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Abstract

Evolutionary dynamics in games imply de—facto spiteful behavior of the
players: In order to ‘survive’ the evolutionary process, players must perform
better than their opponents. This means they maximize relative rather than
absolute payoffs. The paper shows that there is a class of games resulting in
different equilibria if played by maximizers of absolute or of relative pay-
offs, respectively. It is demonstrated that evolutionary equilibria (general
ESS) can be found by formally maximizing relative payoffs. This method is
analytically deduced and demonstrated at the examples of four well known
games: the Cournot oligopoly game, the public goods game, the Tullock
game of rent seeking and the ( ) coordination game.

Zusammenfassung

Evolutionare Dynamiken in Spielen implizieren de—facto boshaftes Ver-
halten der Spieler: Um den evolutiondren Prozel3 zu ,Uberleben”, missen
sich die Spieler besser schlagen als ihre Gegner. Das bedeutet, sie maximie-
ren relative anstelle von absoluten Auszahlungen. Das Papier zeigt, daf? es
eine Klasse von Spielen gibt, die zu anderen Gleichgewichten fihrt, wenn
sie von Maximierern absoluter beziehungsweise relativer Auszahlungen ge-
spielt werden. Es wird gezeigt, daf3 evolutiondre Gleichgewichte (generel-
le ESS) durch die formale Maximierung relativer Auszahlungen gefunden
werden kdnnen. Diese Methode wird analytisch hergeleitet und anhand der
Beispiele von vier bekannten Spielen vorgefiihrt: dem Cournot Oligopol—
Spiel, dem Offentlich—-Gut—Spiel, dem Tullock—Spiel des Rent-Seeking und
dem ( ) Koordinations—Spiel.

JEL Classifications: C73
Key Words: Evolutionary Games, Evolutionary Equilibrium, Spiteful Be-
havior, Relative Payoff



1 Introduction

The idea of evolution in games is central to many contributions from the last few
decades. Afirst step of formalizing an evolutionary equilibrium concept dates back
to ( ) and ( | ), introducing
the notion of an evolutionarily stable strategy (ESS). This idea implicitly relies on
a class of evolutionary dynamics, some members of which have been made more
explicit in form of various types of replicator dynamics (see, & j

).

In economics, evolutionary dynamics are often seen as metaphors for processes
of social learning by boundedly rational agentsa( | 1 ,

), 11999.

The central idea of all types of evolutionary dynamics is the Darwinian theory
of the ‘survival of the fittest’: In a population of players playing one strategy each,
over time, those strategies are adopted more frequently than others that are better
(in terms of payoff) than others. From a player’s point of view, this means that
she should use a strategy which performs better than the ones used by her oppo-
nents. If, for example, in a two—player game a player has the choice between a
strategy with a high absolute payoff, which yields the same payoff to the oppo-
nent, and a strategy with a lower payoff, the use of which decreases the opponent’s
payoff even more, under an evolutionary regime the player should use the second
strategy: Evolutionary dynamics imply maximization of relative rather than abso-
lute payoff. This behavior is spiteful behavior (and of course incompatible with
our traditional notion of the utility maximizing ‘homo oeconomicus’). Neverthe-
less, with evolutionary dynamics at work, this type of spiteful behavior does not
automatically mean that players have spiteful motives. It is simply the force of
evolution that leads to this type of ‘evolutionary spite’.

The impact of evolutionary spite is particularly strong in games with only a
finite number of players. It was ( , ) who first showed this result
and consequently extended the concept of an ESS to include games with finitely
many players: He introduced the concept of a general evolutionarily stable strategy
(general ESS). With this; laid the grounds for the more recent, elaborate
concepts of stability in dynamic games, particularly the ideas of a ‘long run stable
strategy’ ( | ) or a ‘stochastically stable equilibriumi¢ ,

).

Still, the ideas of evolutionary equilibria, although elaborate and clear, share
a common weakness: In many games, particularly in some of the ‘larger’ ones,
evolutionary equilibria are hard to find. This paper aims to provide a solution to
this problem. As will subsequently be shown, there exists a class of games that
allow for a ‘shortcut’ of finding evolutionary equilibria. This is done by explicitly
making use of the notion that spiteful behavior and the maximization of relative
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payoff is the core concept of evolutionary dynamics.

The paper starts with a simple introductory example demonstrating the impact
of evolutionary spite and the finiteness of the number of players on the expected
outcome of a game. At this point, the idea of formally maximizing relative payoff
is introduced. The paper proceeds with a formal proof that a general ESS can
be found by maximization of relative payoff. After that, the implementation of
this method is demonstrated. The resulting equilibria are deduced and interpreted
for the general case as well as for four exemplary games: the Cournot game of
oligopolistic quantity choice, the Tullock rent seeking game, the public goods
game, and the cooperation game.

2 Relative Payoff and Evolutionary Spite

The core idea of evolutionary dynamics is to model processes similar to the process
of the ‘Darwinian evolution’ and its corresponding principle of the ‘survival of the
fittest’. What matters for a long run survival is to be ahead of the others. This does
not automatically mean being ‘good’ or successful in any other concern than pure
survival.

In the analysis of evolutionary games and evolutionary dynamics, the main
goal is to identify those strategies which in the long run will be played by most
of, if not even by all players of the game. Evolutionary dynamics thus describe a
process of changing frequencies of strategies played by a population of players.
In this, the growth rate of the population share of a strategy is determined by
its relative payoff: In order to spread throughout a population, a strategy has to
perform better than the average, i.e. the strategy’s payoff has to be higher than the
population mean payoff. Consequently, players in evolutionary games try to find
a strategy which leaves them better off than their opponents. (Note that this is
usuallynotthe primary goal of players in ‘normal’ games.) This might even mean
that a playedoes nouse a strategy which guarantees maxinalsolutgpayoff, if
there is a strategy available which will increase the difference between the player’s
payoff and the population mean payoff, i.e. the playeslative payoff. This type
of behavior is callegpiteful behavio( f ) ): Players are willing
to hurt themselves, if by doing so they hurt their opponents even more.

There exists a class of games which are sensitive to spiteful behavior: Games
of this class will have a different outcome if agents maximize relative instead of
absolute payoff. This class of games will be callegpite sensitive gamés this
paper. The games in focus share a common important feature: They are games

1in the words of ( , p. 10): ‘There is an interesting class of games in which
every player gets a higher payoff from cooperating than from defecting, but where, paradoxically,
it is also true that [...] defectors receive higher payoffs than cooperators.’

2



with a finite number of players. For games similar to the ones analyzed here, but
with infinitely many players, the results derived in this paper will be shown to
coincide with the traditional findings, like e.g. for the Cournot game.

In order to provide a first, simple impression of the potential role of spiteful
behavior in spite sensitive games, consider the two—player—two—strategy—game
in normal form given in Tablé.(a) The players are assumed to be restricted to
playing pure strategies. Assumiag> b > ¢ > d, the profile(s;, s1) clearly is
the payoff dominant equilibrium of the game. Assuming common knowledge,
both players, A and B, can be expected to pdayas long as their goal is the
maximization of absolute payoffs.

Player B Player B
S1 S S1 7]
. . b 0,0 lc—b),3(b-0)
PlayerA = |&8& G Plaver A L | > 3 ' 2
%|bc dd Y s | 4b-0), 3c-b) 0,0

(a) absolute payoffs (b) relative payoffs

Table 1: General Spite Gama;> b > c > d

Moreover, due to the definition of ( ), the profile(s;, 1)
is the only evolutionarily stable equilibrium (ESS).

Payoffs in Tab.1(a)are absolute payoffs. In evolutionary games, though, it
is relative rather than absolute payoff which players try to maximize. In order to
illustrate the consequences of this change in scope, the game can be re—formulated
by explicitely stating relative payoffs in the normal form. Tahlg®) shows the
re—formulated normal form of the exemplary game.

The relative payoff to player k, playing against player-k's strategys;,
TG, (s, Sj), is simply the difference between playes payoff and the mean payoff
of all players in the game (i.e. playeksand—k in the example):

T (S,5) = T (5. 5) — 5 [Tk (5, 5) + k(5. 5)] )
This concept of relative payoff is the same as the one commonly used in con-
tinuous time replicator dynamics:¢{ . p. 66; y pp. 72—
74). This concept of relative payoff will be linked to the concept of a general
evolutionarily stable strategys( I , ‘general ESSY later in this paper.
It is obvious that in relative payoffs, i.e. in the normal form of Ta), the
profile (s, &) represents the dominant equilibrium. Thus, the exemplary game

2A textbook version of this concept can be found/at ( y pp. 31).
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is a game with ‘two faces’: For players maximizing absolute payoff, the profile
being played igsi, s1). On the other hand, players maximizing relative payoff,
i.e. behaving spitefully, will plays,, ;). Note, that even thoug(s,, s) is not an
equilibrium of the original game, in the re—formulated game it is.

It is an interesting question why the re—formulated games has its only equilib-
rium in (s, s2) althoughthe ESS of the original game {s1, s1). The answer is
simple: The canonical definition of an ESS only holds for an infinitely large num-
ber of players. The simple game in focus can be used to illustrate the importance
of the number of players for the location of an evolutionary equilibrium.

Following the concept of a general ESS for finite populations introduced by

( ), it can be found that in am-player version of the spite gam& )
with n; of then players playings, the location of the general ESS depends on the
payoffsandon the relation of the total number of players to the number of players
playing strategy; (or sp, respectively).

In any n—player version of the game from Tah. a strategys* constitutes a
globally stable general ESS, if it performs better in every possible population of
strategies than every other strategy. Inresplayer version of the game, every
possible population of strategies can be completely characterized by the number
of players playings;, which will be denoted as;. Assuming players playing the
field, i.e. every player playing against everybody else, the average payoffs from
playings; or s, respectively, depend an andn:

-

n(s/{n,m}) = ((p—1)a+(n—m)c), (2)

-
|
|_\

m(sl{nm}) = —(Mmb+(n-m-1)d). ©

It is straightforward to compute the conditions &ror s, which constitute the
general ESS:

(s {n,n}) s
2N (4)
s

For a more intuitive notion, consider the special case with4, b =3, c =
2,d = 1. Here, the spite game has a unique general ES$ji%,) as long as
n < 3 (and independent of). For larger numbers of players, precisely fos 3,
the unique general ESS is the canonical ES&ins; ).
The general idea which should have become clear from this section is the
following: There is a class of games with finitely many players, i.e. spite sensitive
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games, whose results depend on the behavior of the players: If players are ‘regular’
payoff maximizers, the results differ from the results arising from the same game
played by finitely many, spitefully behaving players.

3 Maximization of Relative Payoff and Evolutionary
Stability

Up to this point, the notion that maximization of relative payoffs should be the
central method in order to find evolutionarily stable strategies has been introduced
only intuitively. This section will provide a formal derivation of the finding that
maximization of relative payoffs leads to a general ESS.

Consider a game played by a populationngblayers. Players are restricted
to playing pure strategies only. Let the strategy space of each play@r=be
{s1, %, ...} #(S) < o0,

As this paper will focus on one—population evolutionary games, i.e. symmetric
games only, the set oélevantdifferent strategy profile¥ can be written as a set
of vectorsv denoting the number of players playing each stratggy S: v =
(V(s1), V(s2), ...). Obviously, S sV(s) = n. Further, letVs denote the set of
profiles containing at least one player playsigVs := {v € V|v(s") > 0}.

Let (s ) denote the payoff to a player playing strategin a population char-
acterized by a profile.

Proposition 1 A globally stable general ESS can be computed by maximizing
relative payoff:

msaxn’ (s) = max [T[(S) - % ; v(s’)n(s’)] (5)
s

A sufficient (though not necessary) condition for a strategip constitute a
general ESS is the definition of a globally stable general ESS: In every population
of strategies containing at least one player plaghge. in every’ € Vg, strategy
s* yields a strictly higher payoff than any other strategjg S\ s*:

Definition 1 (globally stable general ESS$ ) )) Strategy §€ S is
called aglobally stable general evolutionarily stable strategy (general EES)
for any given strategy profile@ Vg

ns)>mn[s) vV seS\s (6)



Proof 1 As there are n- v(s*) players not using strategy sfrom (©) it follows
that
(NN T(ES)> T v(&)mE) W
geS\s*

Adding the payoff of all's-players to both sides of) results in
1
ns) > =Y vE§)n(s) (8)
n sgg
Rearranging 8) yields the globally stable general ESS:

. [ 1
S* = argmax|T(s) — —
s n

3 V() n<§>] (©)

Note that the expressioh¢csV(s)T(S) in (9) gives thepopulation mean
payoff. Consequently, the entire expression to be maximizéyj is the relative
payoff to a player playing strategy &, (s).

This means that*s the general ESS, can be simply computed by maximizing
relative payoff as stated in propositidn

O

This is the shortcut method to finding general ESS in spite sensitive games.
Application and results of this method are shown for some examples below.

4 Oligopolies: The Cournot Game

The Model One example of the class of spite sensitive games is the Cournot
game, which is a game of simultaneous quantity choice figms. Every firmi
produces a quantity of a homogenouse good. The individual supplg assumed
to be of non—negligible impact on aggregate supply and thus on the market price:
g—g # 0. Aggregate supply is the sum of the individual quantities firms choose
in the model. The market equilibrium prigeresults from the interaction of ag-
gregate supply and aggregate demand. Aggregate demand is given exogenously.
The only assumption needed concerning aggregate demand is the assumption of a
downward sloping inverse demand function.
Absolute payoff of firm, 15 (), is given by the difference between net profits

and costs,

T (s)=ps—C(s). (10)

The cost function is assumed to be the same for every firm and increasing in the
guantity. Marginal costs are assumed to be non—decreasing.
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The ‘standard’ Cournot model is known to result in a unique symmetric Nash
equilibrium with each firm supplying a quantigy, implicitly given by

_0C(s) 9p
= e _ﬁs""' (12)

The Game in Relative Payoffs The population mean payoffi, is the average
absolute payoff of the supply side,

_ 12
M=~ i;Tﬁ(S)- (12)

Consequently, relative payoff of firm given by the difference between the
firm’s absolute payoff and the average payoff of the supply side, is

T (S) =TG (S) —Tt. (13)

Assuming identical equilibrium behavior of all playerd, i.e. all players but
playeri, (13) becomes

n—-1

m(s) = ——[p(s—si)+C(si)—C(s)]. (14)

Individual maximization of {4) with respect tas yields

p = L;S) +(s-i—9)

op

35 (15)

Note that (5) implicitly defines player’s reaction function.

For completely symmetric equilibrium behavior, ig.= sV i, the term
(s_i —s) vanishes, such that the evolutionarily optimal quangty,is implicitly
given by

K
_oc(s) (16)
0y
This is exactly the ‘price equals marginal costs’ condition known as the optimum
condition for quantity choice under perfectly competitive circumstances. Conse-
quently,sr gives the Walrasian equilibrium quantity, arib) establishes a Wal-
rasian equilibrium.

The Walrasian equilibrium1{) is the only symmetric general ESS, i.e. the
only symmetric Nash equilibrium of the re—formulated Cournot game in relative
payoffs. Or, to make it sound a little more paradoxical: For relative payoffs, the
Walrasian equilibriums the only symmetric Cournot—Nash equilibrium.

v



Another feature of the Walrasian equilibrium should be stressed: In contrast to
the Cournot quantity, the Walrasian quantity is independent of the number of firms
in the game. Note, however, that for the number of firms approaching infinity,
the inverse elasticity of dema as given in {1) tends to zero and thus the
regular Cournot quantity becomes the evolutionarily stable quantity, which is the
Walrasian oné"

lims;=s". (17)

N—oo

Related Literature The result given in this section is not new. It dates back to

( ) who showed that in an ‘Darwinian Model of Economic Natural
Selection’ in a Cournot game, the Walrasian strategy will be the only one to sur-
vive. This result is fully in line with results by 0 ), who finds
the Walrasian strategy to be the unique stochastically stable strategy in the Cournot
game. Although the general concept of stochastic stability in evolutionary games
( | ) is a concept of finding long run stable states of noisy evolutionary
dynamics, in spite sensitive games this concept results in strategies which can be
found by simply maximizing relative payoffs.

Experimental Results on Spiteful Behavior As certainly any form of spiteful
behavior, irrespective of the underlying motives will lead to the result deduced
above, itis an interesting question to ask, if, apart from evolutionary spite, there is
evidence for different types spiteful behavior in the Cournot game. In fact, some
laboratory experiments with the Cournot game give some evidence that spiteful
behavior might possibly occur. In some early experiments with repeated Cournot
duopoly and triopoly games and anonymous players, ( )

find the resulting quantities to tend to be ‘more competitive’ than the Cournot Nash
quantity. In a series of laboratory experimentsHayit ( ), in their personal
comments, some of the players even explicitely mentioned to have been guided by
spiteful motives i{lolt, y p. 323), thouglilolt himself comments that most of

the players tried to maximize absolute profits. Thus, there is little, but more than
no evidence of spiteful behavior induced by other than evolutionary forces in the
Cournot game.

Another line of thought might be enlightening: Although at first sight, spiteful
behavior in the Cournot game does not look too sensible to assume, there could
be such behavior, if e.g. firms try to maximize market share instead of absolute
profits, which then leads back to the idea of players’ trying to perform better than
the others.

3This is a textbook result. See el (1992.



5 Rent Seeking: The Tullock Game

The Model Another example of the effect of spiteful behavior is a class of rent
seeking games known as ‘Tullock games’. Starting with the seminal paperiby

( ), there are various papers on this topic. Surveys and in—depth analysis
can be found in ( ) and ( ). This paper
will focus the basic form of the model: A group pfplayers can make an invest-
menty; in order to participate in a lottery. The prize to be woVisThe higher
a player’s investmeny; the higher (ceteris paribus) is her chance of winning the

prize, pi:

pi = pi(x) with X={x;, Xz ..., %}, (18)
opi(x)

0. 19

. (19)
A commonly used form of the contest success function or rent seeking tech-

nology pi(x) is the one originally introduced by ( ):
N
PiX) = < - (20)
I >a X
The expected payoff of playeresults as
r
T = LV —X. (21)

YLy
It is widely known that for the contest success functi@f) the unique sym-
metric pure Nash strategy (for absolute payoft§),is

X3=—TIV. (22)
The interesting point at this finding is the fact that there is underdissipation of

the prizeV as long as < ”;nl This means that in these cases players’ aggregate
investmennx; falls short of the priz&/:

-1
nx;<Vforr<nT. (23)
Whether there is underdissipation depends on the rent seeking technology,

which is characterized by the parameteand — which is important here — by
the number of players.



The Game in Relative Payoffs The re—formulation of the Tullock game into
relative payoffs is straightforward. Let again relative payoff be

with population mean payofi

Ti—

Sl

n 1 n
=>|V-Sx]|, 25
k;ﬂk - ( i;><.> (25)

such that relative playoff results as

X VXX
J— Vox—— &7
m SiaX AR

(26)

Maximization of relative payoff with respect t¢ and application of the sym-
metry conditiornx; = xVi yields

2r—1/n__
e Ui VRIS 27)
(nx) n
o X = %v (28)

Xy (28) gives the unique symmetric pure Nash strategy for relative payoffs, i.e.
characterizes the unique symmetric general ESS.

The interesting fact concerning this result follows from again considering the
guestion of over— or underdissipation. Considering the degree of dissipation of the
prizeV, it follows that

X<V & r<l. (29)

This means that for the given rent seeking technology, decreasing marginal
returns tax; will under all circumstances lead to underdissipatiol of his result
holds irrespective and independent of the number of players involved in the game.

Moreover, it becomes clear that the evolutionary optimal level of investment,
X;, is larger than the regular one,, as long as the number of players is finite:

* n—-1 * * *
=% = Xg <X ¥V n<oo. (30)

For the number of players approaching infinity, evolutionarily optimal and

regular optimal investment levels coincide:
r!ian X5=X. (31)

This notion is similar to the case of the Cournot game (see equdti®)y for
which the regular Cournot Nash quantity is known to become the Walrasian one,
I.e. the evolutionarily stable strategy, for the number of firms approaching infinity.
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Experimental Results on Spiteful Behavior In cases where agents compete for
a rent, the assumption of spiteful behavior might look quite sensible: What counts
in order to win the prize in the Tullock competition is to be better than the others.
Thus, apart from evolutionary forces, there could be other motives for spiteful
behavior in this game.

Nevertheless, results from laboratory experiments with the Tullock rent seek-
ing games give very little evidence for spiteful behavior. For the case of a linear

rent seeking technology & 1), ( ) find their laboratory
players to significantly play the Nash strategy in absolute paydffs
( ) and ( ) find similar results with at least some evi-

dence that some players tend to invest more than the regular Nash amount, but still
clearly less than the evolutionarily optimal one. Thus, to the experimental results,
evolutionary forces can at best serve as a reason for deviations from the normal
Nash solution, but not as a behavioral attractor to a general ESS.

6 Public Goods Games

The Model For another example of the role of the spite effect in larger games,
consider the continuous public goods game. In order to provide a simple example,
a very basic variant of the model will be considered. The model in focus is a model
of quasilinear preferences, which helps to identify the optimal provision level of a
public good regardless to income effects. For more details on public goods games,
¢ ) is an excellent reference.

Consider a game af players. Each playaris endowed with a budget of,
which she can spend for an amount of a private good or for a contribution to the
public good,x;. Prices of both goods are assumed to be unity. The payaosf
given as the player’s utility, which is quasilinear in the consumption of the private
good,w — X, and the total amount of the public good providéd,

T=w—X+pInG, (32)

where the total amount of the public godd, is given as the sum of individual
contributions

G= i 33
glxj (33)

Maximization of absolute payoff; with respect to the individual contribution
i leads to a unique individual Nash strategy given by

n

X g = Max B—ij; 0| . (34)
=1
J#

11



For symmetric behaviof, = xVi this leads to a symmetric Nash strategy of

Xg = e (35)

It is worth mentioning two important features of the variant model presented
here: First, the Nash contribution level is strictly positixg> 0. This is different
from many public goods game formulated throughout game theoretic literature.
For the purpose of this paper, however, it is a useful feature in that it helps to point
out the difference between a ‘regular’ optimal contribution level and an evolution-
arily optimal one. The second important feature of the model is the fact that the
optimal symmetric contribution leveBb) depends on the number of players in
the game: The more players take part in the game, the smaller is the symmetric
optimal contribution to the public good: Free riding increases with group size.

The Game in Relative Payoffs In order to find the evolutionarily optimal strat-
egy, i.e. the general ESS, the population mean payoff is computed as

1

n
_ G
= j;n, —W+BInG—H. (36)

S

Consequently, relative payoff equals

Tﬁ:Tﬁ—ﬁ:—_ij——xi. (37)

Maximization of i{ for plausible contributions o% > 0 results in a corner
solution. The optimal contribution in relative payoffs is

X' =X =0. (38)

This means that in the public goods game presented here, there is a positive
symmetric Nash contribution of = 3/n. This, however, is not the case for the
maximization of relative payoffs: The evolutionarily optimal contribution (the
symmetric general ESS) ¢ = 0. Moreover, this contribution is independent of
the number of players involved.

Note, that for the number of players approaching infinity, the optimal contri-
bution for absolute payoffs approaches the evolutionary one:

r!ian X5 =X (39)

This result is similar to the outcomes derived for the Cournot game (equation

(17)) and the Tullock game (equatiof1)).
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Related Literature The results presented in this section give a theoretical foun-
dation of the findings by ( ). con-
ducted a number of numerical simulations of replicator dynamics (i.e. evolutionary
dynamics) in a public goods game. Their most prominent result is the observation
that over time, the populations of players tended to converge to playing a common
contribution of zero. This long run result is found to be independent of the size
of the population, i.e. the number of players. Unfortunately for the purpose of
this paper, based their analysis on a model with the ‘regu-
lar symmetric equilibrium equal to the general ESS equal to zero. Thus, long
run results generated by maximization of absolute payoffs and those generated by
spiteful behavior coincide in their model.

Experimental Results on Spiteful Behavior Most of the experiment conducted

with public goods models share the same problem: The settings are such that the
individually optimal solution is a contribution of zero, the strategy of so called
‘complete free riding’. The common finding to public goods experiments (to be
more precise, to experiments with continuous public goods) is the fact that in the
long run, contributions decline, but that at the same time, complete free riding is
never achieved ( J ). This gives at least some evidence against strong
forces of spiteful behavior in public goods games.

7 Coordination Games: The Van Huyck/Battalio/Bell
Game

The Model Another example of the role of spiteful behavior is the model by
( ) ). The authors motivate the game by using a case

from labor economics: A group of players in a work group produce goods by
means of a Leontieff technology. Each playsrpayoff increases in the output
min; {s; } and decreases in personal effgrt

The game is am—player coordination game. Every player chooses from an
action space consisting of actions (effort levels) named 1, 2, 3, 4, 5, 6, and 7:
seS={12 34,56, 7}. Each player’s payoff is given by

m=amin{s;} —bs, a>b>0. (40)
j
Table 2 gives an example of the game far= 10 andb = 1. Note that there are
no entries below the main diagonal of the matrix, because the respective cases are

simply impossible: If, for example, playechooses action 2, the minimum action
of all players cannot be larger than 2.
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minj {Sj} max#i {S}

7 6 5 4 3 2 1 7 6 5 4 3 2 1

s 7|63 53 43 33 23 13 3§ 7|0 -1 -11 -21 -31 -41 -51
6| — 54 44 34 24 14 4 6 o -1 -11 -212 -31 -41

5/ - - 45 3 25 15 5 5| - - o -1 -11 -21 -31

4| - - - 36 26 16 6 4| - - - o -1 -11 -21

3| - - - = 27 17 7 3| - - - - 0o -1 -11

2 - - - - - 18 8 21 - - - - - 0o -1

i\ - - - - - -9 1/- - - - - - 0

(a) Absolute Payoffs to Playér (b) Relative Payoffs to Playér

Table 2: Coordination Game.

The game has seven symmetric Nash equilibria in pure strategies: Every strat-
egy profile with all players playing the same strategy,92.(%)", s« € S consti-
tutes an equilibrium. It is easy to recognize that the equilibrssn(7)" is Pareto
efficient and thas = (1)" is the risk dominant equilibrium.

Empirical Findings The model has been the center of interest for a large number
experimental investigatiorfs. The common outcome of these experiments is the
finding that players tend to coordinate on the equilibrium with all players playing
strategy ‘1’ as the game is repeated. This is commonly applied to the fact that
this equilibrium represents the risk dominant one. It wasng ( ) who first
showed that at least in 2 by 2 coordination game the risk dominant equilibrium
coincides with the long run evolutionary one, i.e. with the equilibrium reached in
the long run by evolutionary processes with a minimal degree of noise. In this
case, the long run evolutionary equilibrium is the same as the general ESS, which
will be computed in the following.

The Game in Relative Payoffs The model in focus is different from the other
models introduced above: The strategy space is finite, the payoff function is non
differentiable. Consequently, re—formulating this game into a game of relative
payoff requires some consideration about the appropriate concept of relative pay-
off in this game. For each playerthe only determinant of her payoff apart from

her own strategy is the member of the population with the smallest strategy, i.e.
the member with the highest payoff apart fratn Thus, an appropriate measure

of relative payoff is

M =T§ — ijz;?l({sj} . (41)

4A survey can be found ifchs(1999.
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With the help of ¢1), Table2 can be re—written into relative payoffs, resulting
in Table2(b). From Table2(b), it is easy to recognize, that in relative payoffs, i.e.
under the regime of spiteful behavior, the only remaining equilibrium is the risk
dominant equilibriums = (1)".

Experimental Results on Spiteful Behavior Although the behavior leading to

a convergence of players’ strategies to the ‘1’ strategy is spiteful behavior in the
meaning of the term used in this paper, in this game players need not have spiteful
motives in order to behave spitefully: If in each round of the game players are
confronted with the respective column of the payoff Tahlenaximization ofab-
solutepayoffs (in this row) will implicitly lead to maximization of relative payoffs

in the game as a whole. It is helpful to consider the following example: Let us
assume players are completely myopic and hold no memory of previous periods.
Then, let us assume the minimum strategy played in peried was 3. If in
periodt players get to see the 3—column of TaBlenly, even players planning

to maximizeabsolutepayoff will play 3 (or even less) in the next period. Thus,

in this game, there is room for spiteful behavior which is solely induced by the
structure of the information available to the players.

8 Summary

Spiteful behavior is the core ingredient of evolutionary dynamics: Players max-
imize relative rather than absolute payoffs. This notion is the basis of a method
for finding general evolutionarily stable strategies in a class of games with finitely
many players discussed in this paper. The method simply consists of computing
the strategy that maximizes relative payoff. The class of games this method can be
applied to includes the Cournot game, the public goods game, the Tullock game of
rent seeking, and the coordination game. For all of these games

it can be shown that for finitely many players the evolutionarily stable equilibrium

is independent of the number of players and differs from the ‘regular’ equilibrium,
although these equilibria coincide if the number of players approaches infinity.
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