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resources are split between agents through the Myerson value. As equilibrium concept 
we adopt a refinement of pairwise stability. The only parameters are the number N of 
agents and a constant cost k for every agent to maintain any single link. This setup 
shows a wide multiplicity of equilibria, all of them connected, as k ranges over non 
trivial cases. We are able to show that, for any N, when the equilibrium is a tree 
(acyclical connected graph), which happens for high k, and there is no decay, the 
diameter of such a network never exceeds 8 (i.e. there are no two nodes with distance 
greater than 8). Adopting no decay and studying only trees, we facilitate the analysis but 
impose worst–case scenarios: we conjecture that the limit of 8 should apply for any 
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Abstract

The paper presents a model of network formation where every con-
nected couple give a contribution to the aggregate payoff, eventually
discounted by their distance, and the resources are split between agents
through the Myerson value. As equilibrium concept we adopt a refine-
ment of pairwise stability. The only parameters are the number N of
agents and a constant cost k for every agent to maintain any single
link. This setup shows a wide multiplicity of equilibria, all of them
connected, as k ranges over non trivial cases. We are able to show
that, for any N , when the equilibrium is a tree (acyclical connected
graph), which happens for high k, and there is no decay, the diam-
eter of such a network never exceeds 8 (i.e. there are no two nodes
with distance greater than 8). Adopting no decay and studying only
trees, we facilitate the analysis but impose worst–case scenarios: we
conjecture that the limit of 8 should apply for any possible non–empty
equilibrium with any decay function.

JEL Classification Number: D85.

Keywords: Network Formation, Myerson value.

1 Introduction

Network models are a good approximation of many social and even eco-
nomic environments1. From the most intuitive networks of human relations,
as friendship and cooperation (many of which are however hardly record-
able), to diplomatic, trade or research agreements between countries or firms.
This kind of interrelations might be synthetically described as environments

1See Newman (2003) for a complete review of networks in both hard and social sciences.
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where agents optimize the gain from connections and intermediations, with
the trade–off of some cost for maintaining their links.
The statistical properties of all these social types of networks have been
tested in the last decade. The random graph model of Erdös & Rènyi (1960)
is accepted as the benchmark model, any statistically significant deviation
from this setup identifies the dataset of connections under analysis.
For the purpose of the present work we will consider the small world effect2.
We define the distance between two nodes as the shortest path between them
(infinity if they are not connected), and the diameter as the maximum value
of distance for all possible couples. A network will obey the small world
effect if its distance grows less than the logarithm of the number of nodes
(which is the asymptotic limit in a random graph)3.
Models of network formation have been proposed since late 90s in two sep-
arated research fields. Physicists, starting from Albert & Barabasi (1999),
have proposed stochastic processes that build graphs with some of the desired
properties. Economists, from the pioneering paper of Jackson & Wolinsky
(1996), have built game theoretical setups whose equilibria are stylized ex-
amples of social networks. Jackson & Rogers (2005) appears as the first
combination of the two scientific streams, and is also the model that matches
most of the empirical evidence of social networks.

The aim of the present paper is to propose a game-theoretical model,
general enough to embrace characteristics of the different real–world phe-
nomena, but with a reduced number of parameters to avoid the suspect of
over–fitting. This model has, for non trivial choice of the parameters, mul-
tiplicity of equilibria. We would check if they all satisfy asymptotically the
small world property. In those that we are able to treat mathematically, the
diameter grows less than the log of the number of nodes simply because it
is bounded by eight4. To allow combinatorial analysis we will make three
successive restrictions, all of which seems however worst–case scenarios for
our purpose, so that we conjecture that the results obtained in the final re-
stricted model are valid in the general setting.
Section 2 describes the model, section 3 derives a useful tool from combina-
torial algebra, section 4 obtains the results while section 5 concludes. Most
of the math is in the appendix.

2Jackson & Rogers (2005) describe in the introduction the peculiar properties of social
networks.

3This property does not appear only in social networks but also in natural and human
made physical structures.

4The limit of 8 is not strict, since e8 ≃ 3000. Moreover in the largest real datasets the

diameter seems to grow as D ≃ log(N)
log(log(N)) , inverting for D = 8: N > 10

11.

2



2 The model

Appendix A (page 13) defines the notation for graphs (i.e. networks) in the
present model. Given N agents, we consider the class of equivalence, under

permutations, of all the possible 2
N·(N−1)

2 undirected irreflexive networks on
them, the set G. A value function is a real–valued function from every G ∈ G.
We will start from a general setup where the contribution of every couple
(i, j) has a nonnegative value Cij, discounted by their distance via a non-
increasing, non negative, function, f(·), such that f(1) = 1 and f(∞) = 0.
We have then a gross value function for the profits, that we call generalised
connected couples value function (GCC):

V
Cij

f
(G) ≡

X

i<j, d(i,j)<∞

„

f(d(i, j)) · Cij

«

. (1)

k is instead the constant positive cost for any single agent to maintain her
links, so that a link subtracts 2 · k from the total value function. Formally
the net (and actual) value function is:

V
Cij

f,k
(G) ≡

X

i<j, d(i,j)<∞

„

f(d(i, j)) · Cij

«

− 2 · k · L(G) . (2)

We will call the connected couples value function (CC) the case: Cij = 1
∀ i 6= j and f(·) = 1 constant for all finite values.
A value function is anonymous if it is invariant under permutations of N .
The GCC V Cij will be if Cij is constant for all i and j.

Efficient networks are those maximising the (net) value function. We
have no general result for the generalized V Cij , but for CC the all and only
efficient networks are trees (if k ≤ N

4
) and the empty network (for k greater

or equal).
Given a value function V , an allocation rule is a function A from G to

R
N , such that

∑N

n=1 An(G) ≤ v(G), ∀ G ∈ G. The allocation rule assigns
to every agent part of the value function. The definition of anonymity is
the same, an allocation rule is moreover fair 5 if Ai(G, V ) −Ai(G\gi,j, V ) =
Aj(G, V ) − Aj(G\gi,j, V ) ∀ V : G → R, G ∈ G, i, j ∈ N . Fairness means
that the addition or the removal of any link has the same effect on its two
nodes. This does not mean that they alone get half of the benefit (or damage)
from the new network, whose effects could heavily influence the other’s payoff.

Definition 1 Given a value function V , the Myerson value6 (MV) allocation
rule M is:

Mi(G, V ) =
X

S⊆N : i∈S

1

S
`
N
S

´ (V (S) − V (S\{i})) . 2 (3)

5This property is also known as equal bargaining power, e.g. in Jackson (2005).
6An extensively survey is in Aumann & Myerson (1988).
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Theorem 1 (Myerson, 1977; Jackson and Wolinsky, 1996) ∀ value func-
tion V , ∃ one and only one anonymous and fair allocation rule, this is the
MV. 2

For the gross GCC, the difference V (S) − V (S\{i}) is the contribution
of all the new couples connected by i’s entrance, weighted by their value and
eventually by their distance (through f(·)). These are both the direct new
connections of i, and all those couples that were not connected and are now,
thanks to her intermediation.
This means that, for the value function GCC, MV is:

Mi(G, V ) =
X

S⊆N : i∈S

1

S
`
N
S

´

0

B
@

X

j 6=i, i⊲⊳Sj

f(d(i, j)) · Cij +
X

j 6=h6=i, j
i
⊲⊳Sh

f(d(j, h)) · Cjh

1

C
A (4)

The distribution of costs for links is anonymous and fair (by definition),
therefore when Cij is constant for all i and j (and then it is anonymous) it
is the same to compute the Myerson value on the net value function, or to
compute it on the gross one and then reduce costs on individual basis.

MV is a direct derivation of the Shapley value for networks. It is natu-
rally considered as a result of cooperative approach, where it is itself a notion
of equilibrium as part of the core. This allocation does not seem to fit in
a setup where other non–cooperative definitions of equilibria (to appear in
our context) are present. There are however two consideration to justify this
choice. MV is very sensitive to the structure of the network, in the sense that
a small change somewhere in the graph modifies all allocations in relation to
distance and degree, and fairness is just the most direct aspect of this. No
other general allocation rule shows this resilience.
The second point comes from results that, under specific types of negoti-
ations, obtain the Shapley value (Gul, 1989) or directly the Myerson one
(Navarro & Perea, 2005), as the outcome of non–cooperative bargaining. We
will however not enter this question in the present work, so that our choice
can simply be considered as part of the axiomatization.

Example 1 The essential nodes allocation rule (from Goyal and Vega Re-
dondo (2004), there with another name) deals the allocation rule CC. The
unit of profit from every connected couple is split equally between the two in-
volved agents and all the other7 essential ones between them. Figure 1 shows
how it is anonymous but not fair. 2

As notion of equilibrium we will consider a recently proposed refinement
of pairwise stability (Jackson & Wolinsky, 1996).

7As stated in the appendix, a node is, by definition, essential for her own connections.
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1/2 + 2/3 = 7/6 2/2 + 1/3 = 4/3

2/2 + 1/3 = 4/33/2 + 2/3 = 13/6

3/2 3/2

3/23/2

Figure 1: Example 1.

Definition 2 (Strong Pairwise Stability) Belleflame and Bloch (2004)
define strong pairwise stability (SPS). G is strongly pairwise stable to V and
A iff:

∀ i ∈ N , ∀ Γ ⊆ {η ∈ G : i ∈ η}, Ai(G, V ) ≥ Ai(G\Γ, V )

∧

∀ γi,j 6∈ G, Ai(G, V ) < Ai(G∪{γi,j}, V ) =⇒ Aj(G, V ) > Aj(G∪{γi,j}, V ) .

SPS is a refinement of pairwise stability. The definition means that no agent
has an incentive to erase any subset of her links (first condition) and no
unconnected couple have an incentive to create a link between them (second
condition). 2

It is worth noting that, if we have fairness in the allocation rule, SPS for the
addition of a link can be checked on a single of the two involved nodes.

Example 2 This is a case where SPS solves a paradox of the simple pairwise
approach. Consider a circle of 14 nodes, where k = 4 and value function is
again CC (figure 2). The allocation for every node is negative, but without
admitting the complete quit from a single node, this circle is an equilibrium.
2

~2.25 13/2=6.5 ~10.00

Figure 2: The 14 nodes circle (center) under MV for CC, with the two possible
deviations (with approximate gross allocations) under pairwise stability.

Let us reassume the model. In the present context we will consider:
(i) the generalized connected couples value function GCC (V Cij ), from a cer-
tain point on its special anonymous case, avoiding in the end also decay (to
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obtain CC);
(ii) the Myerson value allocation rule MV, initially only for the gross value
function, then also for the net one as soon as we adopt anonymity;
(iii) strong pairwise stability equilibrium concept SPS.

Example 3 Figure 3 shows all the possible gross MV when N = 4 and CC
(Cij = 1 ∀ i 6= j and f(n) = 1 ∀ n) is considered as value function. SPS
equilibria are the complete network d for k ≤ 1

12
, the circle c for 1

12
≤ k ≤ 5

12
,

the star b for 1
6
≤ k ≤ 5

6
, the queue a for 5

12
≤ k ≤ 23

24
and the empty network

for k ≥ 1
2
. The listed intervals are clearly overlapping. 2

1/2 1/2

1/21/2

0 5/6

4/35/6

0 1

11

7/6 4/3

4/3
13/6

13/12 13/12

23/1223/12

7/6 7/6

5/27/6

3/2 3/2

3/23/2

19/12 17/12

19/1217/12

3/2 3/2

3/23/2

c d

a b

Figure 3: MV allocations of CC, for N = 4.

Example 4 Figure 4 illustrates most of the SPS equilibria for the connected
couples value function CC, when N = 6, as k ranges over positive values.
There are many intervals of k with different possible equilibria. 2

The last two are examples for multiplicity of equilibria8. We have also exis-
tence, not because of the improving paths result of Jackson and Watts (2002)
(it does not hold under pairwise stability), but because the Myerson value
has a potential function (see Monderer & Shapley, 1996) that changes for
every change in the links’ set of a single node, as noted in Jackson (2003).
We end the section with a preliminary analytical result.

Proposition 2 Under MV for GCC:
the empty network is a SPS equilibrium for k >

max{Cij}
2

;

the complete network is for k ≤ min{Cij}
N(N−1)

. 2

Proof at page 14.

8Pin (2006) analyses empirically, with computer simulations, some properties of the
equilibria of this same model.
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34/15

1/12 < k < 9/20

89/30

k < 1/30

5/2

1/30 < k < 1/25

5/2 5/2

5/2

1/20 < k < 4/15

5/2

5/2 5/2

1/10 < k < 3/20

11/4

49/20

1/6 < k < 7/6

35/6

11/6

31/60 < k < 61/48

7/4

61/12

37/12

19/12

31/60 < k < 25/18

5/3

25/6

47/60 < k < 23/15

5/3

131/30

59/20

23/15

5/6 < k < 239/180

89/60

97/60

239/60

209/60

169/60

2/5 < k < 21/20

5/2

5/12 < k < 31/60

9/5

143/30

21/10
34/15

4/15 < k < 1/3

67/30

79/30

1/3 < k < 2/5

23/10

29/10

1/2 < k

0

8/15 < k < 47/60

26/15

56/15

49/20

139/60

21/20 < k < 29/20

29/20

199/60

41/15

34/15

1/5 < k < 8/15

143/60

57/20

Figure 4: Possible SPS equilibria with MV for CC, N = 6: gross allocations
and the interval for which they are (strict) equilibria are shown.

3 Computing Myerson value

Let us start the section with a useful lemma.

Lemma 3 ∀ A ≤ N , A, N ∈ N:

NX

S=A

1

S
`
N
S

´

“N − A

S − A

”

=
1

A
. 2

Proof at page 14.

The fact that
∑N

S=A
1

S(N
S)

(

N−A

S−A

)

is independent of N may seem irrelevant.

Consider however two nodes i and j with a single path of A elements con-
necting them, and the expression (4) at page 4 for our Myerson value. To
compute the contribution for i, from her connection with j, we must consider
all the

∑N

S=A

(

N−A

S−A

)

possible oversets of their path, and weight them all by
f(A−1)·Cij

S(N
S)

. The final result is (by lemma 3):
f(A−1)·Cij

A
.

The same computation will be true if we consider two nodes j and h, with a
single path of A elements connecting them, and i is among them. i’s payoff

from intermediation will be
f(A−1)·Cjh

A
.

We have then a direct result from the lemma.
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Proposition 4 If a graph G is without cycles, MV for GCC is:

Mi(G, V
Cij

f
) =

X

j 6=i, i⊲⊳Gj

f(d(i, j)) · Cij

d(i, j) + 1
+

X

j 6=h6=i, j
i
⊲⊳Gh

f(d(j, h)) · Cjh

d(j, h) + 1
. 2

A corollary of last proposition is that, with MV for CC as allocation rule,
when a network is without cycles, we get the essential nodes allocation rule
(example 1, page 4).
If we have to compute MV for GCC, in a network where there are more paths
between nodes, we will use laws from set theory, considering oversets of the
paths.

Example 5 If there are two paths between i and j, π1 and π2, with |π1| ≤
|π2|, the contribution of this connection is the sum of the two contributions as
they were alone, minus the contribution of their union (that would however
be counted twice) weighted with the longest decay (since when they are both

present the distance is given by the shortest path): Cij ·
(

f(|π1|−1)
|π1|

+ f(|π2|−1)
|π2|

−

f(|π2|−1)
|π1∪π2|

)

. 2

Last example could be generalized for n possible paths, applying the identity

M

„
[

i

πi

«

=
X

i

f(πi)

|πi|
−
X

i6=j

f(max{πi, πj})

|πi ∪ πj |
+
X

i6=j 6=k

f(min{πi, πj , πk})

|πi ∪ πj ∪ πk|
− . . . (5)

The same kind of computation has to be made for the revenue from inter-
mediations. We have a general rule to simplify the computations of MV for
GCC.

We end this section with a results that we will implicitly assume further
on.

Lemma 5 Under MV for GCC, if we have a SPS equilibrium of more clus-
ters, every cluster is a SPS equilibrium by itself.
Proof: This is simply because there are no paths and no transfers between
the clusters, and MV is independent of N . 2

4 Characterization of equilibria

From now on we will consider only a subset of all the possible SPS equilibria,
namely those with no cycles. This first reduction of the object of analysis
will allow the analytical treatment of the networks. We think also that this
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choice is justifiable as a worst–case scenario for the properties to prove.
If we consider under which conditions cycles are not present in equilibria (see
e.g. figure 4, page 7), we note that this happens when the cost k for links is
highest and redundancy of paths is too costly. Since we are trying to fix a
limit on the diameter of equilibria, and we know from last section that dis-
tance decreases revenues from connections, at least by inverse proportion, we
argue that a reduction of the cost k for forming links would reduce distances
in equilibria. Hence considering minimal (in the number of links) equilibria,
we are considering those induced by highest k, which are the same which
exhibit greater diameter.

4.1 The exclusive Club

The next result is intuitively sound, and may explain why there are few non–
economists in the network of research collaboration between economists, and
why non–economists don’t work independently on economy on their own.

Proposition 6 Suppose every node is endowed with an ability xi,
Cij ≡ C(xi, xj) is a symmetric increasing function, and we apply MV on
GCC;
then every SPS equilibrium with no cycles is either empty or consists of a
single cluster Γ and eventually singletons;
the singletons are such that xsingleton < min{xj : j is a leaf of Γ}. 2

Proof at page 14.

Example 6 We obtained a condition of comparison between leaves of the
only cluster and external singletons; figure 5 shows an example where this
comparison does not hold for non-leaves nodes: here f(n) = 1 is constant up
to n = 4, and C(i, j) = xi · xj. 2

3/3=1

2/3

xj=x

0x(3/3)=x

x(1/2+2/4)=x
xi=1xi=1 xj=x

xj=x

xj=xxj=x

+1/6

xc=0

xi=1

0 < x < 1/6    and     1/6 < k < 1/3

Figure 5: An exclusive star with an unable center.
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To go on with the research we need a further approximation. From now
on we will consider all the Cij to be constant ∀ i 6= j, i, j ∈ N . Actually we
will normalize all the Cij to 1, which is just a rescaling of the k’s.
We get an immediate corollary.

Corollary 7 If Cij are constant ∀ i 6= j, i, j ∈ N , and we apply MV on
GCC; every SPS equilibrium with no cycles is either empty or connected. 2

The approximation allow us to focalize on the only component in equilibrium.

In the next example we see that the star, a monopoly for intermediations,
but also the most efficient network under decay, may be a SPS equilibrium
for a wide range of values of k, for any N .

Example 7 If Cij are constant ∀ i 6= j, i, j ∈ N , and we apply MV on
GCC, a star with center i is a SPS equilibrium for:

1

2
−

f(2)

3
≤ k ≤

1

2
+

(N − 2) · f(2)

6
. 2

Proof at page 15.

4.2 The eight degrees of separation

Before the main result we will propose two lemmas and impose the third and
last approximation: there is no decay, so that analysis is reduced to CC.
We point out how this choice is again intuitively a worst–case scenario if we
search a limit in the dimension of the diameter in equilibrium. The formal
analysis (in the appendix) would have been however much harder in the
general setup GCC.

Lemma 8 To prove a proposition P by induction, for all the trees of diam-
eter greater than D0, it is sufficient to:
take a diameter D > D0;
step zero - prove that P holds for the queue of D + 1 elements (the minimal
tree of diameter D);
nth step - suppose P holds for any tree of diameter D;
(n + 1)th step (induction) - add a leaf, such that diameter does not increase,
and check that P holds. 2

Proof: the procedure is sufficient to prove the desired P because any tree
of diameter D can be obtained starting from the queue of D + 1 elements,
adding leaves such that diameter does not increase. 2

10



Last lemma strongly use anonymity of the nodes, and would not be valid
otherwise.

Lemma 9 If Cij are constant ∀ i 6= j, i, j ∈ N , and we apply MV on GCC,
a queue cannot be a SPS equilibrium if it has more than 7 elements. 2

Proof at page 15.

The proof of the lemma follow the same strategy we will apply in the main
proposition. We determine a maximal value of k for which one of the two
extreme nodes should maintain their link, then we show that this value is too
small for the same two extreme nodes not to connect, hence the structure
cannot be a SPS equilibrium for any value of k.

Here comes the main result. From a certain point on, in the proof, we
will assume no decay. Since we already got anonymity we are in the CC case.

Proposition 10 If we apply MV on CC; every SPS equilibrium with no
cycles does not have diameter greater than 8. 2

Proof at page 16.

The proof is by induction on contradiction. We know from lemma 9 that
a queue of diameter greater than D0 = 8 cannot be an equilibrium, because
if extrema have an incentive to maintain their single link, they have a greater
one to form a second link together. We use induction, as indicated in lemma
8, to prove that again no k for which extrema would stay connected is big
enough for them not to join directly with a new edge.
A question may arise: in lemma 9 contradiction holds also for diameters
7 and 8, why do we have to start from 9? Next example shows how tiny
intervals of k exhibit counter–examples.

Example 8 Figure 6 illustrates examples of equilibria with diameter 7 and
8 (the star-like network with 4-nodes arms may be an equilibrium, for some
k, also with any, greater than 6, number of arms).

We end the section with the natural conjecture that arises from the partic-
ular choice of our approximations. We will not stress again why we suppose
that the approximations we made in proposition 10 are useful for the analysis
but unnecessary for the result.

Conjecture 11 If we apply MV on GCC; every SPS equilibrium does not
have diameter greater than 8. 2

11



4.011 ~ 10109/2520 < k      < 6953473/360360 ~ 4.073

2.076 ~ 5231/2520 < k     < 1751/840 ~ 2.085

2.369 ~ 853/360 < k     < 2059/840 ~ 2.451

Figure 6: Examples of SPS equilibria, with MV for CC, with diameter 7
(left) and 8 (right).

5 Conclusion

The game–theoretical model of network formation proposed is fairly gen-
eral but does clearly not aim to replicate every possible example of network
structure in the real world. Everyone could come up with objections on the
exogenously fixed cost of links, or on the Myerson value as a good approxi-
mation of bargaining or any other human process of allocation.
We would like anyway to point out the other way round. This is a model
that seems (only seems because our proof is not complete and the general
result remains a conjecture) to satisfy, in a non–trivial way, and with rational
equilibria under sound payoffs, one of the empirical properties of the datasets
on real networks.

We suppose moreover that other properties of those structures could be
mimicked under the present set–up. The next attackable one could be assor-
tativity. Let us consider two statistics, the degree of single nodes, and the
couples of them, being or not connected. A network is said to obey assorta-
tivity if the last two measures are positively correlated, i.e. nodes with many
connections tend to link together9. Our intuition comes from a considera-
tion: if a node has many links (i) she intermediates in many connections;
(ii) the cost for a new connection is small, compared to her overall costs.
Why should two big intermediaries share with someone in–between and not
connect together?

We hope not to be wrong in such conjectures, so that the present work

9As noted in Newman (2003), only social networks show this positive correlation, which
is null in random graphs and negative in the other type of networks.
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could be just a primary in the analysis of network formation models whose
equilibria have the statistical properties of real social nets.

Appendix

A Notation

Let us consider a set N of nodes, with |N | = N ≥ 3. A graph (network) G is
a set of links between the nodes, formally G ⊆ N ×N . A link (edge) is then
a couple of elements from N : gi,j ≡ (i, j) ∈ G, a link may also be indicated
by the Greek letters η, ζ , θ. . .
G will be the set of all possible G on N . We call graph architecture the class
of equivalence in G that can be obtained with permutations of the elements
of N .
Subgraph of G will be synonym of subset. Given a graph G in N , ambiguity
can be maintained, when the contest allows it, between a subset S ⊆ N and
the resulting subgraph S ≡ {(i, j) : (i, j) ∈ G, i ∈ S, j ∈ S}. We will indicate
also G\S ≡ {(i, j) : (i, j) ∈ G, i 6∈ S, j 6∈ S} when S ⊆ N .
A graph is undirected if gi,j ∈ G =⇒ gi,j ∈ G, irreflexive if gi,i 6∈ G ∀ i ∈ N .
In the paper we consider only undirected and irreflexive graphs, calling l(i)
the number of links involving i (the degree of i) and L(G) the total number
of links in G (so that

∑

i∈N l(i) = 2 · L(G) ).
An easy representation of graphs among N agents is an N × N matrix with
elements from {0, 1}, 1 indicates that a link is present10. A symmetric matrix
stands for an undirected graph, for an irreflexive one all the elements in the
diagonal are null.
Every G on N defines a topology on it. A path πi,j in G between i and j is an
ordered set of agents (i, i2, . . . in, j)n∈N such that {gi,i2, gi2,i3, . . . gin,j}n∈N ⊆ G.
The length of the path is |πi,j| − 1. A queue is a graph consisting of a sin-
gle path. πi,i is a cycle (whose length is always greater than 1 in irreflexive
graphs). A circle is a graph consisting of a single cycle.
The distance between a and b in G is dG(i, j) ≡ min{|πi,j|−1} if defined, oth-
erwise d(i, j) ≡ ∞ if 6 ∃ πi,j. The diameter of a graph is DG ≡ max{dG(i, j) :
i, j ∈ G}. If dG(i, j) < ∞ (i.e. there is a path between i and j) we say that
i and j are connected in G (we will write i ⊲⊳G j).
The definition of cluster 11 is consequential: ΓG(a) ≡ {(i, j) : i ⊲⊳G j} ⊆ G.

10We are considering graphs where all links are equal and sure. A richer set for the
elements of the matrix would allow for labelled, weighted graphs, or for uncertainty.

11This is the original name, in the game theoretical literature clusters are also called
components.
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G is connected if DG < ∞ =⇒ ∀ i ∈ N , ΓG(i) = G (i.e. there is only one
cluster). When a graph is connected the distance makes our topology a met-
ric12.
A node h is essential for i and j if i ⊲⊳ j and, for all paths (i, i2, . . . in, j),

h ∈ {i2, . . . in} (we will write i
h
⊲⊳ j). Clearly when i ⊲⊳ j: i

i
⊲⊳ j and i

j
⊲⊳ j.

An undirected, irreflexive, graph without cycles is a forest ; if it is moreover
connected it is a tree. In forests and trees we will call leaves the nodes with
only one link. In a tree there is only one path between any two nodes, so
that, if they are not directly linked, every node on the path is essential to
them.

B Proofs

Proof of proposition 2 (page 6): the empty network is easy.
The complete network: If i and j delete a link:

∆(Mcomplete
i \j) =

X

S={i,j}

1

S
`
N
S

´ (V (S) − V (S\{i})) =
Cij

N(N − 1)
.

The marginal loss for deleting the lth link (in the order of increasing Cij) is
increasing in l, that is because the number of possible oversets increases more
than linearly in l;

min{Cij}

N(N−1)
is the threshold for maintaining all links. 2

Proof of lemma 3 (page 7):

NX

S=A

1

S
`
N
S

´

“N − A

S − A

”

=
NX

S=A

(S − 1)!(N − S)!

N !

(N − A)!

(N − S)!(S − A)!
=

NX

S=A

(S − A + 1) . . . (S − 1)

(N − A + 1) . . . (N)

By induction:
N > A = 1:

∑N

S=1
1
N

= 1;

N = A > 1:
∑N

S=N
(S−N+1)...(S−1)
(N−N+1)...(N)

= (1)...(N−1)
(1)...(N)

= 1
N

= 1
A

;
N = n + 1 > A > 1:

∑n+1
S=A

(S−A+1)...(S−1)
(n−A+2)...(n)(n+1)

= n−A+1
n+1

∑n

S=A

(S−A+1)...(S−1)
(n−A+1)(n−A+2)...(n)

+ 1
n+1

= n−A+1
n+1

· 1
A

+ 1
n+1

= 1
A

. 2

Proof of proposition 6 (page 9):
i is outside Γ, consider h = arg min{xj : j is a leaf of Γ} ,

12dG is sometimes referred as geodesic distance (i.e. the shortest path allowed) but here
we do not have any other distance to distinguish from.
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if xi ≥ xh: i could copy h’s link and get a higher payoff than h;
we have proven by contradiction that xh > xi:
consider now i and l outside Γ, with i connected only to l (we consider forests,
so that there is at least a leaf for every non–singular cluster);
if i is connected to l, also h would find this connection profitable (since xh >

xl), from this second contradiction we have only one non–singular cluster.
2

Proof for example 7 (page 10):
The star with center i:

∆(Mstar
j → k) =

„
1

2
−

f(2)

3

«

Mstar
i =

N − 1

2
+

(N−1)·(N−2)
2

· f(2)

3

the marginal loss for deleting one link is

1

2
+

(N − 2) · f(2)

3

the marginal loss 1
2
+ (N−1−l)·f(2)

3
for deleting the lth link is decreasing in l: if

one may be deleted all have to. 2

Proof of lemma 9 (page 11):
Call i1 and iN the extrema of the queue13, we will prove that if there is a k

low enough such that i1 has an incentive to maintain her link, then she will
have an incentive to connect to iN and form a circle.
We will consider the two cases of N odd and N even.

N odd: by simmetry

Mcircle
i1

=

N−1

2X

n=1

f(n)

M
queue
i1

=
NX

n=2

f(n − 1)

n
=

N−1

2X

n=1

f(n)

n + 1
+

N−1X

n= N−1

2

f(n)

n + 1
=

N−1

2X

n=1

0

@
f(n)

n + 1
+

f
“

N−1
2

+ n
”

N+1
2

+ n

1

A

∆(Mqueue
i1

→ iN ) =

N−1

2X

n=1

0

@f(n)
n

n + 1
−

f
“

N−1
2

+ n
”

N+1
2

+ n

1

A

13The weakest elements are actually i2 and iN−1, the upper-bound of 7 will however
hold also for them.
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The queue cannot be an equilibrium if:

N−1

2X

n=1

0

@f(n)
n

n + 1
−

f
“

N−1
2

+ n
”

N+1
2

+ n

1

A >

N−1

2X

n=1

0

@
f(n)

n + 1
+

f
“

N−1
2

+ n
”

N+1
2

+ n

1

A

N−1

2X

n=1

f(n)
n − 1

n + 1
>

N−1

2X

n=1

f

„
N − 1

2
+ n

«
2

N+1
2

+ n

It is straightforward that f(n)n−1
n+1

> f(n + h) 2
n+h

, as n ≥ 3, h ≥ 4.
Then if the result holds for N0 ≥ 7 it holds for every N > N0,
we can take as worst case the case f(n) = 1 constant, and find that the in-
equality holds actually for N > 7.

N even: we have now

Mcircle
i1

=

N
2
−1
X

n=1

f(n) +
f(N

2
)

2

M
queue
i1

=

N
2
−1
X

n=1

0

@
f(n)

n + 1
+

f
“

N
2

+ n
”

N
2

+ n + 1

1

A+
f(N

2
)

N
2

+ 1

and have to consider:

N
2
−1
X

n=1

0

@f(n)
n

n + 1
−

f
“

N
2

+ n
”

N
2

+ n + 1

1

A+ f(
N

2
)

 

1

2
−

1
N
2

+ 1

!

>

N
2
−1
X

n=1

0

@
f(n)

n + 1
+

f
“

N
2

+ n
”

N
2

+ n + 1

1

A+
f(N

2
)

N
2

+ 1

by analogous computations we obtain N ≥ 8. 2

Proof of proposition 10 (page 11):
Proof: by lemmas 8 and 9 we can start from a queue of more than 10
elements and add elements such that diameter does not increase, veryfing at
each step, by induction, that there is still no k for which the tree could be a
SPS equilibrium.

Figure 7 shows the conditions we are imposing and define variables a, b and
u, while h is the new node (eventually attached directly to ia+1), and D is
the diameter of the graph. The condition a ≥ b does not reduce generality.
We know from lemma 9 that, in the queue, for the extreme nodes’ the revenue
from their link is smaller than the benefit from connecting together. We will
show that this payoff (even if increasing) remains smaller than the benefit
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i1 iD+1

h

a b

N

u

ia+1

Figure 7: D ≥ 7, a + b = D, 1 ≤ b ≤ a, 2 ≤ u ≤ b + 1.

from the connection.

Step 0, the queue: by lemma 9.

Supposition: we impose the payoffs of the two extrema to be, summed, less
than their two equal revenues from connecting together, again summed. This
condition will be sufficient since:

2 · ∆(Mi1 → iD+1) > Mi1 + MiD+1
=⇒ 6 ∃ k ∈ R s.t.

8
<

:

Mi1 ≥ k

MiD+1
≥ k

∆(Mi1 → iD+1) ≤ k

. (6)

Induction step, add h: the direct benefit for extrema are:

∆h

„

Mi1

«

=
1

a + u
and ∆h

„

MiD+1

«

=
1

b + u
. (7)

We consider then how the profit for i1, connecting to iD+1, grows adding h.
We have to count all the new paths established between the nodes i1, . . . ia−1,
ia+3, . . . iD+1 (at one side) and the new–entrant h (at the other side). For
all these a + b − 2 couples, i1 and iD+1 are intermediaries on the new and
longest path.
We have to use lemma 3 as in example 5 (page 8), considering all subsets of
N for which the new longest path is the only available one.
For i1 the connection with h will give

(

1
b+u+1

− 1
a+b+u

)

more, for i2 it will be
(

1
b+u+2

− 1
a+b+u

)

, and so on. . .

In this way we can sum up all the new revenues from intermediations14:

∆h

„

∆(Mi1 → iD+1)

«

≥
a+b+u−2X

n=b+u

„
1

n + 1
−

1

a + b + u

«

+

a+b+u−2X

n=a+u

„
1

n + 1
−

1

a + b + u

«

. (8)

There is inequality because many more intermediations may arise, from the
nodes not considered when counting a, b and u, whose existence we can how-
ever not assume in the proof.

14A summatory is defined for integers contained in the interval, if this interval is empty
(starting point higher than the ending one) the summatory is defined to be null.
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Considering equations in (7) and (8), the induction step will be satisfied if:

0 ≤ 2 ·

0

@

a+b+u−2X

n=b+u

„
1

n + 1
−

1

a + b + u

«

+

a+b+u−2X

n=a+u

„
1

n + 1
−

1

a + b + u

«
1

A−
1

a + u
−

1

b + u

| {z }

≡S(a,b,u)

≤ ∆h

„

2 · ∆(Mi1 → iD+1) − (Mi1 + MiD+1
)

«

Table 1 shows numerical computations of the formula S(a, b, u), for a ≤ 7.
All values are rounded below and all those implicit in dots are positive.

a = 5 a = 6 a = 7

b = 1 u : . . .
b = 2 2 : 0.257 , 3 : 0.188
b = 3 2 : 0.011 . . . 4 : 0.049 2 : 0.210 . . . 4 : 0.118

b = 4 2 : 0.047 , 3 : 0.023 , 4 : 0.006 , 5 : −0.006(∗) 2 : 0.118 . . . 5 : 0.039 2 : 0.192 . . . 5 : 0.089
b = 5 2 : 0.089 . . . 6 : 0.011 2 : 0.138 . . . 6 : 0.043 2 : 0.194 . . . 6 : 0.079
b = 6 2 : 0.170 . . . 7 : 0.053 2 : 0.209 . . . 7 : 0.079
b = 7 2 : 0.234 . . . 8 : 0.084

Table 1: S(a, b, u) ≡ 2 ·
“Pa+b+u−2

n=b+u

“
1

n+1
− 1

a+b+u

”

+
Pa+b+u−2

n=a+u

“
1

n+1
− 1

a+b+u

””

− 1
a+u

− 1
b+u

.

The only negative case, denoted by (∗) (a = 5, b = 4 and u = 5), will be
treated separately in following lemma 12.

To prove S(a, b, u) is positive for all the other values (a, b, u ∈ N: a > 7,
b ≤ a and u ≤ a + 1) we can consider (since the argument of the sums is
decreasing):

S(a, b, u) > I(a, b, u)

≡ 2 ·

„Z a+b+u−1

b+u

„
1

t + 1
−

1

a + b + u

«

dt +

Z a+b+u−1

a+u

„
1

t + 1
−

1

a + b + u

«

dt

«

−
1

a + u
−

1

b + u

= 2 ·

„

log

„
(a + b + u)2

(a + u + 1)(b + u + 1)

«

−
a + b − 2

a + b + u

«

−
1

a + u
−

1

b + u

b+u b+u+1 a+b+u−2  a+b+u−1

Σ
n=b+u
a+b+u−2  φ (n) > ∫

n=b+u
a+b+u−1 φ (t) dt

φ (t)
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Φ(a) : [8,∞] → R ≡ min
b∈[1,a], u∈[2,a+1]

I(a, b, u)

∂I(a, b, u)

∂u
= 2 ·

„
3a + 3b + 2u − 2

(a + b + u)2
−

1

a + u + 1
−

1

b + u + 1

«

+
1

(a + u)2
+

1

(b + u)2

≤
6

a + b + u
−

2

a + u + 1
−

2

b + u + 1
+

1

(a + u)2
+

1

(b + u)2

Last expression is increasing in b, but for b = a ≥ 8 is however still negative,
hence a minimum is for u = a + 1. Substituting:

∂I(a, b, a + 1)

∂b
=

∂
“

2 ·
“

log
“

(2a+b+1)2

(2a+2)(a+b+2)

”

− a+b−2
2a+b+1

”

− 1
2a+1

− 1
a+b+1

”

∂b

=
3a + 2b − 1

(2a + b + 1)2
−

1

a + b + 2
+

1

(a + b + 1)2

Also this expression is increasing in b, but for b = a ≥ 8 it is still negative,
minima are then for b = a and u = a + 1. Substituting we get:

Φ(a) = 4 ·

Z 3a

2a+1

„
1

t + 1
−

1

3a + 1

«

dt −
2

2a + 1

= 4 ·

„

log

„
3a + 1

2a + 1

«

−
a − 1

3a + 1

«

−
2

2a + 1

which is positive ∀ a > 0.
We have the proof since:
0 < Φ(a) ≤ I(a, b, u) < S(a, b, u), ∀ a ≥ 8, 1 ≤ b ≤ a, 2 ≤ u ≤ b + 1. 2

Lemma 12 If we apply MV on CC; it is not possible to construct a SPS
equilibrium with no cycles, such that it has diameter 9. 2

Proof: from table 1, the only way to use the only negative value (∗) is, as
illustrated in figure 8, including many times the case for a = 5, b = 4 and
u = 5.
A rough computation shows that, just to balance the positive weight of j2, j3

and j4, the number M of hms should be at least 13 in every arm (if we want
moreover to break the induction hypothesis of last proof, M should be in the
order of hundreds, but this consideration is unnecessary for the proof).
However, every such hm has distance 9 from i1, as i10. Using again values
from table 1, and the fact that S(8, 1, 2) is rounded below by 0.485, we can
see how strong incentive is induced now for i1 to connect to any hm, and the
other way round by fairness. 2

Last lemma completes the proof of proposition 10.
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i1 i10i5 i6

j2

j3

j4

h1
hM

hm

Figure 8: One of the few possible constructions to break the incentive to
connect between i1 and i10.
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