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ABSTRACT

I study inverse probability weighted M-estimation under a general missing data scheme.

Examples include M-estimation with missing data due to a censored survival time, propensity

score estimation of the average treatment effect in the linear exponential family, and variable

probability sampling with observed retention frequencies. I extend an important result known

to hold in special cases: estimating the selection probabilities is generally more efficient than

if the known selection probabilities could be used in estimation. For the treatment effect case,

the setup allows a general characterization of a “double robustness” result due to Scharfstein,

Rotnitzky, and Robins (1999).
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1. INTRODUCTION
In this paper I extend earlier work on inverse probability weighted (IPW) M-estimation

along several dimensions. One important extension is that I allow the selection probabilities to

depend on selection predictors that are not fully observed. In Wooldridge (2002a), building on

the framework of Robins and Rotnitzky (1995) for attrition in regression, I assumed that the

variables determining selection were always observed and that the selection probabilities were

estimated by binary response maximum likelihood. These assumptions excludes some

interesting cases, including: (i) variable probability (VP) sampling with known retention

frequencies; (ii) a censored response variable with varying censoring times, as in Koul,

Susarla, and van Ryzin (1981); (iii) unobservability of a response variable due to censoring of

a second variable, as in Lin (2000).

Extending previous results to allow more general selection mechanisms is fairly routine

when interest lies in consistent estimation. My goal here is to expand the scope of a result that

has appeared in a variety of settings with missing data: estimating the selection probabilities

generally leads to a more efficient weighted estimator than if the known probabilities could be

used. A few examples include Imbens (1992) for choice-based sampling, Robins and

Rotnitzky (1995) for IPW estimation of nonlinear regression models, and Wooldridge (2002a)

for general M-estimation under the Robins and Rotnitzky (1995) sampling scheme.

Having a unified setting where asymptotic efficiency is improved by using estimated

selection probabilities has several advantages. First, knowing that an estimator produces

narrower asymptotic confidence intervals has obvious benefits. Second, the proof of relative
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efficiency leads to a computationally simple estimator of the asymptotic variance for a broad

class of estimation problems, including popular nonlinear models. For example, Koul, Susarla,

and van Ryzin (1981) and Lin (2000) treat only the linear regression case, and the formulas are

almost prohibitively complicated. A third benefit is that I expand the scope of models and

estimation methods where one can obtain conservative inference by ignoring the first-stage

estimation of the selection probabilities.

Another innovation in this paper is my treatment of exogenous selection when some feature

of a conditional distribution is correctly specified. Namely, I study the properties of the IPW

M-estimator when the selection probability model is possibly misspecified. Among other

things, allowing misspecified selection probabilities in the exogenous selection case leads to

key insights for more robust estimation of average treatment effects (ATEs).

The remainder of the paper is organized as follows. In Section 2, I briefly introduce the

underlying population minimization problem. In Section 3, I describe the selection problem

and propose a class of conditional likelihoods for estimating the selection probabilities; obtain

the asymptotic variance of the IPW M-estimator; show that it is more efficient to use estimated

probabilities than to use the known probabilities; and provide a simple estimator of the

efficient asymptotic variance matrix. Section 4 covers the case of exogenous selection,

allowing the selection probability model to be misspecified. In Section 5, I provide a general

discussion of the considerations when deciding whether or not to use inverse-probability

weighting. I cover three examples in Section 6: (i) estimating a conditional mean function

when the response variable is missing due to a censored duration; (ii) estimating an ATE with

a possibly misspecified conditional mean function; and (iii) VP sampling with observed

retention frequencies.
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2. THE POPULATION OPTIMIZATION
PROBLEM AND RANDOM SAMPLING

The starting point is a population optimization problem, which essentially defines the

parameters of interest. Let w be an M  1 random vector taking values in W ⊂ M. Some

aspect of the distribution of w depends on a P  1 parameter vector, , contained in a parameter

space Θ ⊂ P. Let qw, denote an objective function.

ASSUMPTION 2.1: o is the unique solution to the population minimization problem

min
∈Θ

Eqw,.      (2.1)

Often, o indexes some correctly specified feature of the distribution of w, usually a feature

of a conditional distribution such as a conditional mean or a conditional median. Nevertheless,

it is important to have consistency and asymptotic normality results for a general class of

problems when the underlying population model is misspecified in some way. For example, in

Section 6.2, we study estimation of average treatment effects using quasi-log-likelihoods in the

linear exponential family, when the conditional mean might be misspecified.

Given a random sample of size N, wi : i  1, . . . ,N, the M-estimator solves the problem

min
∈Θ

N−1∑
i1

N

qwi,.     (2.2)

Under general conditions, the M-estimator is consistent and asymptotically normal. See, for

example, Amemiya (1985), Newey and McFadden (1994), and Wooldridge (2002b).
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3. NONRANDOM SAMPLING AND INVERSE
PROBABILITY WEIGHTING

As in Wooldridge (2002a), I characterize nonrandom sampling through a selection

indicator. For any random draw wi from the population, we also draw si, a binary indicator

equal to unity if observation i is used in the estimation, and zero otherwise. Typically we have

in mind that all or part of wi is not observed if si  0. We are interested in estimating o, the

solution to (2.1).

One possibility for estimating o is to use M-estimation on the observed sample. That is,

we solve

min
∈Θ

N−1∑
i1

N

siqwi,.     (3.1)

We call the solution to this problem the unweighted M-estimator, ̂u, to distinguish it from the

weighted estimator introduced below. As discussed in Wooldridge (2002a), ̂u is not generally

consistent for o. For example, if we partition w as w  x,y and we are using nonlinear least

squares (NLS) to estimate a correctly specified model of Ey|x, inconsistency of ̂u for o

would arise if s and y are dependent after conditioning on x – the so-called problem of

“endogenous” sample selection.

A general approach to solving the nonrandom sampling problem is based on inverse

probability weighting (IPW), and dates back to Horvitz and Thompson (1952). IPW has been

used more recently for regression models with missing data [for example, Robins and

Rotnitzky (1995)] and in the treatment effects literature [for example, Hirano, Imbens, and

Ridder (2003) and Wooldridge (2002b, Chapter 18)]. The key is that we have some variables

that are “good” predictors of selection, something we make precise in the following
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assumption.

ASSUMPTION 3.1: (i) The vector wi is observed whenever si  1. (ii) There is a

random vector zi such that Psi  1|wi, zi  Psi  1|zi ≡ pzi; (iii) For all

z ∈ Z ⊂ RJ,pz  0; (iv) zi is observed whenever si  1. 

Although related to earlier kinds of selection schemes, Assumption 3.1 is not easily

categorized using previous definitions. Part (ii), which is fundamental, is nominally similar to

the so-called “missing at random” (MAR) assumption in statistics [Rubin (1976), Little and

Rubin (2002)]. But Assumption 3.1 differs from MAR in an important respect: part (iv) allows

for the possibility that zi is observed only along with wi. Consequently, an important

innovation in Assumption 3.1 is that it allows a unified framework that includes MAR as well

as some situations where MAR fails. For example, Assumption 3.1 is satisfied for variable

probability (VP) sampling when the sampling probabilities depend on w: the probability of

observing wi depends on the stratum that wi falls into, a violation of MAR. The VP sampling

case is covered specifically in Section 6.3.

Assumption 3.1 can also be satisfied under a generalization of MAR called “coarsening at

random” (CAR); see Heitjan and Rubin (1991), Gill, van der Laan, and Robins (1997), and

Little and Rubin (2002). Rather than just assuming a variable is either perfectly observed or is

completely unknown, CAR allows for partial information to be known about the

incompletely-observed data. An example is duration analysis with right censoring: we either

observe the duration or we know that it exceeds a censoring threshold. CAR generally holds

when the individual censoring values are independent of the actual duration. I treat a general

version of the duration example in Section 6.1.

CAR is not more general than Assumption 3.1 because, in the case where all data are either
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perfectly known or completely unknown, CAR reduces to MAR [see Heitjan and Rubin

(1991)]. As we just discussed, VP sampling, where the outcomes are either known perfectly or

not at all, is one case where MAR is not satisfied. Generally, Assumption 3.1 has the

advantage of being tailored to the problem at hand, namely, IPW estimation under a variety of

missing data schemes. Although CAR implies that IPW estimation is applicable in some

settings, Assumption 3.1 does not imply CAR, and so CAR’s rather complicated machinery is

not the most relevant for the current framework.

Assumption 3.1 encompasses what is known as the “selection on observables” assumption

sometimes used in econometrics. This setup typically applies when wi partitions as xi,yi, xi

is always observed but yi is not, and zi is a vector that is always observed and includes xi.

Then, si is allowed to be a function of observables zi, but si cannot be related to unobserved

factors affecting yi; in other words, selection on observables is basically MAR. Assumption 3.1

does not apply to the “selection on unobservables” case, at least as that terminology has been

used in econometrics. Traditional selection methods, such as Heckman’s (1976) “incidental

truncation” model, fall under the “selection on unobservables” heading; see also Maddala

(1983, Chapter 9). Unfortunately, such methods apply to a rather limited class of models, the

leading case being linear models.

Even though Assumption 3.1 does not apply to problems of incidental truncation, there are

some important cases where Assumption 3.1 holds and zi is a direct function of endogenous

variables (in which case zi is not always observed). As mentioned earlier, VP sampling, where

the strata are defined in terms of endogenous variables, is one such case. In the duration

analysis example mentioned above, zi is actually the true duration (which is only partially

observed).
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Except in special cases, the selection probabilities must be estimated. (Otherwise, we

could just set zi ≡ wi and usually satisfy Assumption 3.1.) In this section, we assume that a

conditional density determining selection is correctly specified – otherwise consistent

estimation of o is not generally possible – and that maximum likelihood estimation (MLE) of

the selection model satisfies standard regularity conditions. Let D| denote conditional

distribution.

ASSUMPTION 3.2: (i) Gz, is a parametric model for pz, where  ∈ Γ ⊂ RM and

Gz,  0, all z ∈ Z ⊂ RJ, ∈ Γ. (ii) There there exists o ∈ Γ such that pz  Gz,o.

(iii) For a random vector vi such that Dvi|zi,wi  Dvi|zi, the estimator ̂ solves a

conditional maximum likelihood problem of the form

max
∈Γ
∑
i1

N

logfvi|zi,,     (3.2)

where fv|z,  0 is a conditional density function known up to the parameters o, and

si  hvi, zi for some nonstochastic function h, . (iv) The solution to (3.2) has the

first-order representation

N ̂ − o  Ediodio ′−1 N−1/2∑
i1

N

dio  op1,     (3.3)

where di ≡ ∇fvi|zi, ′/fvi|zi, is the M  1 score vector for the MLE. 

Underlying the representation (3.3) are standard regularity conditions, including the

unconditional information matrix equality for conditional MLE.

In Wooldridge (2002a), I used a special case of Assumption 3.2: zi was always observed

and the conditional log-likelihood was for the binary response model Psi  1|zi. In that case

vi  si and fs|, z,  1 − Gz,1−sGz,s, in which case Dvi|zi,wi  Dvi|zi holds
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by Assumption 3.1(ii). This method of estimating selection probabilities covers many cases of

interest, including attrition when we assume attrition is predictable by initial period values, and

estimation of treatment effects under ignorability of treatment..

Unlike previous general frameworks for IPW estimation, Assumption 3.2 allows for the

possibility that zi is only partially observed. For example, in VP sampling, zi – a set of strata

indicators – is observed only when si  1. Nevertheless, as we will see in Section 6.3, we can,

estimate the selection probabilities with observed retention frequencies even though we do not

know the individual strata of the missing observations.

Assumption 3.2 also allows the selection indicator, si, to be a function of another random

variable, vi. The introduction of vi allows us to consider a broader class of problems, including

when selection is coarsened at random. For example, for unit i, let ti denote the time in a

particular state, let ci be a censoring time, and assume yi is another variable observed only if ti

is observed. That is, we observe yi only if ti ≤ ci, so si  1ci ≥ ti, where 1 denotes the

indicator function. It is often reasonable to assume that the censoring time, ci, is independent

of xi,yi, ti, where the xi are covariates appearing in Eyi|xi. In (3.2) we can take

vi ≡ minci, ti and zi ≡ ti. While vi is always observed, zi is observed only when ti is

uncensored. I work through this example in more detail in Section 6.1. Again, although

Assumptions 3.1 and 3.2 allow coarsening at random, they are not a special case of CAR

because they allow for cases where CAR is violated.

If my goal were to simply conclude that an IPW estimator is consistent, I would not need

the particular structure in (3.2), nor the influence function representation for ̂ in (3.3). But I

want to characterize a more general class of problems for which it is more efficient to use

estimated selection probabilities.
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Given ̂, we can form Gzi, ̂ for all i with si  1, and then we obtain the weighted

M-estimator, ̂w, by solving

min
∈Θ

N−1∑
i1

N

si/Gzi, ̂qwi,.     (3.4)

Consistency of ̂w follows from standard arguments. First, as discussed in Wooldridge

(2002a), the general conditions in Newey and McFadden (1994) apply to show that the average

in (3.4) converges uniformly in  to

Esi/Gzi,oqwi,  Esi/pziqwi,.     (3.5)

To obtain this convergence, we would need to impose moment assumptions on the selection

probability Gz; and the objective function qw,, and we would use the consistency of ̂

for o. Typically, a sufficient (but not necessary) condition is to bound Gzi, from below by

some positive constant for all z and ; see Wooldridge (2002a, Theorem 3.1). The next step is

to use Assumption 3.1(ii):

Esi/pziqwi,  EEsi/pziqwi,|wi, zi  EEsi|wi, zi/pziqwi,
 Epzi/pziqwi,  Eqwi,,     (3.6)

where the first equality in (3.6) follows from Assumption 3.1(ii):

Esi|wi, zi  Psi  1|wi, zi  Psi  1|zi. The identification condition now follows from

Assumption 2.1, because o is assumed to uniquely minimize Eqwi,.

The following result assumes that the objective function qw,  is twice continuously

differentiable on the interior of Θ, as in Wooldridge (2002a). Consequently, obtaining the first

order asymptotic expansion of N ̂w − o is standard and sketched in the appendix. Write

rwi, ≡ ∇qwi, ′ as the P  1 score of the unweighted objective function,
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Hw, ≡ ∇2qw, as the P  P Hessian of qwi,, and

ksi, zi,wi,, ≡ si/Gzi,rwi, as the selected, weighted score function; in particular,

ksi, zi,wi,, is zero whenever si  0.

THEOREM 3.1: Under Assumptions 2.1, 3.1, and 3.2, assume, in addition, the regularity

conditions in Newey and McFadden (1994, Theorem 6.1) [including that qw,  is twice

continuously differentiable on intΘ]. Then

N ̂w − o
a Normal0,Ao

−1DoAo
−1,     (3.7)

where Ao ≡ EHwi,o, Do ≡ Eeiei
′, ei ≡ ki − Ekidi

′Edidi
′−1di, and ki and di are

evaluated at o,o and o, respectively. Further, consistent estimators of Ao and Do,

respectively, are

Â ≡ N−1∑
i1

N

si/Gzi, ̂Hwi, ̂w     (3.8)

and

D̂ ≡ N−1∑
i1

N

êiêi
′,     (3.9)

where the êi ≡ k̂i − N−1∑ i1
N k̂id̂i

′ N−1∑ i1
N d̂id̂i

′ −1
d̂i are the P  1 residuals from the

multivariate regression of k̂i on d̂i, i  1, . . . ,N. , and all hatted quantities are evaluated at ̂ or

̂w. The asymptotic variance of N ̂w − o is consistently estimated as Â−1D̂Â−1. 

Often a different, more convenient, estimator of Ao is available. Suppose that w partitions

as x,y, and we are modelling some feature of the distribution of y given x. In some leading

cases, Jxi,o ≡ EHwi,o|xi can be obtained in closed form, in which case Hwi, ̂w can

be replaced with Jxi, ̂w in (3.8). Generally, estimators relying on Jxi, ̂w assume that we
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have properly computed EHwi,o|xi, and this may not be the case when certain features of

Dy|x have been misspecified. In practice, the estimator in (3.8) is the most robust.

We can compare (3.7) with the asymptotic variance that would obtain by using a known

value of o in place of the conditional MLE, ̂. Let ̃w denote the estimator that uses

1/Gzi,o as the weights. Then

N ̃w − o
a Normal0,Ao

−1BoAo
−1,     (3.10)

where Bo ≡ Ekiki
′.Because Bo − Do is positive semi-definite,

Avar N ̃w − o − Avar N ̂w − o is positive semi-definite. Consequently, it is generally

better to use the estimated weights – at least when they are estimated by the conditional MLE

satisfying Assumption 3.2 – than to use known weights (if we knew them).

4. ESTIMATION UNDER EXOGENOUS
SELECTION

It is well known that certain kinds of sample selection do not cause bias in standard,

unweighted estimators. I covered the VP sampling case in Wooldridge (1999) and considered

more general kinds of exogenous selection in Wooldridge (2002a). Nevertheless, in both cases

I defined exogenous selection to be selection on x in the context of estimating some feature of

a conditional distribution, Dy|x. Here, I consider a more general notion of exogenous

selection.

In earlier work I assumed that the model of the selection probabilities was correctly

specified. This is much too restrictive. By allowing the selection probability model to be

misspecified, I obtain general results on robust estimation of the solution to (2.1). Plus, a
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single theorem now applies to both weighted and uweighted estimation.

Unlike in Section 3, in this section we do not need to assume that ̂ comes from a

conditional MLE of the form (3.2). For consistency of the IPW M-estimator under exogenous

selection, we just assume that ̂ is consistent for some parameter vector ∗, where we use “*”

to indicate a possibly misspecified selection model. For the the limiting distribution results,

we make the standard assumption N ̂ − ∗  Op1.

We now formalize the notion of “exogenous selection.”

ASSUMPTION 4.1: For z defined in Assumption 3.1, and under parts (i), (ii), and (iv) of

that assumption, o ∈ Θ solves the problem min∈Θ Eqw,|z for all z ∈ Z. 

Unlike Assumption 2.1, where the minimization problem (2.1) effectively defines the

parameter vector o (whether or not an underlying model is correctly specified), Assumption

4.1 is intended for cases where some feature of an underlying conditional distribution is

correctly specified. For example, suppose w partitions as x,y, and some feature of Dy|x,

indexed by , is correctly specified. Then Assumption 4.1(iv), with z  x, is known to hold

for a variety of estimation problems, including NLS when the conditional mean function is

correctly specified and MLE with a correctly specified conditional density. Quasi-MLE

problems in the linear or quadratic exponential families, under correct specification of the first

or first and second conditional moments, respectively, also satisfy Assumption 4.1(iv); see

Gourieroux, Monfort, and Trognon (1984). In each of these cases, however, if the desired

feature of Dy|x is misspecified then the minimizers of Eqw,|x generally depend on x.

In the previous examples when z  x and x is always observed, Assumption 4.1 is

essentially a special case of missing at random. We use this fact in Section 6.2 when we

discuss treatment effect estimation. But Assumption 4.1 is not a special case of MAR because

13



it does not require z to always be observed. For example, the selection problem could be due

to attrition in a two-period panel data setting, where attrition is a function of second-period

covariates (which are observed only for the units in the sample in the second time period). Or,

in VP sampling, the strata could depend just on conditioning variables x, which are observed

only in the selected sample.

Assumption 4.1 allows for the case where z ≠ x but y is independent of z, conditional on x.

For example, suppose z is a vector of interviewer dummy variables, and the interviewers are

chosen randomly or possibly as a function of x. Then Ps  1|z might depend on z –

interviewers elicit responses at different rates – but selection is exogenous because

Dy|x, z  Dy|x.

Under Assumption 4.1, the law of iterated expectations implies that o is a solution to the

unconditional population problem in Assumption 2.1, so it is natural to think of Assumption

4.1 as a strengthening of Assumption 2.1. Nevertheless, as the following derivation

demonstrates, uniqueness in Assumption 2.1 is no longer sufficient for identification of o,

even under Assumption 4.1.

The objective function for the weighted M-estimator in (3.4) now converges in probability

uniformly to

Esi/Gzi,∗qwi,,     (4.1)

where ∗ denotes the plim of ̂ and Gzi,∗ is not necessarily pzi  Psi  1|zi. By

iterated expectations and Assumption 3.1, it is easily shown that

Esi/Gzi,∗qwi,  Epzi/Gzi,∗Eqwi,|zi.     (4.2)

Under Assumption 4.1, Eqwi,o|zi ≤ Eqwi,|zi for all  ∈ Θ and all zi ∈ Z, and,
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because pzi/Gzi,∗ ≥ 0 for all zi,

Esi/Gzi,∗qwi,o ≤ Esi/Gzi,∗qwi,, ∈ Θ.     (4.3)

We have shown that o minimizes the objective function in (4.1) – even though (4.1) generally

differs from Eqwi, when pzi ≠ Gzi,∗. But we have no guarantee that o is the

unique minimizer, so we must assume that o uniquely solves (4.1). This identifiability

assumption could fail when pz  0 for “too many” values of z ∈ Z, which could happen, say,

if the sample consists of people where there is little variation in one or more covariates. If the

support of Z is finite, the density of zi is everywhere positive on Z, and pz  0, all z ∈ Z,

then it can be shown, using an argument similar to Wooldridge (2001, Theorem 4.1), that

Assumption 2.1 implies that o also uniquely minimizes (4.1). Generally, we can expect o to

be identified unless the selection mechanism ignores a large chunk of the population.

Because this paper is about properties of IPW estimators under various kinds of

misspecification, we assume in what follows that the function used to weight the M-estimator

objective function is based on a model for Ps  1|z; it is clear that the weighting function

could be virtually any positive function of zi (under suitable regularity conditions).

THEOREM 4.1: Under Assumption 4.1, let Gz,  0 be a parametric model for

Ps  1|z, and let ̂ be any estimator such that plim̂  ∗ for some ∗ ∈ Γ. In addition,

assume that o is the unique minimizer of (4.1) over Θ, and assume the regularity conditions in

Wooldridge (2002a, Theorem 5.1). Then the IPW M-estimator based on the possibly

misspecified selection probabilities, Gzi, ̂, is consistent for o. 

We can always take Gzi,∗ ≡ 1, and so a special case of Theorem 4.1 is consistency of

the unweighted estimator under the exogenous selection Assumption 4.1.

How does estimation of ∗, especially when ̂ might come from a variety of estimation
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problems, affect the asymptotic distribution of ̂w under exogenous selection? In Wooldridge

(2002a, Theorem 5.2) I showed that the weighted M-estimator has the same asymptotic

distribution whether or not the response probabilities are estimated or treated as known. But I

assumed that the model for Ps  1|z was correctly specified and that the conditional MLE

had the binary response form. It is straightforward to extend my earlier result to allow for any

regular first-stage estimation problem with conditioning variables zi, including arbitrary

misspecification of Gz, for Ps  1|z.

The next result follows from the same arguments underlying Theorem 3.1, with the

difference being that we allow ̂ to be any N -consistent estimator for ∗. The key is that,

under exogenous selection, the term in the first order representation of N ̂ − o involving

N ̂ − ∗ now converges in probability to zero, as shown in the appendix.

THEOREM 4.2: Under Assumption 4.1, let Gz,  0 be a parametric model for

Ps  1|z, and let ̂ be any estimator such that N ̂ − ∗  Op1 for some ∗ ∈ Γ.

Assume that qw, satisfies the regularity conditions from Theorem 3.1. Further, assume that

Erwi,o|zi  0. Let ̂w denote the weighted M-estimator based on the estimated sampling

probabilities Gzi, ̂, and let ̃w denote the weighted M-estimator based on Gzi,∗. Then

Avar N ̂w − o  Avar N ̃w − o  Ao
−1Ekiki

′Ao
−1     (4.4)

where

Ao ≡ Esi/Gzi,∗Hwi,o  Epzi/Gzi,∗Jzi,o,     (4.5)

Jzi,o ≡ EHwi,o|zi,     (4.6)

and

ki ≡ si/Gzi,∗rwi,o.      (4.7)
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Theorem 4.2 holds for any estimation method that satisfies Assumption 4.1. For example,

Theorem 4.2 applies to estimating a correctly specified model of Ey|x by minimizing

∑ i1
N si/Gzi, ̂yi − mxi,2, whether or not Vary|x is not constant and for any parametric

model Gz, satisfying basic regularity conditions. This prompts the question: Is there a way

to choose among the numerous IPW estimators that are consistent for o? The answer is yes,

provided qw, satisfies a generalized conditional information matrix equality. Then, the

unweighted estimator is more efficient than any weighted M-estimator using virtually any

probability weights (correctly specified or misspecified).

THEOREM 4.3: Let the assumptions of Theorem 4.2 hold. As before, let

pz  Ps  1|z, and, as a shorthand, write Gi  Gzi,∗. Further, assume that the

“generalized conditional information matrix equality” (GCIME) holds for the objective

function qw, in the population. Namely, for some o
2  0,

E∇qw,o ′∇qw,o|z  o
2E∇2qw,o|z ≡ o

2Jz,o.     (4.8)

Then

Avar N ̂u − o  o
2EpiJi−1     (4.9)

and

Avar N ̂w − o  o
2Epi/GiJi−1Epi/Gi

2JiEpi/GiJi−1.     (4.10)

Further, Avar N ̂w − o − Avar N ̂u − o is positive semi-definite.

PROOF: By the usual first-order asymptotics for M-estimators [Wooldridge (2002b,

Theorem 12.3)],

Avar N ̂u − o  Esi∇2qwi,o−1Esirwi,orwi,o ′Esi∇2qwi,o−1.     (4.11)
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By iterated expectations and Assumption 4.1,

Esirwi,orwi,o ′  EEsi|zirwi,orwi,o ′. Another application of iterated

expectations along with (4.8) gives

EEsi|zirwi,orwi,o ′  o
2EpziJzi,o.     (4.12)

Similarly,

Esi∇2qwi,o  EpziJzi,o.     (4.13)

Direct substitution of (4.12) and (4.13) into (4.11) gives (4.9).

For the weighted estimator, the usual asymptotic expansion gives

Avar N ̂w − o  Esi/Gi∇2qio−1Esi/Gi
2riorio ′Esi/Gi∇2qio−1

By similar conditioning arguments, and using the fact that Gi is a function of zi, it is easily

shown that Esi/Gi∇2qwi,o  Epi/GiJi and

Esi/Gi
2rwi,orwi,o ′  o

2Epi/Gi
2Jzi,o,which give (4.10) after substitution.

Finally, we show that Avar N ̂w − o − Avar N ̂u − o is positive semi-definite, for

which we use a standard trick and show that Avar N ̂u − o−1 − Avar N ̂w − o−1 is

p.s.d. Dropping the multiplicative factor o
2,

Avar N ̂u − o−1 − Avar N ̂w − o−1

 EpiJi − Epi/GiJiEpi/Gi
2Ji−1Epi/GiJi

 EDi
′Di − EDi

′FiEFi
′Fi−1EFi

′Di     (4.14)

where Di ≡ pi
1/2Ji

1/2 and Fi ≡ pi
1/2/GiJi

1/2. The matrix in (4.14) is the expected outer product

of the population matrix residual from the regression Di on Fi, and is therefore positive

semi-definite. This completes the proof. 

Because the conditions of Theorem 4.2 hold for Theorem 4.3, the conclusions of Theorem
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4.3 follow whether or not Gz, is correctly specified or whether or not the probabilities are

estimated: the unweighted estimator is asymptotically more efficient than the weighted

estimator.

Typically, we would apply Theorem 4.3 as follows. Some feature of Dy|x is correctly

specified, and Dy|x, z  Dy|x – which ensures exogenous selection when

Ps  1|w, z  Ps  1|z. Depending on the feature of interest of Dy|x and other

assumptions about Dy|x, we can often find an objective function q,  such that the GCIME

holds. Most familiar is the case of MLE with a correctly specified conditional density, where

qw,  − logfy|x, and o
2  1. For NLS estimation of a correctly specified conditional

mean, (4.8) holds under Vary|x  o
2. For estimating Ey|x  mx,o using a linear

exponential family, (4.8) holds under the “generalized linear model” (GLM) assumption:

Vary|x  o
2vmx,o, where vmx,o is the variance function associated with the chosen

quasi-likelihood. Of course, we may not be able to choose qw, such that the GCIME holds,

in which case the unweighted estimator is not generally more efficient than IPW estimators.

5. WHEN SHOULD WE USE A WEIGHTED
ESTIMATOR?

We can use the results in Sections 3 and 4 to discuss when weighting is desirable, and

when it may be undesirable. If features of an unconditional distribution, say Dw, are of

interest, unweighted estimators consistently estimate the parameters only if

Ps  1|w  Ps  1 – that is, the data are “missing completely at random” [Rubin (1976)].

Of course, consistency of the weighted estimator relies on the presence of z such that
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Ps  1|w, z  Ps  1|z – the missing at random assumption when z is always observed. If

Assumption 3.1 fails, the weighted estimator will be inconsistent for the parameters of an

unconditional distribution.

The decision to weight is more subtle when we begin with the premise that some feature of

a conditional distribution, Dy|x, is of interest. We begin with the issue of consistent

estimation. Table 1 contains eight scenarios that are likely to be of interest. Each scenario is

determined by five different features of the environment (not all of which can vary

independently of one another). The last three columns indicate whether the unweighted and

weighted estimators are consistent. For the weighted estimator, I include the possibility that it

consistently estimates the parameters that solve (2.1) even though these might not be

parameters indexing Dy|x.

An important issue in some scenarios is whether selection is determined by covariates (or

conditioning variables), stated as Ps  1|y,x  Ps  1|x. If z (which appears in the

selection probability) is the same as x, and the desired feature of Dy|x is correctly specified,

then “selection on covariates” is the same as exogenous selection as defined in Assumption

4.1. But we are interested in cases where x might not be contained in z.

The first three scenarios are intentionally pessimistic, as neither of the estimators

consistently estimates anything of interest. The unweighted estimator is inconsistent either

because the desired feature of Dy|x is misspecified or selection is endogenous. The weighted

estimator is inconsistent because at least one part of Assumption 3.1 fails: either ignorability

fails or consistent estimation of the selection probabilities is not possible.

Scenario four covers the important case where Dy|x is misspecified yet we consistently

estimate the solution to (2.1) using the weighted estimator. A leading case is linear regression.
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If z  x and selection is on covariates, the weighted estimator is consistent for the linear

projection parameters o ≡ Ex ′x−1Ex ′y, provided Ps  1|x  0 is consistently estimated.

By contrast, the unweighted estimator does not estimate interesting population parameters if

Ey|x ≠ xo. In Section 6.2 we will see that the parameters solving (2.1), such as those in a

linear projection, can be useful even if they do not index some feature of Dy|x. Of course,

even if selection is not on covariates the weighted estimator is consistent for the solution to

(2.1) under ignorability.

Scenario five lends further support for using the weighted estimator, provided x can be

included in z. (In most cases, this means x would always have to be observed.) Why? If

selection depends on elements in z that are not included in x then the unweighted estimator is

generally inconsistent, while the IPW estimator is consistent if we consistently estimate pz.

If selection turns out to depend only on covariates x in the sense that

Ps  1|y, z  Ps  1|x  px – and our model Gz, is sufficiently flexible – then we can

expect that Gz, ̂
p
→ px, and the IPW estimator remains consistent for the correctly

specified feature of Dy|x.

Scenarios six and seven are situations where weighting is actually harmful. Of the two,

scenario six is much less troublesome because inconsistency of the weighted estimator is due

only to a misspecified functional form for Ps  1|z, something that can be mitigated by using

flexible functional forms or possibly eliminated by using nonparametric methods. The

asymptotic properties of the resulting IPW M-estimator are known only in special cases, and is

an area of interest for future research.

Scenario seven is problematical for the weighted estimator and represents the strongest

case against weighting. The key is that x, the conditioning variables in Dy|x, cannot be
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included in z. Then, even if our feature of Dy|x is correctly specified and we have a correctly

specified model for Ps  1|z, the IPW estimator is generally inconsistent if

Ps  1|y,x, z ≠ Ps  1|z. This includes the possibility that selection depends on covariates,

in which case the unweighted M-estimator that ignores z is consistent for a correctly specified

feature of Dy|x. Unfortunately, we have no way of detecting a problem with the weighted

estimator. In particular, it has nothing to do with whether a parametric model for Ps  1|z is

correctly specified; the same problem arises if we use a fully nonparametric model, or even if

we know pz without error. In effect, if we use the weighted estimator we are using

probability weights that depend on the wrong predictors of selection.

Attrition in panel data and survey nonresponse are two cases where weighting should be

used with caution: we do not observe all conditioning variables for all cross-sectional units.

In the case of attrition with two time periods, we would not observe time-varying explanatory

variables in the second time period. While we can use first-period values in an attrition

probability, the weighted estimator cannot allow for selection based on the time-varying

covariates. For example, suppose attrition is determined largely by changing residence. If an

indicator for changing residence is an explanatory variable in a regression equation, the

unweighted estimator is consistent. A weighted estimator that necessarily excludes a changing

resident indicator in the attrition equation is inconsistent.

It is particularly interesting to consider jointly scenarios four and eight when the same

conditioning variables appearing in Dy|x appear in the selection probabilities, Ps  1|x, and

selection is a function of covariates. In this case, the weighted estimator has a general “double

robustness” property. What I mean by this is that the weighted estimator consistently estimates

the solution to (2.1) if at least one of the models for Dy|x and Ps  1|x is correctly
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specified. In scenario eight, the weighting is unnecessary, but harmless as far as consistency

goes. In scenario four, Dy|x is misspecified, and so weighting with a correctly specified

selection probability is needed to consistently estimate the solution to (2.1).

Not surprisingly, there are potential costs to the double robustness of the weighted

estimator, as spelled out in Table 2. If the desired feature of Dy|x is correctly specified,

selection is on covariates, and the generalized conditional information matrix equality holds,

then the unweighted estimator is more efficient than the weighted estimator (whether or not the

model for Ps  1|x is correctly specified) – this is scenario one in Table 2. For example, if

Ey|x  xo and Vary|x is constant, the unweighted estimator is more efficient than a

weighted estimator – the asymptotic analog of the Gauss-Markov theorem. But, as we

discussed above, using the weighted estimator with a correctly specified model for Ps  1|x

allows us to consistently estimate o even if it just indexes a linear projection. With

heteroskedasticity, we do not know whether the unweighted or weighted estimator would be

more efficient; this is a special case of scenario two in Table 2. The relatively efficient

estimator would be weighted least squares based on estimates of Varyi|xi.

In neither of the first two scenarios does estimation of the selection probabilities affect the

asymptotic variance of the weighted estimator. In scenario three, where selection is

endogenous (and the unweighted estimator is not even consistent), it is generally more efficient

to use estimated probability weights – provided these satisfy Assumption 3.2.

6. APPLICATIONS
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6.1 Missing Data Due to Censored Durations
Let y be a univariate response and x a vector of conditioning variables, and suppose we are

interested in estimating Ey|x. A random draw i from the population is denoted xi, yi. Let

ti  0 be a duration and let ci  0 denote a censoring time. (The case ti  yi is allowed here.)

Assume that xi, yi is observed whenever ti ≤ ci, so that si  1ti ≤ ci. Under the

assumption that ci is independent of xi, yi, ti,

Psi  1|xi,yi, ti  Gti,     (6.1)

where Gt ≡ Pci ≥ t. In order to use inverse probability weighting, we need to observe ti

whenever si  1, which simply means that ti is uncensored. Plus, we need only observe ci

when si  0. In the general notation of Section 3, zi  ti and vi  minci, ti. [Cases where ci

is independent of yi, ti conditional on xi – for example, the censoring time is a function of

observed covariates – can be handled in this framework by modeling the density of ci given xi,

in which case zi  xi, ti.]

Sometimes we might know the distribution of ci, but, even so, Theorem 3.1 implies that we

can get smaller asymptotic variances by estimating a model that contains the true distribution

of ci. In econometric applications the censoring times are usually measured discretely. A

flexible approach is to allow for a discrete density with mass points at each possible censoring

value. For example, if ci is measured in months and the possible values of ci are from 60 to

84, our model of the density of ci could be an unrestricted histogram. More generally, let

hc, denote a parametric model for the density, which can be continuous, discrete, or some

combination, and let Gt, be the implied model for Pci ≥ t. The log-likelihood that

corresponds to the density of minci, ti given ti is
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∑
i1

N

1 − si loghci,  si logGti,,     (6.2)

which is just the log-likelihood for a standard censored estimation problem but where ti (the

underlying duration) plays the role of the censoring variable. As shown by Lancaster (1990, p.

176) for grouped duration data – so that hc, is piecewise constant – the solution to (6.2)

gives a survivor function identical to the Kaplan-Meier estimator (again, where the roles of ci

and ti are reversed and si  0 when ci is uncensored).

The linear regression model when ti  yi has been studied by, among others, Buckley and

James (1979), Koul, Susarla, and van Ryzin (1981) and, more recently, Honoré, Khan, and

Powell (2002). See also Rotnitzky and Robins (2005) for a survey of how to obtain

semiparametrically efficient estimators. The Koul-Susarla-van Ryzin estimator is an IPW least

squares estimator, and can be analyzed in the current framework. The Buckley-James

estimator involves a weighted version of the usual least squares normal equations, where the

weighting function depends on the unknown regression parameters; it does not fit into the

current framework of two-step estimation.

For the linear regression case but where ti differs from yi, Lin (2000) has obtained the

asymptotic properties of inverse probability weighted regression estimators. Theorem 3.1 not

only greatly simplifies the the asymptotic variance, it also allows for any objective function

qw, that satisfies basic smoothness requirements. As far as I know, this is the first

framework that allows the censoring problem described in Lin (2000) along with general

nonlinear models. Included are the important special cases of NLS, Poisson regression, binary

response, and gamma regression.

Obtaining standard errors that reflect the more efficient estimation from using estimated
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probability weights is not difficult. We simply run a regression of the weighted score of the

M-estimation objective function, k̂i, on the score of the Kaplan-Meier problem, d̂i, to obtain

the residuals, êi. The formulas in Koul, Susarla, and van Ryzin (1981) and Lin (2000) are

much more complicated. [To be fair, these authors allow for continuous measurement of the

censoring time. This does not affect the point estimates, but the asymptotic analysis is more

complicated if the discrete distribution is allowed to become a better approximation to an

underlying continuous distribution as the sample size grows.]

Theorem 3.1 implies that, if we choose to ignore estimation of o in computing the

standard errors – the default in econometrics and statistics packages – then our asymptotic

inference will be conservative.

The efficiency of using the estimated, rather than known, probability weights does not

translate to all estimation methods. For example, in cases where it makes sense to assume ci is

independent of xi,yi, ti, we would often observe ci for all i. A leading example is when all

censoring is done on the same calendar date but observed start times vary, resulting in different

ci. A natural estimator of Gt  Pci ≥ t is the empirical cdf obtained from

ci : i  1,2, . . . ,N. But this estimator does not satisfy the setup of Theorem 3.1; apparently,

it is no longer true that using these estimated probability weights is more efficient than using

the known probability weights.

6.2. Estimating Average Treatment Effects Using the
Propensity Score and Conditional Mean Models

Inverse probability weighting has become popular for estimating average treatment effects.

Here, I use the general discussion in Section 5 to provide transparent verification of a “double
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robustness” result, due to Scharfstein, Rotnitzky, and Robins (1999): if at least one of the

conditional mean function of the response or the propensity score model is correctly specified,

the resulting estimate of the average treatment effect is consistent.

The setup is the standard one for estimating an average treatment effect (ATE)

[Rosenbaum and Rubin (1983)]. For any unit in the population, there are two counterfactual

outcomes. Let y1 be the outcome we would observe with treatment s  1 and let y0 be the

outcome without treatment s  0. For each observation i, we observe only

yi  1 − siyi0  siyi1.     (6.3)

We also observe a set of controls that we hope explain treatment in the absence of random

assignment. Let x be a vector of covariates such that treatment is “unconfounded” (conditional

on x):

y0,y1 is independent of s, conditional on x.     (6.4)

Define the propensity score by

px  Ps  1|x,     (6.5)

which, under (6.4), is the same as Ps  1|y0,y1,x. Define 1  Ey1 and 0  Ey0. Then

the ATE is

  1 − 0.     (6.6)

and so we need to estimate 1 and 0. Because the arguments are symmetric, we focus on 1.

Assuming 0  px,x ∈ X, a consistent estimator of 1 is simply

̃1  N−1∑
i1

N

siyi/pxi.     (6.7)

The proof is very simple, and uses siyi  siyi1, along with (6.4) and iterated expectations.
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Usually, we would not know the propensity score. Hirano, Imbens, and Ridder (2003) study

the estimator in (6.7) where pxi is replaced by a logit series estimator. Here I use a

parametric framework and show how certain estimators of 1 based on first estimating Ey1|x

possess a double robustness property.

Suppose m1x, is a model for Ey1|x. We say this model is correctly specified if

Ey1|x  m1x,o, some o ∈ B.     (6.8)

Under (6.8), we have 1  Em1x,o by iterated expectations. Therefore, given a

consistent estimator ̂ of o, a consistent estimator of 1 is

̂1  N−1∑
i1

N

m1xi, ̂.     (6.9)

Under (6.4) and (6.8), there are countless N -consistent estimators of o that do not require

inverse probability weighting, including NLS and quasi-MLEs in the linear exponential family.

But virtually any IPW version of these with a misspecified propensity score model, as implied

by scenario eight in Table 1, is consistent and N -asymptotic normal. This is the first part of

the “double robustness” result for obtaining ̂ using an IPW estimator. In particular, (6.9) is

consistent when (6.7) would not be if we use a misspecified parametric model to estimate px.

The second half of the double robustness result is more subtle, and has to do with

misspecifying the conditional mean model for Ey1|x. With Gx, correctly specified for

px, we are in scenario 4 in Table 1. An important fact for the ATE problem is that even if

m1x, is misspecified for Ey1|x, for certain combinations of models m1x, and chosen

objective functions, we still have

1  Em1x,∗,     (6.10)
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where ∗ denotes the plim of an estimator from a misspecified conditional mean model. A

leading case where (6.10) holds, regardless of the true form of Ey1|x, is linear regression

when an intercept is included. Letting x∗ denote the linear projection of y1 on x (where we

assume x1  1), we always have Ey1  Ex∗ even though Ey1|x ≠ x∗. More generally,

if we use a model m1x, and an objective function qx,y1, such that the solution ∗ to the

population minimization problem,

min
∈B

Eqx,y1,,     (6.11)

satisfies (6.10), then the estimator in (6.9) will be consistent provided plim̂  ∗. Now,

here is where using IPW allows us to achieve some robustness: the IPW estimator consistently

estimates the solution to (6.11) provided we have the model for the propensity score, Gx,,

correctly specified.

In addition to linear regression, there are at least two other important cases where (6.10) is

known to hold under misspecification of Ey1|x. The first is when

m1x,  expx/1  expx, where x includes a constant, and we choose as our

objective function the binary response quasi-log-likelihood. In other words, if y is a binary

response or a fractional response, we obtain ̂ by using an IPW quasi-MLE with a logistic

mean function and Bernoulli quasi-log-likelihood. A second important case is when

m1x,  expx, x contains a constant, and the objective function is the Poisson

quasi-log-likelihood. That is, ̂ is the IPW Poisson quasi-MLE with an exponential mean

function. This covers not only the case when y is a count variable but also any nonnegative,

unbounded response variable y. [It is not coincidental that the linear, logistic, and Poisson

examples all fall under the framework of estimation in the linear exponential family with a
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“canonical link”; see Scharfstein, Robins, and Rotnitzky (1999).]

We can now summarize the so-called “double robustness” result for estimators of the form

(6.9). If we choose the mean function and objective function such that (6.10) holds, then ̂1 is

consistent for 1 if Gx, is correctly specified for px or m1x, is correctly specified for

Ey1|x (or both, of course).

If (6.8) holds and Vary1|x is proportional to the variance in the chosen LEF density, then

the GCIME assumption holds. It follows from Theorem 4.3 that using any weighted estimator,

whether or not Gx, is correctly specified, is less efficient for estimating  than the

unweighted estimator. This conclusion follows from scenario one in Table 2 and shows the

potential cost of double robustness for estimating ATEs.

In obtaining an asymptotic variance for N ̂1 − 1, we need to estimate the asymptotic

variance of N ̂ − ∗. Conveniently, the Hessian for observation i does not depend on yi1.

Let Jxi, denote the negative of the Hessian for observation i. One possibility for estimating

Ao  EJxi,∗ is N−1∑ i1
N Jxi, ̂, but this estimator is consistent only if the model of the

propensity score is correctly specified. A more robust estimator is

Â ≡ N−1∑
i1

N

si/Gxi, ̂Jxi, ̂,     (6.12)

which is consistent for Ao even if the propensity score model is misspecified. This estimator

would be computed routinely by standard econometrics software.

The estimator D̂ in (3.9) can be used for estimating Do, and this produces valid inference

provided at least one of the models for Ey1|x or Ps  1|x is correctly specified. If (6.8)

holds then a consistent estimator of Do is
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D̂  N−1∑
i1

N

k̂ik̂i
′,     (6.13)

which always produces standard errors larger than standard errors in using (3.9). While

conservative, (6.13) is convenient because it, along with (6.12), would be reported by software

that allows IPW estimation.

6.3. Variable Probability Sampling
Partition the sample space, W, into exhaustive, mutually exclusive sets W1, . . . ,WJ. For a

random draw wi, let zij  1wi ∈ Wj, and define the vector of strata indicators

zi  zi1, . . . , ziJ. Under VP sampling, the sampling probability depends only on the stratum,

so the ignorability assumption in Assumption 3.1(ii) holds by design:

Psi  1|zi,wi  Psi  1|zi  po1zi1  po2zi2 . . .poJziJ,     (6.14)

where 0  poj ≤ 1 is the probability of keeping a randomly drawn observation that falls into

stratum j. These sampling probabilities are determined by the research design, and are usually

known. Nevertheless, Theorem 3.1 implies that it is more efficient to estimate the poj by

maximum likelihood estimation conditional on zi, if possible. For a random draw i the

log-likelihood for the density of si given zi can be written as

lip ∑
j1

J

zijsi logpj  1 − si log1 − pj.     (6.15)

For each j  1, . . . ,J, the maximum likelihood estimator, p̂j, is easily seen to be the fraction of

observations retained out of all of those originally drawn from from stratum j:

p̂j  Mj/Nj,where Mj  ∑ i1
N zijsi and Nj  ∑ i1

N zij. In other words, Mj is the number of
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retained data points from stratum j and Nj is the number of times stratum j was drawn in the

VP sampling scheme. If the Nj, j  1, . . . ,J, are reported along with the VP sample, then we

can easily obtain the p̂j (because the Mj are always known). We do not need to observe the

specific strata indicators for observations for which si  0. It follows from Theorem 3.1 that,

in general, it is more efficient to use the p̂j than to use the known sampling probabilities. [In

Wooldridge (1999) I proved a different result that assumed the population frequencies, rather

than the Nj, were known.] If the stratification is exogenous – in particular, if the strata are

determined by conditioning variables, x, and Eqw,|x is minimized at o for each x – then it

will not matter whether we use the estimated or known sampling probabilities. And, the

unweighted estimator would be more efficient under GCIME.

7. SUMMARY
This paper unifies the current literature on inverse probability weighted estimation by

allowing for a fairly general class of conditional maximum likelihood estimators of the

selection probabilities. The cases covered are as diverse as variable probability sampling,

treatment effect estimation, and selection due to censoring. While each of these has been

studied in special cases – often linear regression – the framework here allows for nonlinear

models and a variety of estimation methods. In all of these cases, the results of this paper

imply that common ways of estimating the selection probabilities result in increased

asymptotic efficiency over using known probabilities.
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APPENDIX
PROOF OF THEOREM 3.1: Using the first order condition for ̂w, a mean value

expansion, the uniform weak law of large numbers, and defining Hw, ≡ ∇2qw, as the

P  P Hessian of qwi,, we have

N ̂w − o  −Ao
−1 N−1/2∑

i1

N

si/Gzi, ̂rwi,o  op1,     (a.1)

where Ao ≡ EHwi,o  Esi/Gzi,oHwi,o and we make the standard assumption

that Ao is positive definite. A mean value expansion of the of the term in parentheses in (a.1),

about o, gives

N−1/2∑
i1

N

si/Gzi, ̂rwi,o  N−1/2∑
i1

N

si/Gzi,orwi,o  Co N ̂ − o  op1,     (a.2)

where ksi, zi,wi,, ≡ si/Gzi,rwi, is the weighted score function and

Co ≡ E∇ksi, zi,wi,o,o. The key step is application of the generalized conditional

information matrix equality [for example, Newey (1985) and Wooldridge (2002b, Section

13.7)]: because dvi, zi, is the score from a conditional MLE problem, vi is independent of

wi given zi, and si is a function of vi, zi, we have

E∇ksi, zi,wi,o,o  −Eksi, zi,wi,o,odvi, zi,o ′ ≡ −Ekidi
′,     (a.3)

where ki ≡ ksi, zi,wi,o,o and di ≡ dvi, zi,o.Combining (a.1), (a.2), and (a.3) gives

N ̂w − o  −Ao
−1 N−1/2∑

i1

N

ki − Ekidi
′ N ̂ − o  op1.     (a.4)

Finally, we plug (3.3) into (a.4) and rearrange to get
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N ̂w − o  −Ao
−1 N−1/2∑

i1

N

ei  op1     (a.5)

where ei ≡ ki − Ekidi
′Edidi

′−1di are the population residuals from the population

regression of ki on di. Equation (3.7) follows immediately. 

PROOF OF THEOREM 4.2: Equation (a.2) still holds but with ∗ replacing o. Therefore,

Co ≡ E∇ksi, zi,wi,∗,o  −Esi/Gzi,∗rwi,oGzi,∗−2∇Gzi,∗. Under

the given assumptions, Erwi,o|si, zi  Erwi,o|zi  0, which, by iterated expectations,

implies Co  0. Therefore, we have the first order representation

N ̂w − o  −Ao
−1 N−1/2∑ i1

N ki  op1, and the result follows immediately. 
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