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Economies of scale and scope are typically modelled and estimated using cost functions 
that are common to all firms in an industry irrespective of whether they specialize in a 
single output or produce multiple outputs. We suggest an alternative flexible technology 
model that does not make this assumption and show how it can be estimated using 
standard parametric functions including the translog. The assumption of common 
technology is a special case of our model and is testable econometrically. Our application 
is for publicly owned US electric utilities. In our sample, we find evidence of economies 
of scale and vertical economies of scope. But the results do not support a common 
technology for integrated and specialized firms. In particular, our empirical results 
suggest that restricting the technology might result in biased estimates of economies of 
scale and scope. 
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1. Introduction 

 

Economies of scale and scope are fundamental concepts explaining many economic decisions. 

From a business perspective, they play a central role in assessing the potential benefits of 

firms’ growth and diversification strategies. From an industry perspective, they are central for 

the determination of efficient market structures. In particular, they are the basis for the 

restructuring and deregulation of network industries worldwide. For instance, changes in the 

economies of scale of electricity generation swayed many countries to liberalize electricity 

markets. Subsequently the belief that gains from competition would outstrip any losses in 

economies of scope led many countries to mandate electric utilities to divest their generation 

assets to prevent discrimination in newly developed wholesale markets. Similarly many banks 

today argue that economies of scale and scope make large integrated banks more efficient and 

caution against their break-up to minimize the risk from individual bank failures. 

Duality theory1 allows us to estimate the underlying production technology via a cost 

function. Thus almost the entire literature on the estimation of economies of scale and scope 

follows the seminal work of Baumol et al. (1982) and employs a cost function based approach, 

which allows identification of the “the production technology of the firms in an industry”. 

That is, it is (implicitly) assumed that all the firms in an industry share the same production 

technology. Hence, empirical studies have traditionally focused on the estimation of an 

industry cost function, common to all firms in the industry. However, this approach ignores 

the theoretical, but empirically testable possibility that different types of firms employ 

different production technologies. Moreover, maintaining the assumption of a common 

technology when heterogeneous technologies are present could potentially lead to biased 

estimates of costs and therefore, biased estimates of economies of scale and scope.   

Our approach therefore departs from the existing modelling approach for measuring 

scale and scope economies by allowing for differences in technologies across firms types. 

This is accomplished by specifying a model where technology can be fully flexible across 

specialized and non-specialized firms. We therefore allow for firm-type specific technologies 

which are estimated jointly without separating the sample. We demonstrate that this approach 

can be applied to any functional form including the popular translog form introduced by 

Christensen et al. (1973). This is important because, despite the widely accepted advantages 

of the translog specification, the non-admission of zero values in the translog form has 

                                                 
1 Duality theory and the implied restrictions on the cost function ensure that the latter does not violate the 
physics of production. For an introduction see the survey by Fuss und McFadden (1978). 
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previously been seen as precluding its use for the estimation of economies of scope (Caves et 

al. 1980). Our model is  conceptually different from models that try to estimate production 

functions involving zero output quantities (Battese, 1997), and it is more general than other 

attempts to estimate separate technologies (e.g., Weninger 2003, Bottasso et al. 2011) because 

it does not require a Box-Cox transformation which is difficult to estimate. That is, our model 

is easier to implement for the applied researcher as it is linear in parameters and all 

coefficients have direct economic interpretations (at the mean of the data). We finally note 

that our model readily allows for statistical testing of whether a common or flexible firm type 

technology specification is appropriate,   

We empirically demonstrate the usefulness of our modelling approach by estimating 

economies of scale and scope with a sample of publicly-owned US electric companies. 

Although our modelling approach is applicable with any functional form, our empirical 

specification demonstrates that, contrary to popular belief, a translog specification can be used 

to represent the technology for both specialized and non-specialized firms. Our data is 

suitable for this task as it comprises both specialized (generating-only and distributing-only) 

and integrated firms. Our results indicate that within our sample, cost relationships differ 

between integrated and specialized firms, suggesting that the assumption of a restricted 

technology may indeed lead to biased estimates of economies of scale and scope in our 

sample.  

The rest of the paper is organized as follows. Section 2 provides the necessary 

theoretical background including the relevant literature. Section 3 sets out our contribution to 

the modelling of economies of scale and scope. Section 4 introduces our empirical model and 

tests. Section 5 introduces our application. Section 6 presents the results and section 7 gives a 

short conclusion. 

 

2. Scale and Scope Economies with a Common Technology 

 

There are a vast number of studies that estimate economies of scale and scope for various 

multiproduct industries. We do not review this literature here. Instead we provide a short 

summary of the debate on how to model and estimate multiproduct or multistage cost 

functions. We first recall the definition of scale and scope economies. Let N = {1,2,…,N} be 

the set of products under consideration, with output quantities y = (y1,…,yn). The function 

C(y,w) denotes the minimum cost of producing the entire set of products, at the output 
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quantities and input prices indicated by the vectors y and w. The degree of scale economies 

defined over the entire product set N, at y, is given by  

 

ሺ1ሻ																																									ܵேሺݕ, ሻݓ ൌ
,ݕሺܥ ሻݓ

∑ ,ݕ௜ሺܥ௜ݕ ሻ௡ݓ
௜ୀଵ

ൌ
1

∑ ߲lnܥ/߲lnݕ௜௡
௜ୀଵ

	 

 

where Ci is the first derivative of cost with respect to product i. Returns to scale are said to be 

increasing, decreasing or constant as S is greater than, less than, or equal to unity, respectively. 

Let us now consider two subsets, SU  N, and SD  N such that SU  SD = N, and SU ∩ SD 

= Ø. Let yU denote the vector whose elements are set equal to those of y for i  SU and yD 

denote the vector whose elements are set equal to those of y for i  SD. Similarly, C(yU,w) 

and C(yD,w) denote the cost of producing only the products in the subset U and D, 

respectively. The degree of economies of scope between yU and yD is defined as  

 

ሺ2ሻ																																								ܵܥ௎,஽ሺݕ, ሻݓ ൌ
ሻݓ,௎ݕሺܥ ൅ ሻݓ,஽ݕሺܥ െ ሻݓ,ݕሺܥ

ሻݓ,ݕሺܥ
	

 

The degree of economies of scope SC is measured by (2) where the separation of 

production is said to increase, decrease or leave unchanged the total cost as SC is greater than, 

less than, or equal to zero, respectively. Equation (2) shows that the estimation of economies 

of scope (i.e. the costs and benefits of joint production) requires the comparison of costs 

between specialized and non-specialized firms at a given vector of input prices. In our below 

application, this measure of economies of scope can be readily interpreted as a measure of 

firm’s vertical integration economies in a multi-stage context. Thus, if N denotes the entire 

product set along the firm’s vertical chain, SU denotes the subset of upstream only products, 

and SD=N-SU denotes the subset of downstream only products, then (2) measures the degree 

of vertical integration economies. 

For empirical estimation of (1) and (2) the researcher has to choose an appropriate 

functional form, obtain relevant data, and decide on a model of the underlying production 

technology. We now discuss each point in turn. For multiproduct cost functions, Caves et al. 

(1980) set out three criteria for the ex-ante choice of functional forms: satisfaction of 

regularity conditions, limited number of parameters, and the ability to admit zero values for 

some outputs. In the general empirical literature the translog and the quadratic are the most 

popular functional forms. However, the translog form, despite its wide application, has an 
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important drawback in that the cost function is undefined for a zero output level. This is 

important because the measurement of economies of scope requires the comparison of costs 

between specialized and integrated firms; and specialization requires that the production of at 

least one of the outputs is zero.  

One solution to the problem of zero output values is to estimate the costs at an 

arbitrarily small level of output. Thus, several studies substitute an arbitrary small positive 

constant (e.g.: 0.01) for zero output values (Jin et al., 2005; Akridge and Hertel, 1986; 

Gilligan and Smirlock, 1984; Cowing and Holtmann, 1983). We will use this approach as our 

empirical benchmark model below. Other studies replace zero values with the minimum value 

of each output within the sample under consideration (Goisis et al., 2009; Rezvanian and 

Mehdian, 2002) or with a value equal to ten percent of output at the sample means (Kim, 

1987). An alternative solution is to use the Box-Cox transformation on output variables, e.g., 

the generalized (hybrid) translog function, as suggested by Caves et al. (1980). Both 

approaches, however, introduce an unknown bias (e.g. Berger et al. 1987; Gunning and 

Sickles 2009), while producing erratic estimates due to the degenerate limiting behaviour of 

the translog cost function (Röller, 1990).  

Finally, some studies use a translog form on a subsample of firms with strictly positive 

outputs only, which allows them to estimate cost complementarity between outputs, i.e. the 

sign of the sign of the second-order derivative ߲ଶݕ߲ீݕ߲/ܥ௎  (Fuss and Waverman, 1981; 

Gilsdorf, 1994). However, cost complementarity is a sufficient but not a necessary condition 

for the presence of scope economies as shared fixed costs are another potential source of 

economies of joint production (Baumol et al., 1982). When specialized firms are absent from 

the sample, the problem of zero outputs does not arise in estimation. Instead, it appears in 

predicting the counterfactual, i.e., predicting the costs of specialized firms from the estimated 

cost function which is assumed to be the same for specialized and non-specialized firms. In 

contrast, if there are data on specialized firms there is no need to make the assumption that the 

cost function is the same because we can statistically test this assumption and verify it 

empirically. 

Thus, choosing a functional form that allows for zero outputs has been seen as 

necessary to obtain unbiased estimates of scope economies. The quadratic functional form is 

frequently employed as it readily admits zero values and is easy to implement (e.g. Mayo 

1984, Kaserman and Mayo 1991; Jara-Díaz et al. 2004; Arocena et al. 2012). However, it also 

has an important drawback: imposing homogeneity in input prices as a regularity condition on 

the quadratic form sacrifices flexibility (Caves et al. 1980, p. 478). Several authors (e.g. 
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Martínez-Budría et al., 2003) argue that normalizing cost and input prices by one of the input 

prices prior to estimation will circumvent this problem. However, the results are not invariant 

to the choice of normalized input price. Other applied studies propose alternative functional 

forms which allow for zero outputs, (but not for zero values in input prices), the Composite 

(e.g. Fraquelli et al., 2005), or the Generalized Composite form (e.g. Bottasso et al., 2011). 

These forms are less popular because they are highly non-linear in parameters and for the 

composite the individual coefficients have no economic meaning. 

In most studies the reason for observing integrated firms only is the non-existence of 

specialized firms in the industry. Although the absence of specialized firms might be taken as 

prima facie evidence for the existence of economies of scope, it is not obvious that the 

existing industry structure is only driven by costs considerations, particularly for regulated or 

publicly owned industries. Conversely, observing specialized firms only does not provide 

evidence for the non-existence of economies of scope as this could reflect historical precedent, 

mandated industry restructuring, or other institutional factors that have influenced the 

industry’s development.  

We finally emphasize that the econometric literature almost always uses a common 

multiproduct cost function, which is consistent with the definitions of scale and scope 

economies provided in (2) and (3) above. However, this assumes poolability across different 

firm types and the presence of a single underlying production technology for all firms, 

regardless of their degree of specialization. 2  On econometric grounds this maintained 

assumption is hard to justify without empirical testing, and in many cases there are reasons to 

believe that such an assumption is inappropriate (Bottasso et al. 2011). Weninger (2003) 

argues that the presence of cost (dis)complementarities reflects the differences in the cost 

structure between diversified and specialized firms (the latter by definition produce no 

complementary goods). In the same vein, Garcia et al. (2007) note that when considering 

vertical scope economies in multistage industries, firms' production technologies may differ 

with their level of vertical organization. That is, they suggest that the data generating process 

of the cost of a firm does depend on the vertical organization of the firm. The next section 

therefore proposes a general model with firm type cost function flexibility.           

 

  

                                                 
2 A related literature that uses nonparametric estimators (Charnes et al. 1978) to measure economies of scope 
always uses models that allow for different technologies across firm types and emphasizes that it is these 
differences that underlie economies of scope (Färe 1986). 
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3. Estimating Economies of Scale and Scope with Firm Type Cost Function Flexibility 

 

This section builds on Fuss and Waverman (2002) and proposes a flexible technology 

across firm types for the estimation of scale and scope economies. Let T = {I,U,D} be the set 

of firm types, where I,U,D refer to integrated, upstream, and downstream firms. Integrated 

firms I produce the entire output vector y = (y1,...,yn) as defined above, while upstream U and 

downstream D firms produce output vectors yU and yD, respectively. That is, we allow 

different firm types to have different underlying production possibilities. We therefore define 

a firm type flexible cost function as 

 

ܥ (3) ൌ ቐ
,ݕூሺܥ 			ሻݓ
,௎ݕ௎ሺܥ ሻݓ
,஽ݕ஽ሺܥ ሻݓ

 

 

where w is the vector of input prices.3 Essentially, (3) allows the cost function to be flexible 

across firm types. That is, flexibility is introduced by allowing technologies to differ across 

firm types. In (3) we respectively define the upstream cost function as CU (yU,w) and the 

downstream cost function  as CD (yD,w) instead of C (yU,w) and C (yD,w). This allows for 

potentially distinct technologies associated with the production of the distinct subsets of 

outputs for the upstream (yU) and downstream (yD) firms rather than simply restricting CI (y) 

by assigning zero values for non-produced outputs, as is common in most previous studies of 

scope economies. We emphasize that our approach follows the seminal work of  Panzar and 

Willig (1981, p. 268-269), which clearly partitions the integrated output set into distinct 

nonintersecting sub-sets produced by specialized firms when defining scope economies.  

Panzar and Willig’s theoretical approach defined specialized output sets as a subset of all 

outputs and not as the simple restriction of unproduced outputs to zero output quantities.  

However, it is less clear from their notation whether they allowed technologies to differ by 

firm type. In contrast, Fuss and Waverman (2002) stated that the difference between 

technologies is “sufficiently fundamental that these technologies [for specialized firms] 

cannot be recovered [...] simply by setting the missing output equal to zero”. Fundamentally, 

if CD(yD,w) ≠ CI(0,yD,w) and/or CU (yU,w) ≠ CI (yU,0,w) this implies that the underlying 

technology employed by integrated firms, even when only producing a specialized subset of 

                                                 
3 For notational convenience and ease of exposition, we do not index input prices by utility type.  
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its potential outputs is distinct from the production technology(ies) associated with 

specialized firms. 

The most straightforward way to estimate (3) is to estimate separate models for each 

firm type (e.g. Weninger, 2003; Garcia et al., 2007). In essence, this is also the approach 

followed by the related literature that uses mathematical programming techniques to estimate 

economies of scope, following the pioneering work by Färe (1986). Separate estimation 

implies the creation of subsamples, with the subsequent problem of reduced degrees of 

freedom when observations for some firm types are few, as is the case in many industries. We 

instead propose joint estimation of the three technologies specified in (3) first without 

imposing constraints and then imposing constraints to test for common technology. To 

illustrate the idea we write the three technologies as 

 

(3a)  
,ݕூሺܥ ሻݓ ൌ ܺூூ ൅ 		ூݑ

,௎ݕ௎ሺܥ ሻݓ ൌ ܺ௎௎ ൅ 		௎ݑ
,஽ݕ஽ሺܥ ሻݓ ൌ ܺ஽஽ ൅ 		஽ݑ

 

 

where X variables are covariates (outputs and input prices),  represents the firm type specific 

unknown technology parameters, and u are noise terms. With an appropriately designed 

matrix X, the formulation in (3a) fits a quadratic (when the variables are in levels) and a 

translog specification when the variables are logged. Thus regardless of the cost specification, 

we can stack the equations in (3a) and write it as   

 

(3b)  ܥሺݕ, ሻݓ ൌ ܺ൅  		ݑ

 

where ܺ ൌ ൥
ܺூ 0 0
0 ܺ௎ 0
0 0 ܺ஽

൩ and ൌ൥
ூ

௎

஽
൩.  

 

Moreover, the stacked equation (3b) can be estimated using OLS/GLS. However, note 

the data structure in X: the matrices below XI are filled with zeros because these data are not 

relevant to integrated firms, while a similar structure is used for upstream and downstream 

firms.  

 The technologies in (3a) can alternatively be written with the use of dummy variables 
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ሺ∙ሻܥ (4) ൌ ܫ ∗ ,ݕூ൫ܥ ூ൯,ݓ ൅ ܷ ∗ ,ݓ,௎ݕ௎൫ܥ
௎൯ ൅ ܦ ∗ ,஽ݕ஽൫ܥ ,ݓ

஽൯ 

 

where the three dummy variables I, D and U take the value one if the firm is integrated or 

specializes in the downstream or upstream activity, respectively. The first term in equation (4) 

represents integrated firms and is “activated” or “turned on” only if I takes the value of one. 

Similarly, the second and third terms represent upstream and downstream only firms, 

respectively. The second (third) term is activated when U (D) takes a value of unity. We refer 

to this model as a firm type flexible technology model as opposed to a restricted or common 

technology model.  

Note this is not a single cost function theoretically, but instead combines the three 

separate technologies allowed for in (3).  However, we write it this way so that for estimation 

purposes it is viewed as a single cost function. This model allows both the variables and 

associated parameters to vary between the three firm types. The firm type cost functions in 

C(·) can take any functional form including a translog form. Note that CI (·) is defined for the 

full set of outputs, whereas CU (·) and CD (·) are defined for subsets of outputs yU and yD 

respectively.  

We note that Battese (1997) and Battese et al (1996) employ a related artifice in the 

estimation of production functions when some observations have zero input values. 

Particularly, Battese et al (1996) investigate the production function for wheat production, 

where some farmers use fertilizers or pesticides while others do not. Thus, Battese (1997) 

suggests the introduction of a dummy variable associated with the incidence of the 

observations that take zero values, which permits the intercepts to be different for farms with 

positive and zero inputs, while maintaining the same parameters for inputs employed by all 

firms. In contrast, our model generalizes Battese’s restricted method, and allows a fully 

flexible technology specification, where technologies, and hence all parameters, can differ 

fully between firm types. The fundamental premise in our investigation is therefore not that 

estimation is feasible with appropriate replacement of zero values. Instead, the fundamental 

premise is that, given the existence of specialized and integrated firms, allowing for firm type 

technology flexibility may be required to properly estimate the costs of specialized and 

integrated firms. Thus, we emphasize that our primary contribution, is to allow for potential 

differences in technology between specialized and integrated firm, with the aim of providing 

unbiased estimates of scope economies with a translog or any other functional form. 

When using the translog form for each of the technologies with parameters of their 

own, we can write (4) in log form as 
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(4a)															lnܥሺ∙ሻ ൌ ܫ ∗ lnܥூ൫ݕ, ூ൯,ݓ ൅ ܷ ∗ lnܥ௎൫ݕ௎,ݓ,
௎൯ ൅ ܦ ∗ lnܥ஽൫ݕ஽,ݓ,

஽൯ 

 

where lnܥூ൫ݕ, ,ூ൯,ݓ 	lnܥ௎൫ݕ௎,ݓ,
௎൯	and	lnܥ஽൫ݕ஽, ,ݓ

஽൯	 are three different translog 

functions for integrated, upstream and downstream firms. If we write it in stacked form 

(similar to (3b)) as lnܥሺݕ, ሻݓ ൌ lnܺ	൅  we need to pay attention to the data matrix lnX. In		ݑ

this case, it requires the following adjustment for empirical implementation. Assume for 

illustration that the number of integrated, downstream and upstream firms are n1, n2 and n3, so 

that the total number of firms is n = n1+n2+n3. Thus lnܥሺ∙ሻ in (4a) is defined for all n firms. 

However,	lnܥூ൫ݕ, ,ݓ,௎ݕ௎൫ܥூ൯, ln,ݓ
௎൯ and lnܥ஽൫ݕ஽, ,ݓ

஽൯ are respectively defined for 

only n1, n2 and n3 firms. This problem can be readily solved by appropriately filling the blanks. 

For example, there will be n2+n3 blanks for the (log) output variables for the integrated firms. 

These blanks can simply be replaced by any arbitrary numbers. Subsequently, when we 

multiply them by the I dummy these n2+n3 observation that do not belong to the integrated 

firms will be completely eliminated. We can do the same for the upstream and downstream 

firms. Thus when one looks at the data, there is no blank or zero values anywhere. The blanks 

(for outputs and input prices) for each firm type are artificially filled and then removed by the 

appropriate firm type dummy. We emphasize that this approach preserves firm type flexibility 

by not imposing the assumption that  CD(yD,w)= CI(0,yD,w) and/or CU (yU,w)= CI (yU,0,w). 

However, in contrast to the separate estimation approach, the appropriateness of this 

assumption can be readily tested for by imposing parameter equalities across the three firm 

type technologies. 

We note that Bottasso et al. (2011) allow costs to depend on the firm type using a 

Generalized Composite function. They found that it is an undue restriction to impose a 

common technology for two types of water companies in England and Wales, water-and-

sewage and water-only companies. However, they used a Box-Cox transformation which 

defeats the purpose of using firm type technology. The Box-Cox transformation in their 

formulation is used to handle observations with zero values so that a common technology can 

be estimated. Unlike the model used by Bottasso et al. (2011) our model is much simpler and 

does not require a Box-Cox transformation. There is no problem in specifying a translog 

function for single-product firms because there are no zero values for the output they 

specialize in. Similarly there is no problem in specifying a translog cost function for non-

specialized firms because these firms produce non-zero outputs. Thus, it is not necessary to 
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use a Box-Cox transformation when one allows technology to differ across firm types. As 

discussed above the specially designed data matrix lnX takes care of blanks in the data (we 

say blanks when something is not in the data, instead of zero). 

Given the firm type flexible cost function in (3) we can rewrite the textbook definition 

of economies of scale and scope. For scale we rewrite (1) as 

 

ሺ5ܽሻ																																						ܵே
்ሺݕ, ሻݓ ൌ ஼೅ሺ௬೅,௪ሻ

௬೅஼೔
೅ሺ௬೅,௪ሻ

 for specialized firms (T = U or D) and 

ሺ5ܾሻ																																						ܵே
்ሺݕ, ሻݓ ൌ ஼೅ሺ௬೅,௪ሻ

∑ ௬೔஼೔
೅ሺ௬೅,௪ሻ

మ
೔సభ

   for non-specialized firms (T = I).   

 

Thus, returns to scale now depend on the firm type T. Similarly, for the degree of 

economies of scope we rewrite (2) as 

  

ሺ6ሻ																																					ܵܥ௎,஽ሺݕ, ሻݓ ൌ
ሻݓ,௎ݕ௎ሺܥ ൅ ሻݓ,஽ݕ஽ሺܥ െ ,ݕூሺܥ ሻݓ

,ݕூሺܥ ሻݓ
 

 

where we now allow for different technologies for the three firm types. Unlike in Baumol et 

al. (1982), both differences in cost levels and differences in technology drive economies of 

integration. This model is general in the sense that it allows specialized firms to operate with a 

different underlying production technology than integrated firms. It also allows for the 

imposition and testing of the common technology assumption through imposition of 

appropriate parameter restrictions. 

 

4. Modelling and estimation approach 

 

Applying a translog form to (4a) we estimate the following two output model:4 

 

                                                 
4 Although we are using notations yU and yD these can be generically labeled as y1 and y2 so that yU and yD  for the 
integrated firm are nothing but y1 and y2. 
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where C = total costs, yU = the quantity of upstream output, yD = the quantity of downstream 

output, wk = the price of input k, M = the number of inputs used by integrated firms, G = the 

number of inputs used by upstream firms,  L = the number of inputs used by downstream 

firms, and the Greek letters stand for the unknown population parameters.  

The cost function is required to satisfy the following symmetry and linear 

homogeneity (in input prices) constraints. Ignoring firm type indicators for ease of illustration, 

these are: 

 

ଵଶߩ (8) ൌ ;ଶଵߩ ௞௝ߣ ൌ  ௝௞ for firm types U, D, and Iߣ

 

(9) ∑ ௞ߛ ൌ 1௞ ; ∑ ௞ߠ ൌ 0௞ 	for	all	݇; ∑ ௞௝ߣ ൌ 0௞   

 for firm types U, D, and I and for all j. 

The linear homogeneity constraints are automatically imposed if we divide cost and 

input prices by one arbitrarily chosen input price and drop the corresponding share equation. 
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Using Shephard's Lemma and the symmetry constraint we obtain share equation (10) for input 

k. 

 

௞ݏ  (10) ൌ ܫ ∗ ሾߛ௞
ூ ൅ ଵ௞ߠ

ூ ln ௎ݕ ൅ ଶ௞ߠ
ூ ln ஽ݕ ൅ ௞௝ߣ∑

ூ lnݓ௝ሿ 

൅ܷ ∗ ௞ߛൣ
௎ ൅ ௞ߠ

௎ ln ௎ݕ ൅ ௞௝ߣ∑
௎ lnݓ௝൧  

൅ܦ ∗ ௞ߛൣ
஽ ൅ ௞ߠ

஽ ln ஽ݕ ൅ ௞௝ߣ∑
஽ lnݓ௝൧  

 

We estimate this system of the cost function and share equations using the iterated 

seemingly unrelated regression (SUR) technique (Zellner, 1962) after adding classical error 

terms in the cost function and the cost share equations. The additional structure imposed by 

the share equations makes the estimates more efficient as we add equations but do not 

increase the number of parameters. All variables are demeaned so that the translog expansion 

is around the sample mean across all firms and the first order coefficients can be interpreted 

as elasticities at the sample mean. 

If the parameters for each firm type technology are different, one can estimate them 

separately by using the respective cost function and the share equations. However, a separate 

regression approach always assumes the existence of different technologies without allowing 

the possibility of hypothesis testing with regard to whether this assumption is valid.  

Therefore, there are several advantages of our joint estimation approach over estimating 

separate equations using data for each group. Firstly, only joint estimation is truly flexible in 

the sense of allowing for both the possibility of a common technology or differences in firm 

type technologies. Thus, even if there are enough observations in each group to separately 

estimate each firm type technology, separate estimation may inappropriately impose different 

technologies. In addition, with joint estimation we gain degrees of freedom by estimating all 

three technologies jointly using all the data points. More precise estimates are obtained by 

estimating all the parameters jointly and by using a system approach. The other significant 

advantage is to test hypotheses across firm type technologies which cannot be done if these 

technologies are estimated separately. In the joint estimation the implicit (default) assumption 

is that the error variances and covariances (in the cost and share equations) are the same for 

different firm type technologies. This can be easily generalized. In the separate estimation by 

firm type the variances and covariances vary across firm type, and it is not possible to impose 

restrictions across firm type technologies because they are estimated separately.  
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We perform the standard likelihood ratio test for inferences across groups. First, we 

test whether restriction of the three firm type technologies to a single common technology is 

valid. This common technology restriction is readily tested with a Likelihood ratio test by 

imposing the following restrictions:   

 

:଴ܪ (11)  ஽ߙ	௎ߙ		ூߙ

 ஽ߚ	௎ߚ		ூߚ

 ஽ߛ	௎ߛ		ூߛ

 ஽ߩ	௎ߩ		ூߩ

 ஽ߣ	௎ߣ		ூߣ

 ஽ߠ	௎ߠ		ூߠ

 

These restrictions can be easily implemented by appropriately defining the data matrix 

lnܺ	in the formulation lnܥሺݕ, ሻݓ ൌ lnܺ	൅  The null hypothesis in (11) will be rejected if  	.ݑ

the value of the test statistic: 

 

(12) െ2ሺ݈݊ܮோ െ   (௎ܮ݈݊

 

(which is distributed as χ2 with degrees of freedom equal to number of restrictions) exceeds 

the critical value of χ2 at a given level of significance. In (12) lnLୖ and lnL୙ are the log-

likelihood values for the restricted and unrestricted models. 

Second, we can also separately test the restriction of the upstream (downstream) cost 

function parameters to be equal to the integrated parameters. Thus, for example, to test 

equivalence between the integrated firm parameters and the upstream firm parameters, we 

would test a null hypothesis after dropping the second equality signs and setting all the 

downstream only parameters to zero in (11). 

 

 

5. Empirical application 

 

The data is for US local government owned electric utilities. The data comprises three firm 

types: upstream, integrated, and downstream. Our sample only includes conventional fossil-

fuel generators to avoid the bias from combining very different power generation technologies 
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as well as the confusion between vertical and horizontal integration economies when 

interpreting the scope economies estimates (Arocena et al 2012). Downstream firms (D) are 

pure power distributors, and integrated firms (I) engage in both activities, i.e. they generate 

electricity from fossil fuels only and distribute the power. The data is an unbalanced panel for 

the years 2000 to 2003. Table 1 illustrates the distribution of firms across the output space 

(using electricity generation as upstream output and peak demand as downstream output). The 

table gives the firm-year count by size bracket for the upstream and downstream activities. 

The first row and first column give the counts of fully specialized firms and the diagonal 

gives the count for fully integrated firms. There are 84 generation only and 148 distribution 

only firm-year observations. Clearly the space between the diagonal and the two axes is less 

densely populated. The total number of observations is 436.  

 

[Place Table 1 about here] 

 

We define the following variables. Our dependent variable, total cost (C) is measured 

in US dollars and is the sum of capital, fuel and operating expenses. Operating expenses is the 

sum of generation O&M, distribution O&M, Customer Accounts Expenses, Customer Service 

& Informational Expenses, Sales Expenses and a pro-rata Admin & General O&M. We do not 

include any transmission expenses. Capital expense is the capital stock multiplied by the 

interest rate paid on long-term debt, plus depreciation expenses. The capital stock (K) is the 

written down accounting value of fixed assets.  

The single upstream output is net electricity generated (yG) and the single distribution 

output is peak demand (yD). Given its complexity, it is common to model electricity 

distribution as a multiple output technology including total distribution volumes, peak 

demand, customers served, and/or distribution network length.  However, while all these 

output attributes are important, their inclusion also tends to cause serious multicollinearity 

problems in estimation (Arocena et al. 2012; Kuosmanen, 2012).  Given the purpose of this 

paper, we have therefore decided on a more parsimonious model for two reasons. Firstly, to 

avoid multicollinearity among second order terms due to strong correlation between 

distribution output measures. Secondly, a simple model specification saves the estimation of 

the large number of parameters typically required by the translog functional form when the 

number of outputs increases. We have therefore chosen to focus on results based on a single 

distribution output module with peak demand as distribution output on the logic that electrical 

system design and its associated costs are to a larger extent driven by peak rather than average 



16 
 

loads. Further, in our application peak load is less correlated with the generation output than 

power delivered or the number of consumers. In any case, we have experimented with 

alternative models and the qualitative results are robust to alternative output specifications.  

 Finally, we include input prices for capital (wK), fuel (wF) and others (wO). The capital 

price (wK) is capital expense divided by the capital stock (K). The fuel price (wF) is the fuel 

expenditure divided by BTUs of fuel consumption. The final input variable that we define is 

an Other Operating Costs (OC) variable. This variable includes both labour costs and other 

operating costs excluding fuel expenses (e.g., outsourced services). Since detailed labour cost 

data were not available we had to specify a single aggregate measure to capture these items. 

The price of other (wO) is therefore defined as the state-level Census Bureau index of average 

wages for all employees. The quantity measure for other outputs is then obtained implicitly by 

deflating the cost measure by this price index. The price of other inputs is the numeraire used 

to impose homogeneity in input prices.  

We note that our model assumes that firms treat input prices and output quantities as 

exogenous elements in their decision processes, thereby following the argument of Nerlove 

(1963) and Christensen and Greene (1976). These two seminal studies of electricity industry 

costs emphasize that, unlike for production function estimation where input quantities are 

likely to be endogenous, cost function estimation is appropriate, given the reasonable 

assumption that factor prices discussed above are determined in competitive markets or 

through regulation, while electricity output is determined by consumer demand. Our sample 

consists of regulated electric utilities that are obliged to serve all customers. Further, electric 

power cannot be economically stored and thereby must be supplied on demand. Hence the 

decision on outputs is exogenous to the firm. Thus, our empirical estimation approach builds 

on a well-established literature that relies on dual cost function estimation in order to 

specifically avoid the endogeneity problems that can affect production function estimation. 

Table 2 provides summary statistics by firm type. The table shows that there are 

important differences across the three firm types and that there are large variances within each 

group. Dots indicate that a variable is not applicable to the type of firm. Regarding the outputs, 

on average, generation only companies generate more than twice the amount of electricity as 

integrated firms, arguably reflecting the effect that integrated firms can choose between 

making and buying electricity. By contrast, the mean of the distribution output is virtually the 

same for integrated firms and pure distributors. 

We note that the publicly owned utilities in our sample are much smaller in terms of 

output than the investor owned utilities employed in previous studies on US electric utilities 
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(e.g., Kaserman and Mayo, 1991; Kwoka 2002; Arocena et al., 2012, amongst others). Mean 

prices of capital and other inputs are very similar across firm types. However, the estimated 

price of fuel for integrated firms is more than twice the price for generation only firms 

possibly reflecting bulk discounts for the latter or better procurement policies. The three cost 

shares are roughly a third each for generation only firms. For the other two firm types the 

shares of other inputs dominate. 

 

[Place Table 2 about here] 

 

6. Results 

 

This section presents the parameter estimates and estimates for economies of scale and scope. 

We normalize the data at the sample mean so that the first order coefficients of the translog 

functions can be interpreted as elasticities (of the respective variables) at the mean of the data. 

Table 3 gives the coefficient estimates for our three models. Under Model 1 we report the 

estimates of the firm-type flexible technology model as detailed in equation (7) above. Note 

that even though the estimates for the three firm types are given in different columns all the 

parameters are estimated using a single regression. The first three rows in each column give 

the firm type specific constant. Model 2 reports the parameter estimates from the conventional 

common-technology model for the translog specification, where zeros were replaced by an 

arbitrary small number (0.0001). Finally, Model 3 reports the parameters estimated allowing 

for firm type technologies by using separate regressions for each firm type.  

Statistics for the goodness of fit at the bottom of the Table 3 show that the R-squared 

statistics (for the cost function equations) are very high for all models, but highest for Model 

1. We observe that the coefficients, and hence estimated cost elasticities of Model 1 are very 

close to those obtained from Model 3. In contrast, the individual coefficients for the 

conventional common-technology specification with replacement of zero outputs with an 

arbitrary number reported in Model 2 differ greatly.   

 

[Place Table 3 about here] 

 

Table 4 reports estimates of the economies of scale (S) and scope (SC) for the three 

models. All estimates are at the sample mean. First consider the estimates for economies of 

scale.  For each model we report estimates of economies of scale for integrated firms as well 
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as estimates for the two types of specialized firms. The degree of scale economies defined 

over the entire product set does not widely differ across models: all models provide evidence 

for increasing returns to scale at the sample mean. Further, the scale economy estimates for 

pure generators and distributors also consistently indicate increasing returns to scale under 

both Models 1 and 3.   

A further drawback of the conventional common-technology approach is that it is not 

feasible to estimate the degree of scale economies for single output companies. Thus, the 

standard approach here is to compute product-specific returns to scale, defined as the ratio of 

the average incremental cost of a product to its marginal cost (Baumol et al., 1982), e.g. 

 

(13)     
   
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where ICi is the incremental cost of the product i, C(y) is the cost function,   ii yyCyC  /)(

is the marginal cost of product i, and yN-i is a vector with a zero component in place of yi and 

components equal to those of y for the remaining products. That is, SU(y) (SD(y)) relates to the 

increment in the firm’s cost which results from the addition of certain level of upstream 

(downstream) product to the firm’s set of outputs, holding the magnitude of all other products 

constant. Therefore the estimates for the common technology approach are not readily 

comparable with the scale measures obtained from the other two models. Nevertheless the 

estimates for scale for the specialized firm differ between Model 2 and Model 1 (Model 3). In 

particular, the estimate for the upstream technology in Model 2 is unrealistically low. 

 

[Place Table 4 about here] 

 

We now turn to the estimates for economies of scope (SC), also shown in Table 4.  

Models 1 and 3 report almost identical positive estimates at the sample mean. Thus, the 

separate production of output vectors yG and yD increases the total cost by 4.3% to 4.4%. In 

contrast, the estimated economies of scope are much stronger using a conventional common 

technology approach with zero replacement. The estimate from Model 2 suggests that the 

vertical separation of the average sample firm would increase total costs by 40.1%. In 

quantitative terms such an estimate seems somewhat unrealistic but is within the range of 

results reported in some previous studies for the US electric industry (e.g. Kaserman and 

Mayo, 1991; Kwoka, 2002; Greer, 2008) who also use common-technology models. 
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We next perform statistical tests using Model 1 for the null hypothesis that the 

different firm types share a common technology. We reject the null hypothesis in (11)] that 

the technologies are the same across the different firm types at the 1 per cent level. Table 5 

provides values of the relevant statistics. The first column tests equality of all coefficients 

across the three firm types. The second and third columns show the test results for the 

hypothesis that the technology of a specialized firm is the same as the technology for the 

integrated firm. The second column for instance tests whether the parameters relating to the 

upstream activity only are identical for upstream only and integrated firms.    We stress that 

inference on common technology is an important benefit of the firm type flexible technology 

approach specified in (3), (4) and (7). While Model 3 demonstrates that it is possible to 

estimate separate technologies for the different technologies with separate regressions, only 

our flexible technology approach in Model 1 allows this direct statistical test of whether the 

underlying cost function parameters for the three firm types are statistically different, and 

therefore an appropriate specification.  .  

We finally note that we are aware that with a translog specification, differences in the 

estimates between Model 1 (Model 3) and Model 2 are not only the result of the alternative 

assumptions on the underlying technology across the three models. They may also be due to 

the estimation bias created in Model 2 by replacing zero output values with arbitrary small 

numbers, thereby implying that the scope economy estimates for this model are only 

approximations, while those for Models 1 and 3 are fully consistent with the definition 

provided in (6). There are of course alternative functional forms (e.g., quadratic) that are free 

of such estimation bias under the conventional approach. In that case, any divergence between 

the estimates between Model 1 and 2 would be exclusively due to differences in the modelling 

of technology. Nevertheless, we emphasize that we have chosen the translog specification in 

our empirical model precisely because we wish to show that our approach is particularly 

useful for the translog form, which is normally considered to be problematic for the empirical 

analysis of scope economies. In any case, it should be clear to the reader that the flexible 

technology model is applicable to any functional form.5   

 

                                                 
5  In the interest of brevity, we do not report results for a quadratic form but the results are available upon request. 
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[Place Table 5 about here] 

7. Conclusion 

This paper has demonstrated the feasibility of estimating scope economies with a translog 

modelling approach. This is accomplished by relaxing the generally accepted practice of 

estimating a single cost function model, while assuming that both integrated and specialized 

firms operate with the same production technology. The relaxation of this assumption 

immediately eliminates the well-known zero output problem for translog estimation of 

multiple output technologies, but also require the availability of data for both specialized and 

integrated firms.  However, this same data restriction also applies, for example, for standard 

quadratic cost function models that impose a common technology, as it is generally accepted, 

that even with a common technology assumption, a sufficient number of specialized firms is 

required to validate the estimates. Thus, in contrast to previous translog papers, which have 

relied on either cost complementarity results, or approximations of scale and scope economies 

derived from zero replacement models, our flexible technology model demonstrates a readily 

estimable model, which provides theoretically consistent estimates of scale and scope 

economies. Thus contrary to accepted opinion, it is indeed feasible to accurately estimate 

scope economies with a translog model, provided that it is a flexible model.   

Within our sample of publicly owned US electric utilities, our modelling approach has 

not only demonstrated the feasibility, but also the necessity of relaxing the standard practice 

of assuming a common technology for specialized and integrated firms. While this conclusion 

is application specific, we nonetheless suggest that a further substantial benefit of our flexible 

technology model is its ability to allow readily applicable hypothesis testing of the 

assumption that integrated and specialized firms share a common technology. Thus, a flexible 

technology approach can also be applied with other functional forms such as the quadratic, 

and will always allow for the empirical possibility of a common technology or significant 

differences in technology between specialized and integrated firms.   

We finally suggest that our results may have significant implications for the validity of 

the past scope economy literature. Thus, if it can be more widely demonstrated that the 

production technologies employed by specialized and integrated firms differ significantly we 

would need to conclude that much of the past literature on scope economies has provided 

biased results. Such a conclusion suggests a pressing need to reconsider the previous literature, 

its empirical estimates, and the policy conclusions drawn from it.  
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Table 1. Firm Count in Size Bracket 

 

 

    Distribution (GWh)    

Generation (GWh) 0 <250 <500 <750 <1000 <2500 <5000 <7500 Total 

0 0 47 39 24 5 21 4 8 148 

<50 3 10 9 5 0 0 0 0 27 

<250 9 9 42 2 3 10 0 0 75 

<500 14 0 20 10 7 17 0 0 68 

<750 7 0 3 4 4 4 0 0 22 

<1000 13 0 0 0 0 5 0 0 18 

<2500 28 0 4 4 6 11 8 0 61 

<5000 10 0 0 0 2 1 4 0 17 

Total 84 66 117 49 27 69 16 8 436 

 

 

Table 2. Summary Statistics 

 

       All     Generation    Integrated   Distribution 
 mean sd mean sd mean sd mean sd 

Total Cost (M.US dollars) 28.71 29.92 39.24 27.07 36.76 34.11 11.62 13.44 

yG Net Generation (GWh) 753.46 847.61 1176.78 948.98 579.15 736.78 . . 
yD Peak load (MW) 192.87 236.08 . . 191.30 187.57 195.03 290.67 
         
wK Price of Capital (Rate) 0.12 0.03 0.12 0.04 0.13 0.03 0.11 0.03 
wF Price of Fuel (M/Mbtu) 2.25 1.73 1.28 0.67 2.65 1.87 . . 
wO Price of Other Inputs  0.92 0.12 0.92 0.12 0.92 0.13 0.91 0.11 
         
Capital share 0.32 0.11 0.33 0.12 0.27 0.08 0.38 0.11 
Fuel share 0.31 0.11 0.36 0.12 0.29 0.11 . . 
Other input share 0.48 0.16 0.32 0.13 0.44 0.10 0.62 0.11 

Observations 436  84  204  148  
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Table 3. Parameter estimates 
 
 
 Model 1   Model 2   Model 3  

 Integrated 
firms 

Upstream 
firms 

Downstream 
firms 

 All firms  Integrated 
firms 

Upstream 
firms 

Downstream 
firms 

I 0.099***           
[0.03]           

U −0.327***         
  [0.04]         

D   −0.841***       
    [0.03]       

yG 0.457*** 0.866***    0.546***  0.453*** 0.882***   
[0.02] [0.03]    [0.0160]  [0.0185] [0.0224]   

yD 0.426*** 0.905***  0.361***  0.446***  0.903*** 
[0.03] [0.02]  [0.0227]  [0.0291]  [0.0288] 

wK 0.274*** 0.308*** 0.399***  0.279***  0.275*** 0.298*** 0.403*** 
[0.01] [0.01] [0.01]  [0.00756]  [0.00601] [0.0119] [0.00966] 

wF 0.293*** 0.397***    0.296***  0.294*** 0.406***   
[0.00] [0.01]    [0.00660]  [0.00569] [0.00825]   

yG2 0.105*** 0.038    0.0478***  0.118*** 0.0243   
[0.02] [0.03]    [0.00190]  [0.0141] [0.0173]   

yD2 0.079 −0.252***  0.0464***  0.0836  −0.230*** 
[0.08] [0.03]  [0.00330]  [0.0507]  [0.0500] 

wK2 0.009 −0.112*** 0.136***  0.00529  0.000186 −0.0776* 0.163*** 
[0.02] [0.03] [0.03]  [0.0163]  [0.0183] [0.0364] [0.0366] 

wF2 0.146*** 0.206***    0.0198***  0.158*** 0.223***   
[0.01] [0.01]    [0.00472]  [0.00584] [0.00928]   

yD*yG −0.110***      −0.0215***  −0.118***     
[0.03]      [0.00123]  [0.0200]     

wK*yG −0.023** 0.011    0.00617**  −0.0305*** 0.0150   
[0.01] [0.01]    [0.00238]  [0.00623] [0.0107]   

wK*yD 0.022 0.021**  −0.00232*  0.0297**  0.0202* 
[0.01] [0.01]  [0.000955]  [0.00950]  [0.00868] 

wF*yG 0.105*** 0.042***    0.00516*  0.115*** 0.0359***   
[0.00] [0.01]    [0.00215]  [0.00561] [0.00750]   

wF*yD −0.083***      −0.0047***  −0.0987***    
[0.01]      [0.000827]  [0.00838]     

wF*wK −0.044*** −0.036**    −0.0248***  −0.0571*** −0.0609***   
[0.01] [0.01]    [0.00522]  [0.00746] [0.0127]   

Constant     0.109***  0.0899*** −0.332*** −0.855*** 
     [0.0226]  [0.0234] [0.0262] [0.0412] 

Observations 436      436  204 84 148 

RSS 32.90      37.82  12.46 4.26 16.13 

RMSE 0.27      0.29  0.25 0.23 0.33 

Ll 1104.55      812.22  612.22 241.09 82.86 

R-squared 0.95      0.92  0.92 0.93 0.87 

 
Standard errors in brackets 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 4. Economies of scale and scope at the sample mean 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Inference on Common Technology 

 

 All Upstream Downstream 

N 444 444 444 

Chi2 1297.15 526.32 2928.23 

DF 27 26 28 

p 0.00 0.00 0.00 

 

Null hypothesis is that single technology is nested in separate technologies 

 

Model 1: Firm-type flexible technology  

S (I) 1.132 
S (U) 1.155 
S (D) 1.105 
SC 0.043 

Model 2: Common Technology 

S (I) 1.102 
S (U) 0.701 
S (D) 1.293 
SC 0.401 

Model 3: Separate regressions 

S (I) 1.112 
S (U) 1.134 
S (D) 1.108 
SC 0.044 
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