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Abstract

Evolutionary dynamics in games imply de–facto spiteful behavior of the
players: In order to ‘survive’ the evolutionary process, players must perform
better than their opponents. This means they maximize relative rather than
absolute payoffs. The paper shows that there is a class of games resulting in
different equilibria if played by maximizers of absolute or of relative pay-
offs, respectively. It is demonstrated that evolutionary equilibria (general
ESS) can be found by formally maximizing relative payoffs. This method is
analytically deduced and demonstrated at the examples of four well known
games: the Cournot oligopoly game, the public goods game, the Tullock
game of rent seeking and theVan Huyck et al.(1990) coordination game.

Zusammenfassung

Evolutionäre Dynamiken in Spielen implizieren de–facto boshaftes Ver-
halten der Spieler: Um den evolutionären Prozeß zu „überleben“, müssen
sich die Spieler besser schlagen als ihre Gegner. Das bedeutet, sie maximie-
ren relative anstelle von absoluten Auszahlungen. Das Papier zeigt, daß es
eine Klasse von Spielen gibt, die zu anderen Gleichgewichten führt, wenn
sie von Maximierern absoluter beziehungsweise relativer Auszahlungen ge-
spielt werden. Es wird gezeigt, daß evolutionäre Gleichgewichte (generel-
le ESS) durch die formale Maximierung relativer Auszahlungen gefunden
werden können. Diese Methode wird analytisch hergeleitet und anhand der
Beispiele von vier bekannten Spielen vorgeführt: dem Cournot Oligopol–
Spiel, dem Öffentlich–Gut–Spiel, dem Tullock–Spiel des Rent–Seeking und
demVan Huyck et al.(1990) Koordinations–Spiel.

JEL Classifications: C73
Key Words: Evolutionary Games, Evolutionary Equilibrium, Spiteful Be-
havior, Relative Payoff



1 Introduction

The idea of evolution in games is central to many contributions from the last few
decades. A first step of formalizing an evolutionary equilibrium concept dates back
to Maynard Smith and Price(1973) andMaynard Smith(1974, 1982), introducing
the notion of an evolutionarily stable strategy (ESS). This idea implicitly relies on
a class of evolutionary dynamics, some members of which have been made more
explicit in form of various types of replicator dynamics (see, e.g.Weibull 1995;
Samuelson1997; Hofbauer and Sigmund1998).

In economics, evolutionary dynamics are often seen as metaphors for processes
of social learning by boundedly rational agents (Marimon, 1993; Kandori et al.,
1993; Fudenberg and Levine, 1998b,a; Friedman, 1998).

The central idea of all types of evolutionary dynamics is the Darwinian theory
of the ‘survival of the fittest’: In a population of players playing one strategy each,
over time, those strategies are adopted more frequently than others that are better
(in terms of payoff) than others. From a player’s point of view, this means that
she should use a strategy which performs better than the ones used by her oppo-
nents. If, for example, in a two–player game a player has the choice between a
strategy with a high absolute payoff, which yields the same payoff to the oppo-
nent, and a strategy with a lower payoff, the use of which decreases the opponent’s
payoff even more, under an evolutionary regime the player should use the second
strategy: Evolutionary dynamics imply maximization of relative rather than abso-
lute payoff. This behavior is spiteful behavior (and of course incompatible with
our traditional notion of the utility maximizing ‘homo oeconomicus’). Neverthe-
less, with evolutionary dynamics at work, this type of spiteful behavior does not
automatically mean that players have spiteful motives. It is simply the force of
evolution that leads to this type of ‘evolutionary spite’.

The impact of evolutionary spite is particularly strong in games with only a
finite number of players. It wasSchaffer(1988, 1989) who first showed this result
and consequently extended the concept of an ESS to include games with finitely
many players: He introduced the concept of a general evolutionarily stable strategy
(general ESS). With this,Schafferlaid the grounds for the more recent, elaborate
concepts of stability in dynamic games, particularly the ideas of a ‘long run stable
strategy’ (Young, 1993) or a ‘stochastically stable equilibrium’ (Kandori et al.,
1993).

Still, the ideas of evolutionary equilibria, although elaborate and clear, share
a common weakness: In many games, particularly in some of the ‘larger’ ones,
evolutionary equilibria are hard to find. This paper aims to provide a solution to
this problem. As will subsequently be shown, there exists a class of games that
allow for a ‘shortcut’ of finding evolutionary equilibria. This is done by explicitly
making use of the notion that spiteful behavior and the maximization of relative
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payoff is the core concept of evolutionary dynamics.
The paper starts with a simple introductory example demonstrating the impact

of evolutionary spite and the finiteness of the number of players on the expected
outcome of a game. At this point, the idea of formally maximizing relative payoff
is introduced. The paper proceeds with a formal proof that a general ESS can
be found by maximization of relative payoff. After that, the implementation of
this method is demonstrated. The resulting equilibria are deduced and interpreted
for the general case as well as for four exemplary games: the Cournot game of
oligopolistic quantity choice, the Tullock rent seeking game, the public goods
game, and theVan Huyck et al.cooperation game.

2 Relative Payoff and Evolutionary Spite

The core idea of evolutionary dynamics is to model processes similar to the process
of the ‘Darwinian evolution’ and its corresponding principle of the ‘survival of the
fittest’. What matters for a long run survival is to be ahead of the others. This does
not automatically mean being ‘good’ or successful in any other concern than pure
survival.

In the analysis of evolutionary games and evolutionary dynamics, the main
goal is to identify those strategies which in the long run will be played by most
of, if not even by all players of the game. Evolutionary dynamics thus describe a
process of changing frequencies of strategies played by a population of players.
In this, the growth rate of the population share of a strategy is determined by
its relative payoff: In order to spread throughout a population, a strategy has to
perform better than the average, i.e. the strategy’s payoff has to be higher than the
population mean payoff. Consequently, players in evolutionary games try to find
a strategy which leaves them better off than their opponents. (Note that this is
usuallynot the primary goal of players in ‘normal’ games.) This might even mean
that a playerdoes notuse a strategy which guarantees maximumabsolutepayoff, if
there is a strategy available which will increase the difference between the player’s
payoff and the population mean payoff, i.e. the player’srelativepayoff. This type
of behavior is calledspiteful behavior(Schaffer, 1988, 1989): Players are willing
to hurt themselves, if by doing so they hurt their opponents even more.

There exists a class of games which are sensitive to spiteful behavior: Games
of this class will have a different outcome if agents maximize relative instead of
absolute payoff.1 This class of games will be calledspite sensitive gamesin this
paper. The games in focus share a common important feature: They are games

1In the words ofBergstrom(2002, p. 10): ‘There is an interesting class of games in which
every player gets a higher payoff from cooperating than from defecting, but where, paradoxically,
it is also true that [...] defectors receive higher payoffs than cooperators.’
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with a finite number of players. For games similar to the ones analyzed here, but
with infinitely many players, the results derived in this paper will be shown to
coincide with the traditional findings, like e.g. for the Cournot game.

In order to provide a first, simple impression of the potential role of spiteful
behavior in spite sensitive games, consider the two–player–two–strategy–game
in normal form given in Table1(a). The players are assumed to be restricted to
playing pure strategies. Assuminga> b> c> d, the profile(s1, s1) clearly is
the payoff dominant equilibrium of the game. Assuming common knowledge,
both players, A and B, can be expected to plays1, as long as their goal is the
maximization of absolute payoffs.

Player B
s1 s2

s1 a, a c, bPlayer A
s2 b, c d, d

(a) absolute payoffs

Player B

s1 s2

s1 0, 0 1
2 (c−b) , 1

2 (b−c)
Player A

s2
1
2 (b−c) , 1

2 (c−b) 0, 0

(b) relative payoffs

Table 1: General Spite Game;a> b> c> d

Moreover, due to the definition ofMaynard Smith(1982), the profile(s1, s1)
is the only evolutionarily stable equilibrium (ESS).

Payoffs in Tab.1(a) are absolute payoffs. In evolutionary games, though, it
is relative rather than absolute payoff which players try to maximize. In order to
illustrate the consequences of this change in scope, the game can be re–formulated
by explicitely stating relative payoffs in the normal form. Table1(b) shows the
re–formulated normal form of the exemplary game.

The relative payoff to player k, playingsi against player−k’s strategysj ,
πr

k

(
si , sj

)
, is simply the difference between playerk’s payoff and the mean payoff

of all players in the game (i.e. playersk and−k in the example):

πr
k

(
si , sj

)
= πk

(
si , sj

)
− 1

2

[
πk
(
si , sj

)
+ π−k

(
si , sj

)]
. (1)

This concept of relative payoff is the same as the one commonly used in con-
tinuous time replicator dynamics (Samuelson1997, p. 66;Weibull 1995, pp. 72–
74). This concept of relative payoff will be linked to the concept of a general
evolutionarily stable strategy (Schaffer, 1988, ‘general ESS’)2 later in this paper.

It is obvious that in relative payoffs, i.e. in the normal form of Tab.1(b), the
profile (s2, s2) represents the dominant equilibrium. Thus, the exemplary game

2A textbook version of this concept can be found atVega-Redondo(1996, pp. 31).
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is a game with ‘two faces’: For players maximizing absolute payoff, the profile
being played is(s1, s1). On the other hand, players maximizing relative payoff,
i.e. behaving spitefully, will play(s2, s2). Note, that even though(s2, s2) is not an
equilibrium of the original game, in the re–formulated game it is.

It is an interesting question why the re–formulated games has its only equilib-
rium in (s2, s2) althoughthe ESS of the original game is(s1, s1). The answer is
simple: The canonical definition of an ESS only holds for an infinitely large num-
ber of players. The simple game in focus can be used to illustrate the importance
of the number of players for the location of an evolutionary equilibrium.

Following the concept of a general ESS for finite populations introduced by
Schaffer(1988), it can be found that in ann–player version of the spite game (1(a))
with n1 of then players playings1, the location of the general ESS depends on the
payoffsandon the relation of the total number of players to the number of players
playing strategys1 (or s2, respectively).

In any n–player version of the game from Tab.1, a strategys? constitutes a
globally stable general ESS, if it performs better in every possible population of
strategies than every other strategy. In ann–player version of the game, every
possible population of strategies can be completely characterized by the number
of players playings1, which will be denoted asn1. Assuming players playing the
field, i.e. every player playing against everybody else, the average payoffs from
playings1 or s2, respectively, depend onn1 andn:

π(s1|{n, n1}) =
1

n−1
((n1−1)a+(n−n1)c) , (2)

π(s2|{n, n1}) =
1

n−1
(n1b+(n−n1−1)d) . (3)

It is straightforward to compute the conditions fors1 or s2 which constitute the
general ESS:

π(s1|{n, n1}) ≶ π(s2|{n, n1})
⇔ (4)

n ≶
b−d−a+c

c−d
n1 +a−d

For a more intuitive notion, consider the special case witha = 4, b = 3, c =
2, d = 1. Here, the spite game has a unique general ESS in(s2, s2) as long as
n< 3 (and independent ofn1). For larger numbers of players, precisely forn> 3,
the unique general ESS is the canonical ESS in(s1, s1).

The general idea which should have become clear from this section is the
following: There is a class of games with finitely many players, i.e. spite sensitive
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games, whose results depend on the behavior of the players: If players are ‘regular’
payoff maximizers, the results differ from the results arising from the same game
played by finitely many, spitefully behaving players.

3 Maximization of Relative Payoff and Evolutionary
Stability

Up to this point, the notion that maximization of relative payoffs should be the
central method in order to find evolutionarily stable strategies has been introduced
only intuitively. This section will provide a formal derivation of the finding that
maximization of relative payoffs leads to a general ESS.

Consider a game played by a population ofn players. Players are restricted
to playing pure strategies only. Let the strategy space of each player beS =
{s1, s2, . . .} ; #(S)≤ ∞.

As this paper will focus on one–population evolutionary games, i.e. symmetric
games only, the set ofrelevantdifferent strategy profilesV can be written as a set
of vectorsv denoting the number of players playing each strategysi ∈ S: v =
(v(s1), v(s2), . . .). Obviously,∑s∈S v(s) = n. Further, letVs? denote the set of
profiles containing at least one player playings?: Vs? := {v ∈ V |v(s?)> 0}.

Let π(si) denote the payoff to a player playing strategysi in a population char-
acterized by a profilev.

Proposition 1 A globally stable general ESS can be computed by maximizing
relative payoff:

max
s

πr(s) = max
s

[
π(s)− 1

n ∑
s′∈S

v(s′)π(s′)

]
(5)

A sufficient (though not necessary) condition for a strategys? to constitute a
general ESS is the definition of a globally stable general ESS: In every population
of strategies containing at least one player playings?, i.e. in everyv′ ∈Vs?, strategy
s? yields a strictly higher payoff than any other strategys′ ∈ S\s?:

Definition 1 (globally stable general ESS (Schaffer, 1988)) Strategy s? ∈ S is
called a globally stable general evolutionarily stable strategy (general ESS), if
for any given strategy profile v∈ Vs?

π(s?)> π(s′) ∀ s′ ∈ S\s? (6)
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Proof 1 As there are n− v(s?) players not using strategy s?, from (6) it follows
that

(n−v(s?)) π(s?)> ∑
s′∈S\s?

v(s′)π(s′) (7)

Adding the payoff of all s?–players to both sides of (7) results in

π(s?) >
1
n ∑

s′∈S
v(s′)π(s′) (8)

Rearranging (8) yields the globally stable general ESS:

s? = argmax
s

[
π(s)− 1

n ∑
s′∈S

v(s′)π(s′)

]
(9)

Note that the expression1n ∑s′∈S v(s′)π(s′) in (9) gives thepopulation mean
payoff. Consequently, the entire expression to be maximized in (9) is the relative
payoff to a player playing strategy s,πr(s).

This means that s?, the general ESS, can be simply computed by maximizing
relative payoff as stated in proposition1.

�

This is the shortcut method to finding general ESS in spite sensitive games.
Application and results of this method are shown for some examples below.

4 Oligopolies: The Cournot Game

The Model One example of the class of spite sensitive games is the Cournot
game, which is a game of simultaneous quantity choice byn firms. Every firmi
produces a quantitysi of a homogenouse good. The individual supplysi is assumed
to be of non–negligible impact on aggregate supply and thus on the market price:
∂p
∂si
6= 0. Aggregate supply is the sum of the individual quantities firms choose

in the model. The market equilibrium pricep results from the interaction of ag-
gregate supply and aggregate demand. Aggregate demand is given exogenously.
The only assumption needed concerning aggregate demand is the assumption of a
downward sloping inverse demand function.

Absolute payoff of firmi, πi (si), is given by the difference between net profits
and costs,

πi (si) = psi−C(si) . (10)

The cost function is assumed to be the same for every firm and increasing in the
quantity. Marginal costs are assumed to be non–decreasing.
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The ‘standard’ Cournot model is known to result in a unique symmetric Nash
equilibrium with each firm supplying a quantitys?a, implicitly given by

p =
∂C(s?a)

∂s?a
− ∂ p

∂s?a
s?a . (11)

The Game in Relative Payoffs The population mean payoff,π, is the average
absolute payoff of the supply side,

π =
1
n

n

∑
i=1

πi (si) . (12)

Consequently, relative payoff of firmi, given by the difference between the
firm’s absolute payoff and the average payoff of the supply side, is

πr
i (si) = πi (si)−π . (13)

Assuming identical equilibrium behavior of all players−i, i.e. all players but
playeri, (13) becomes

πr
i (si) =

n−1
n

[p(si−s−i)+C(s−i)−C(si)] . (14)

Individual maximization of (14) with respect tosi yields

p =
∂C(si)

∂si
+(s−i−si)

∂p
∂si

. (15)

Note that (15) implicitly defines playeri’s reaction function.
For completely symmetric equilibrium behavior, i.e.si = s ∀ i, the term

(s−i−si) vanishes, such that the evolutionarily optimal quantity,s?r , is implicitly
given by

p =
∂C(s?r )

∂s?r
. (16)

This is exactly the ‘price equals marginal costs’ condition known as the optimum
condition for quantity choice under perfectly competitive circumstances. Conse-
quently,s?r gives the Walrasian equilibrium quantity, and (16) establishes a Wal-
rasian equilibrium.

The Walrasian equilibrium (16) is the only symmetric general ESS, i.e. the
only symmetric Nash equilibrium of the re–formulated Cournot game in relative
payoffs. Or, to make it sound a little more paradoxical: For relative payoffs, the
Walrasian equilibriumis the only symmetric Cournot–Nash equilibrium.
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Another feature of the Walrasian equilibrium should be stressed: In contrast to
the Cournot quantity, the Walrasian quantity is independent of the number of firms
in the game. Note, however, that for the number of firms approaching infinity,
the inverse elasticity of demand∂ p

∂s?a
as given in (11) tends to zero and thus the

regular Cournot quantity becomes the evolutionarily stable quantity, which is the
Walrasian one:3

lim
n→∞

s?a = s?r . (17)

Related Literature The result given in this section is not new. It dates back to
Schaffer(1989) who showed that in an ‘Darwinian Model of Economic Natural
Selection’ in a Cournot game, the Walrasian strategy will be the only one to sur-
vive. This result is fully in line with results byVega-Redondo(1997), who finds
the Walrasian strategy to be the unique stochastically stable strategy in the Cournot
game. Although the general concept of stochastic stability in evolutionary games
(Young, 1993) is a concept of finding long run stable states of noisy evolutionary
dynamics, in spite sensitive games this concept results in strategies which can be
found by simply maximizing relative payoffs.

Experimental Results on Spiteful Behavior As certainly any form of spiteful
behavior, irrespective of the underlying motives will lead to the result deduced
above, it is an interesting question to ask, if, apart from evolutionary spite, there is
evidence for different types spiteful behavior in the Cournot game. In fact, some
laboratory experiments with the Cournot game give some evidence that spiteful
behavior might possibly occur. In some early experiments with repeated Cournot
duopoly and triopoly games and anonymous players,Fouraker and Siegel(1963)
find the resulting quantities to tend to be ‘more competitive’ than the Cournot Nash
quantity. In a series of laboratory experiments byHolt (1985), in their personal
comments, some of the players even explicitely mentioned to have been guided by
spiteful motives (Holt, 1985, p. 323), thoughHolt himself comments that most of
the players tried to maximize absolute profits. Thus, there is little, but more than
no evidence of spiteful behavior induced by other than evolutionary forces in the
Cournot game.

Another line of thought might be enlightening: Although at first sight, spiteful
behavior in the Cournot game does not look too sensible to assume, there could
be such behavior, if e.g. firms try to maximize market share instead of absolute
profits, which then leads back to the idea of players’ trying to perform better than
the others.

3This is a textbook result. See e.g.Binmore(1992).
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5 Rent Seeking: The Tullock Game

The Model Another example of the effect of spiteful behavior is a class of rent
seeking games known as ‘Tullock games’. Starting with the seminal paper byTul-
lock (1980), there are various papers on this topic. Surveys and in–depth analysis
can be found inPérez-Castrillo and Verdier(1992) andNitzan(1994). This paper
will focus the basic form of the model: A group ofn players can make an invest-
mentxi in order to participate in a lottery. The prize to be won isV. The higher
a player’s investmentxi the higher (ceteris paribus) is her chance of winning the
prize,pi :

pi = pi(x) with x = {x1, x2, . . . , xn} , (18)
∂pi(x)

∂xi
> 0. (19)

A commonly used form of the contest success function or rent seeking tech-
nology pi(x) is the one originally introduced byTullock (1980):

pi(x) =
xr

i

∑n
j=1xr

j
. (20)

The expected payoff of playeri results as

πi =
xr

i

∑n
j=1xr

j
V−xi . (21)

It is widely known that for the contest success function (20) the unique sym-
metric pure Nash strategy (for absolute payoffs),x?a, is

x?a =
n−1

n2 rV . (22)

The interesting point at this finding is the fact that there is underdissipation of
the prizeV as long asr < n−1

n . This means that in these cases players’ aggregate
investmentnx?a falls short of the prizeV:

nx?a <V for r <
n−1

n
. (23)

Whether there is underdissipation depends on the rent seeking technology,
which is characterized by the parameterr, and — which is important here — by
the number of players.
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The Game in Relative Payoffs The re–formulation of the Tullock game into
relative payoffs is straightforward. Let again relative payoff be

πr
i = πi−π , (24)

with population mean payoffπ

π =
1
n

n

∑
k=1

πk =
1
n

(
V−

n

∑
i=1

xi

)
, (25)

such that relative playoff results as

πr
i =

xr
i

∑n
j=1xr

j
V−xi−

V
n

+
∑n

j=1x j

n
(26)

Maximization of relative payoff with respect toxi and application of the sym-
metry conditionxi = x∀ i yields

r x2r−1(n−1)

(nxr)2 V−1+
1
n

= 0 (27)

⇔ x?r =
r
n

V (28)

x?r (28) gives the unique symmetric pure Nash strategy for relative payoffs, i.e.
characterizes the unique symmetric general ESS.

The interesting fact concerning this result follows from again considering the
question of over– or underdissipation. Considering the degree of dissipation of the
prizeV, it follows that

x?r <V ⇔ r < 1. (29)

This means that for the given rent seeking technology, decreasing marginal
returns toxi will under all circumstances lead to underdissipation ofV. This result
holds irrespective and independent of the number of players involved in the game.

Moreover, it becomes clear that the evolutionary optimal level of investment,
x?r , is larger than the regular one,x?a, as long as the number of players is finite:

x?a =
n−1

n
x?r ⇒ x?a < x?r ∀ n< ∞ . (30)

For the number of players approaching infinity, evolutionarily optimal and
regular optimal investment levels coincide:

lim
n→∞

x?a = x?r . (31)

This notion is similar to the case of the Cournot game (see equation (17)), for
which the regular Cournot Nash quantity is known to become the Walrasian one,
i.e. the evolutionarily stable strategy, for the number of firms approaching infinity.

10



Experimental Results on Spiteful Behavior In cases where agents compete for
a rent, the assumption of spiteful behavior might look quite sensible: What counts
in order to win the prize in the Tullock competition is to be better than the others.
Thus, apart from evolutionary forces, there could be other motives for spiteful
behavior in this game.

Nevertheless, results from laboratory experiments with the Tullock rent seek-
ing games give very little evidence for spiteful behavior. For the case of a linear
rent seeking technology (r = 1), Shogren and Baik(1991) find their laboratory
players to significantly play the Nash strategy in absolute payoffs.Millner and
Pratt(1989) andPotters et al.(1998) find similar results with at least some evi-
dence that some players tend to invest more than the regular Nash amount, but still
clearly less than the evolutionarily optimal one. Thus, to the experimental results,
evolutionary forces can at best serve as a reason for deviations from the normal
Nash solution, but not as a behavioral attractor to a general ESS.

6 Public Goods Games

The Model For another example of the role of the spite effect in larger games,
consider the continuous public goods game. In order to provide a simple example,
a very basic variant of the model will be considered. The model in focus is a model
of quasilinear preferences, which helps to identify the optimal provision level of a
public good regardless to income effects. For more details on public goods games,
Cornes and Sandler(1996) is an excellent reference.

Consider a game ofn players. Each playeri is endowed with a budget ofw,
which she can spend for an amount of a private good or for a contribution to the
public good,xi . Prices of both goods are assumed to be unity. The payoffπi is
given as the player’s utility, which is quasilinear in the consumption of the private
good,w−xi , and the total amount of the public good provided,G:

πi = w−xi + β lnG, (32)

where the total amount of the public good,G, is given as the sum of individual
contributions

G =
n

∑
j=1

x j . (33)

Maximization of absolute payoffπi with respect to the individual contribution
xi leads to a unique individual Nash strategy given by

x?i,a = max

β−
n

∑
j=1
j 6=i

x j ; 0

 . (34)
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For symmetric behaviorxi = x∀ i this leads to a symmetric Nash strategy of

x?a =
β
n
. (35)

It is worth mentioning two important features of the variant model presented
here: First, the Nash contribution level is strictly positive:x?a> 0. This is different
from many public goods game formulated throughout game theoretic literature.
For the purpose of this paper, however, it is a useful feature in that it helps to point
out the difference between a ‘regular’ optimal contribution level and an evolution-
arily optimal one. The second important feature of the model is the fact that the
optimal symmetric contribution level (35) depends on the number of players in
the game: The more players take part in the game, the smaller is the symmetric
optimal contribution to the public good: Free riding increases with group size.

The Game in Relative Payoffs In order to find the evolutionarily optimal strat-
egy, i.e. the general ESS, the population mean payoff is computed as

π =
1
n

n

∑
j=1

π j = w+ β lnG− G
n
. (36)

Consequently, relative payoff equals

πr
i = πi−π =

1
n

n

∑
j=1
j 6=i

x j −
n−1

n
xi . (37)

Maximization ofπr
i for plausible contributions ofxi ≥ 0 results in a corner

solution. The optimal contribution in relative payoffs is

x?i, r = x?r = 0. (38)

This means that in the public goods game presented here, there is a positive
symmetric Nash contribution ofx?a = β/n. This, however, is not the case for the
maximization of relative payoffs: The evolutionarily optimal contribution (the
symmetric general ESS) isx?r = 0. Moreover, this contribution is independent of
the number of players involved.

Note, that for the number of players approaching infinity, the optimal contri-
bution for absolute payoffs approaches the evolutionary one:

lim
n→∞

x?a = x?r . (39)

This result is similar to the outcomes derived for the Cournot game (equation
(17)) and the Tullock game (equation (31)).
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Related Literature The results presented in this section give a theoretical foun-
dation of the findings byMiller and Andreoni(1991). Miller and Andreonicon-
ducted a number of numerical simulations of replicator dynamics (i.e. evolutionary
dynamics) in a public goods game. Their most prominent result is the observation
that over time, the populations of players tended to converge to playing a common
contribution of zero. This long run result is found to be independent of the size
of the population, i.e. the number of players. Unfortunately for the purpose of
this paper,Miller and Andreonibased their analysis on a model with the ‘regu-
lar’ symmetric equilibrium equal to the general ESS equal to zero. Thus, long
run results generated by maximization of absolute payoffs and those generated by
spiteful behavior coincide in their model.

Experimental Results on Spiteful Behavior Most of the experiment conducted
with public goods models share the same problem: The settings are such that the
individually optimal solution is a contribution of zero, the strategy of so called
‘complete free riding’. The common finding to public goods experiments (to be
more precise, to experiments with continuous public goods) is the fact that in the
long run, contributions decline, but that at the same time, complete free riding is
never achieved (Ledyard, 1995). This gives at least some evidence against strong
forces of spiteful behavior in public goods games.

7 Coordination Games: The Van Huyck/Battalio/Beil
Game

The Model Another example of the role of spiteful behavior is the model by
Van Huyck et al.(1987, 1990). The authors motivate the game by using a case
from labor economics: A group ofn players in a work group produce goods by
means of a Leontieff technology. Each playeri’s payoff increases in the output
min j

{
sj
}

and decreases in personal effortsi .
The game is ann–player coordination game. Every player chooses from an

action space consisting of actions (effort levels) named 1, 2, 3, 4, 5, 6, and 7:
si ∈ S= {1, 2, 3, 4, 5, 6, 7}. Each player’s payoff is given by

πi = a min
j

{
sj
}
−bsi , a> b> 0. (40)

Table2 gives an example of the game fora = 10 andb = 1. Note that there are
no entries below the main diagonal of the matrix, because the respective cases are
simply impossible: If, for example, playeri chooses action 2, the minimum action
of all players cannot be larger than 2.
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min j
{

sj
}

7 6 5 4 3 2 1
si 7 63 53 43 33 23 13 3

6 – 54 44 34 24 14 4
5 – – 45 35 25 15 5
4 – – – 36 26 16 6
3 – – – – 27 17 7
2 – – – – – 18 8
1 – – – – – – 9

(a) Absolute Payoffs to Playeri

maxj 6=i {si}
7 6 5 4 3 2 1

si 7 0 -1 -11 -21 -31 -41 -51
6 – 0 -1 -11 -21 -31 -41
5 – – 0 -1 -11 -21 -31
4 – – – 0 -1 -11 -21
3 – – – – 0 -1 -11
2 – – – – – 0 -1
1 – – – – – – 0

(b) Relative Payoffs to Playeri

Table 2: Coordination Game.

The game has seven symmetric Nash equilibria in pure strategies: Every strat-
egy profile with all players playing the same strategy, i.e.s= (sk)n, sk ∈ S consti-
tutes an equilibrium. It is easy to recognize that the equilibriums= (7)n is Pareto
efficient and thats= (1)n is the risk dominant equilibrium.

Empirical Findings The model has been the center of interest for a large number
experimental investigations.4 The common outcome of these experiments is the
finding that players tend to coordinate on the equilibrium with all players playing
strategy ‘1’ as the game is repeated. This is commonly applied to the fact that
this equilibrium represents the risk dominant one. It wasYoung(1993) who first
showed that at least in 2 by 2 coordination game the risk dominant equilibrium
coincides with the long run evolutionary one, i.e. with the equilibrium reached in
the long run by evolutionary processes with a minimal degree of noise. In this
case, the long run evolutionary equilibrium is the same as the general ESS, which
will be computed in the following.

The Game in Relative Payoffs The model in focus is different from the other
models introduced above: The strategy space is finite, the payoff function is non
differentiable. Consequently, re–formulating this game into a game of relative
payoff requires some consideration about the appropriate concept of relative pay-
off in this game. For each playeri, the only determinant of her payoff apart from
her own strategy is the member of the population with the smallest strategy, i.e.
the member with the highest payoff apart fromπi . Thus, an appropriate measure
of relative payoff is

πr
i = πi−max

j; j 6=i

{
sj
}
. (41)

4A survey can be found inOchs(1995).
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With the help of (41), Table2 can be re–written into relative payoffs, resulting
in Table2(b). From Table2(b), it is easy to recognize, that in relative payoffs, i.e.
under the regime of spiteful behavior, the only remaining equilibrium is the risk
dominant equilibriums= (1)n.

Experimental Results on Spiteful Behavior Although the behavior leading to
a convergence of players’ strategies to the ‘1’ strategy is spiteful behavior in the
meaning of the term used in this paper, in this game players need not have spiteful
motives in order to behave spitefully: If in each round of the game players are
confronted with the respective column of the payoff Table2, maximization ofab-
solutepayoffs (in this row) will implicitly lead to maximization of relative payoffs
in the game as a whole. It is helpful to consider the following example: Let us
assume players are completely myopic and hold no memory of previous periods.
Then, let us assume the minimum strategy played in periodt − 1 was 3. If in
periodt players get to see the 3–column of Table2 only, even players planning
to maximizeabsolutepayoff will play 3 (or even less) in the next period. Thus,
in this game, there is room for spiteful behavior which is solely induced by the
structure of the information available to the players.

8 Summary

Spiteful behavior is the core ingredient of evolutionary dynamics: Players max-
imize relative rather than absolute payoffs. This notion is the basis of a method
for finding general evolutionarily stable strategies in a class of games with finitely
many players discussed in this paper. The method simply consists of computing
the strategy that maximizes relative payoff. The class of games this method can be
applied to includes the Cournot game, the public goods game, the Tullock game of
rent seeking, and theVan Huyck et al.coordination game. For all of these games
it can be shown that for finitely many players the evolutionarily stable equilibrium
is independent of the number of players and differs from the ‘regular’ equilibrium,
although these equilibria coincide if the number of players approaches infinity.
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