our approach,
however, compared to models that incorporate observable business cycle models, is that our
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Figure 5: Unconditional capital requirements

The figure contains the capital requirements for a bank to match its pointwise simulated multi-year
cumulative default frequency to 1 − (99.95%)t, t ≤ T , for a planning horizon T of 1, 5, or 10 years.
Each graph is for a fixed planning horizon and contains five capital requirement curves: an i.i.d.
model with default probability of 62bp and default correlation 3.31%, the same model but with
default probability 52bp and asset correlation 5.18%, the AR(2) plus cycle and double cycle (CYC)
model models from Section 4, and the perfect foresight capital requirement (PFCR). The curves have
been obtained by means of simulation. Each point in a graph contains the initial capital requirement
when the initial default threshold c in (9) or (11) is the filtered estimate of the (level) state, while
the other components are drawn from their unconditional distribution. The bank’s balance sheet
evolves according to (16) through (19) with funding cost f = 4.5%, coupon equal to g = 4.8%, and
recovery rate δ = 50%.

model provides an unified simulation framework for dynamic credit risk analyses. Using our
integrated modeling approach, estimation is also more efficient than in the commonly used two-
step procedure, which first estimate the relation between macroeconomic variables and default
rates, and then separately model the dynamic behavior of the macroeconomic variables.

We investigated several model specifications and found that there are two competing models
that best fit the data. Both models have second order long term dynamics and a short cycle
with a period of about 8.5 to 11 years. The long term dynamics can either be described by
an autoregressive component, or by a long cyclical component with a period of about 40 years.
Interestingly, we showed significant empirical evidence for structural breaks in the variance
of the short cyclical component. Time variation in this variance implies time-varying asset
and default correlations. This adds another complexity to the difficulty in estimating these
correlations reliably. As Gordy and Heitfield (2002) argues, one needs long time series for
such correlations. Here we show, however, that over longer periods non-stationarity in these
correlations is empirically very likely. Moreover, the impact of cyclical factors also varies over
time. Whereas more than 50% of the variation in default rates can be attributed to the short
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cyclical component in the pre-war years, this figure collapses to the range 16%–30% from the
mid-70s onwards.

Using a simulation experiment for a stylized bank’s balance sheet, we also showed that
dynamic default rate models may mitigate some of the pro-cyclicality concerns. By an adequate
dynamic modeling of default figures and by focusing on an asset/liability perspective for the
bank in a multi-year context, model implied capital requirements appear much more in line
with what would have be needed historically. In particular, the timing of starting or stopping
capital buffer formation appears much more timely than in case one were to use active re-rating
strategies based on recent data only. The dynamic approach advocated in the current paper
might therefore turn out to be useful in a regulatory framework as well.

Using our simulation set-up, we also showed that the net interest margin, defined as the
coupon minus funding costs and minus expected loss, plays a key role in the formation of capital
buffers in a multi-year context. Very low net margins lead to increasing capital requirements
in the planning horizon. Very high net margins lead to decreasing requirements. There is
an intermediate region, where multi-year capital requirements reveal a hump shaped pattern
for specific models. The main implication of this for the regulator is that the soundness of
capital buffers also depends on the net margin of the financial institution holding the buffer.
Though this may complicate the regulatory framework, it seems an indispensable ingredient
in a dynamic context. It is also important that regulators pay close attention to issues of
conditionality. Capital requirements may be vastly different if one conditions on the current
state of the economic dynamics, or not.
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Carpenter, S. B., W. Whitesell, and E. Zakraǰsek (2001). Capital requirements, business loans, and business
cycles: An empirical analysis of the standardized approach in teh New Basel Capital Accord. Technical
report, Board of Governors, Federal Reserve System.

Credit Suisse (1997). CreditRisk+. Downloadable: http://www.csfb.com/creditrisk.
Das, S. R., L. Freed, G. Geng, and N. Kapadia (2002). Correlated default risk. Technical report, Santa Clara

University.
Doornik, J. A. (2001). Object-Oriented Matrix Programming using Ox 3.0. London: Timberlake Consultants

Press.
Duffie, D. and K. Singleton (1999). Modeling the term structures of defaultable bonds. Review of Financial

Studies 12, 687–720.
Dun and Bradstreet (1998). Business failure record. a comparative statistical analysis of geographic and

industry trends in business failures in the United States. Technical report.
Durbin, J. and S. J. Koopman (2001). Time Series Analysis by State Space Methods. Oxford: Oxford Uni-

versity Press.
Finger, C. (1999, April). Conditional approaches for CreditMetrics portfolio distributions. CreditMetrics

Monitor 1, 14–33.

20



Finger, C. (2000). A comparison of stochastic default rate models. RiskMetrics Journal 1 (2), 49–73.
Frey, R. and A. J. McNeil (2001). Modelling dependent defaults. Technical report, Federal Institute of Tech-

nology, ETH, Zurich.
Frey, R. and A. J. McNeil (2002). VaR and expected shortfall in protfolios of dependent credit risks: Con-

ceptual and practical insights. Journal of Banking and Finance 26, 1317–1334.
Gordy, M. (2000). A comparative anatomy of credit risk models. Journal of Banking and Finance 24 (1–2),

119–149.
Gordy, M. B. and E. A. Heitfield (2002). Estimating default correlations from short panels of credit rating

performance data. mimeo, Federal Reserve Board of Governers.
Gupton, G., C. Finger, and M. Bhatia (1997). CreditMetrics — Technical Document (1st ed.).

http://www.riskmetrics.com.
Hamilton, J. (1994). Time Series Analysis. Princeton: Princeton University Press.
Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cam-

bridge University Press.
Harvey, A. C. and A. Jaeger (1993). Detrending, stylised facts and the business cycle. J. Applied Economet-

rics 8, 231–47.
Jarrow, R., D. Lando, and S. Turnbull (1997). A Markov model for the term structure of credit risk spreads.

Review of Financial Studies 10, 481–523.
Jarrow, R. and S. Turnbull (1995). Pricing derivatives on financial securities subject to credit risk. Journal

of Finance (50), 53–85.
Kavvathas, D. (2001). Estimating credit rating transition probabilities for corporate bonds. Job market paper.

http://www.ssrn.com/fen.
Koopman, S. J., N. Shephard, and J. A. Doornik (1999). Statistical algorithms for models in state space form

using SsfPack 2.2. Econometrics Journal 2, 113–66. http://www.ssfpack.com/.
Laeven, L. and G. Majnoni (2002). Loan loss provisioning and economic slowdowns: Too much, too late?

Technical report, Worldbank.
Lucas, A., P. Klaassen, P. Spreij, and S. Straetmans (2001). An analytic approach to credit risk of large

corporate bond and loan portfolios. Journal of Banking and Finance 25, 1635–1664.
Merton, R. (1974). On the pricing of corporate debt: the risk structure of interest rates. Journal of Finance 29,

449–470.
Nickell, P., W. Perraudin, and S. Varotto (2000). Stability of rating transitions. Journal of Banking and

Finance 24 (1–2), 203–227.
Vogelsang, T. (1997). Wald-type t-tests for detecting breaks in the trend function of a dynamic time series.

Econometric Theory 13, 818–849.

21


