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Zusammenfassung

Innovative Lebensversicherungsprodukte wie fondsgebundene Lebens-
versicherungen, Hybrid-Lebensversicherungen und Variable Annuities er-
freuen sich rasch zunehmender Nachfrage und haben einen großen Anteil
am Neugeschäft in Deutschland. Da traditionelle Versicherungsprodukte
weiterhin den Großteil an den Beständen der Lebensversicherer ausma-
chen, konzentrierte sich die Diskussion über die Standardformel zur Be-
rechnung des Solvenzkapitals bisher weitgehend auf ebendiese Produk-
te. Eine ausführliche Diskussion darüber, wie Solvenzkapital für innovative
Lebensversicherungsprodukte im Rahmen der Standardformel berechnet
werden kann, ist deshalb erforderlich.

Schlagwörter: FLV, Solvency II, Standardformel, Single Equivalent Sce-
nario, dynamisches Storno

Abstract

Innovative life insurance products such as unit-linked life insurance, hy-
brid life insurance, and variable annuities are rapidly gaining popularity and
becoming a major part of new business in Germany. However, since tradi-
tional life insurance products still dominate the portfolios of life insurance
companies, discussions about the standard formula for determining the
solvency capital requirement have focused on this type of business. Any
detailed discussion on how to calculate the solvency capital requirement
for innovative life insurance products within the standard formula has yet
to occur.

This paper brings to light some interesting facts about unit-linked busi-
ness and Solvency II. The modeling of lapses is another focus of research,
reflecting the increased importance of lapse risks for innovative life insur-
ance products. Since there are strong concerns about nonlinearities be-
tween the various risks, especially between market risk and lapse risk,
the paper examines this problem as well. Finally, an alternative method
for calculating the net solvency capital requirement, the so-called single
equivalent scenario (also referred to as the killer-scenario), is presented.

Keywords: Unit-linked insurance, Solvency II, standard formula, single
equivalent scenario, dynamic policyholder behavior
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1 Introduction

Innovative life insurance products have been gaining in popularity during
the last decade and now represent nearly a third of new business in Ger-
many (see Helfenstein & Barnshaw (2003), Enz (2006) and Märten & Daal-
mann (2009)). However, and despite the importance of these products for
the future of the insurance industry, most discussions about the Solvency II
framework focus on traditional insurance products. The results of the last
quantitative impact study QIS4 indicate that most insurance companies do
not calculate the solvency capital requirement for innovative life insurance
products as systematically as they do for traditional products (see CEIOPS
(2008a)).

In the academic literature of the last decade, fair valuation of life in-
surance products has been an emerging field. Traditional life insurance
contracts with interest rate guarantees especially have been analyzed in
detail (see Bauer et al. (2006), Bacinello (2001) and Steffensen (2002)).
Common options of traditional policies such as the option to surrender also
draw growing attention (see Grosen & Jorgensen (2000) and Steffensen
(2002)). Furthermore, the recent low interest period, changing customer
need and tax law led to increased new business of unit-linked life insur-
ance, hybrid life insurance and variable annuities and therefore a develop-
ment of pricing techniques (see Bauer et al. (2008)). However, innovative
life insurance products still need to be examined in conjunction with recent
regulatory changes in Europe (e.g. Solvency II).

The aim of this paper is to provide the first contribution to a discussion
about the solvency capital requirement for innovative life insurance prod-
ucts. The paper brings together fair valuation, risk analysis and a detailed
product design and should be of interest to academics as well as to prac-
titioners.

Innovative life insurance products differ from traditional life insurance
products in some fundamental aspects and therefore require an in-depth
risk examination. For both insurers and policyholders, the value of an in-
novative life insurance product is expected to be rather volatile, since the
capital is mostly invested in risky assets, compared to the fixed-income-
oriented investment strategies of traditional life insurance products. Fur-
thermore, innovative life insurance products are usually complex in their
structure and contain a broad range of options and guarantees (see Gatzert



37

(2009)). These insurance products also induce dynamic policyholder be-
havior. Their volatile value, complexity, dynamic policyholder behavior, op-
tions, and guarantees can all have an unexpected influence on the sol-
vency capital requirement.

The contribution of this paper is to identify the main risks of a unit-
linked life insurance product and to discuss two methods for calculating
the solvency capital requirement, namely the standard formula and the
single equivalent scenario. Furthermore, a way to implement dynamic pol-
icyholder behavior in the standard formula is presented. This paper also
provides a methodology for calculating solvency capital requirement for
other innovative life insurance products.

The paper is organized as follows: To establish a methodology, a Ger-
man unit-linked insurance with guaranteed death benefits is examined
based on the standard formula method (see CEIOPS (2008c)). A simpli-
fied version of the standard formula and information about the calculation
of the solvency capital requirement is presented in chapter 2. The prod-
uct design is illustrated in chapter 3 and includes fixed and variable costs,
mortality, deterministic and dynamic lapses, kickbacks, a bonus system in
accordance with German law, and a realistic set of parameters. The anal-
ysis is performed on products with single premiums as well as on products
with regular premiums. Furthermore, the paper analyzes the impact of the
transition from Solvency I (see Müller (1997) and Bundesministerium der
Justiz (2009)) to Solvency II on the solvency capital requirement for the
unit-linked insurance product. Chapter 4 provides information about the
asset and the liability models as well as first results. The paper examines
the linearity assumption by means of a sensitivity analysis in chapter 5. A
method for modeling dynamic lapses is discussed in chapter 6. Different
parameter sets are analyzed in chapter 7. The single equivalent scenario
is presented in chapter 8.

2 Solvency capital requirement

The solvency capital of an insurance company guarantees its solvability
during a financial distress. Regarding the importance of insurance to so-
ciety, economy and public welfare, the insurance company should have
enough capital to overcome almost every crisis. In Solvency I the sol-
vency capital requirement is calculated through a factor-based framework.
This framework is easy to understand and easy to use, and it requires
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only few balance sheet values and the corresponding risk factors. The
Solvency I capital requirement for German unit-linked products, where the
policyholder bears the investment risk, is defined as 1% of the investment
fund value plus 0.3% of the risk premium2. The downside of a factor-based
framework is that it does not depict the actual risks. Solvency II, as a risk
based framework, will provide a more sophisticated view on the risk taking
of an insurance company3.
In the Solvency II framework, the amount of solvency capital an insurance
company has to hold is in the broader sense defined as the amount of
capital needed to survive a ”one in two hundred years crisis”.

2.1 SCR - the mathematical approach

Let X denote a risk, the solvency capital requirement SCRα(X ) is defined
as

SCRα(X ) = VaRα(X )−E[X ]. (1)

The following transformations lead to a mathematical definition of the SCR4:

SCRα(X ) = VaRα(X )−E[X ]
= VaRα(X −E[X ])
= argmin

x
(P [X −E[X ] ≤ x ] ≥ α)

= argmin
x

(1− P [X −E[X ] > x ] ≥ α)

= argmin
x

(P [X −E[X ] > x ] ≤ 1− α) .

Now consider a two-hundred-years crisis over a time horizon of one
year. Denote the available capital at time t by ACt

5. Then E[X ] = −AC0 is
the negative available capital at time t = 0 and X = − AC1

(1+i) the discounted
available capital at time t = 0. The solvency capital requirement SCR can

2See Bundesministerium der Justiz (2009) and Müller (1997).
3See Doff (2008), Duverne & Le Douit (2009), Holzmüller (2009), Elderfield (2009) or

Steffen (2008) for a comparison of different regulatory frameworks and general informa-
tion about Solvency II.

4As introduced in Bauer et al. (2009). Bergmann’s notion is used for practical applica-
tions. It is approximately equivalent to P(AC1 ≥ 0|AC0 = x) ≥ α, but avoids the implicit
nature of the definition.

5The available capital can be expressed in terms of MCEV. See Bauer et al. (2009) for
more information.
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then be expressed as6

SCRα = argmin
x

(
P
[
AC0 −

AC1

(1 + i)
> x

]
≤ 1− α

)
(2)

with α = 0.995 and an interest rate i .

2.2 SCR - the Standard Formula of QIS4

Although the formula above perfectly defines the solvency capital require-
ment, it is not easily applicable because of two reasons: it is very difficult
to describe an insurance company as a whole with a stochastic model,
and nested simulations are needed. In order to provide a more simple
approach, especially for small insurance companies that do not use an
internal model, CEIOPS introduced the Standard Formula. The main sim-
plification is the definition of deterministic stress scenarios that should rep-
resent the one in two hundred years crisis. In addition, risks are supposed
to be multivariately normally distributed. Let X = −Π denote a random loss
variable or the negative PVFP (”Present Value of Future Profits”) Π, then
the SCR can be simplified to7

SCR = VaR(−Π)−E[−Π]
= (Liabilities − Assets) |stress − (Liabilities − Assets)
= (Assets − Liabilities)− (Assets|stress − Liabilities|stress) .

The stress scenarios are formulated for various risk modules (inter-
est rates, equity, mortality, lapses and expenses) and are aggregated via
a correlation matrix. Let Xi denote the loss variable exposed to a risk i
defined in a risk module and SCR (Xi) denote the solvency capital require-
ment calculated for the same risk module.

Then the aggregated solvency capital requirement SCR (X ) for the ag-
6Implicitly assuming that dividends have not been paid to shareholders yet at t = 1.
7Assets and Liabilities denote the expected present value of all Assets and Liabilities

as defined in QIS4 (∆-NAV approach).
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gregated loss variable8 X =
∑

i
Xi is defined as9:

SCRα(X ) = VaRα(X )−E[X ]

= VaRα

(∑
i

Xi

)
−E[X ]

=
√∑

i ,j

ρi ,j (VaRα(Xi)−E[Xi ])
(
VaRα(Xj)−E

[
Xj
])

+E

[∑
i

Xi

]
−E[X ]

=
√∑

i ,j

ρi ,jSCRα(Xi)SCRα(Xj).

Figure 1 shows a simplified modular view on the standard formula. Only
relevant risks for a German unit-linked insurance product are considered.

SCR

Adj SCRop
BSCR

SCRmkt SCRlife

MKTint

MKTeq

LIFEmort

LIFElapse

LIFEexp

Figure 1: Modular structure of the SCR

8With E[X ] = E
[∑

i
Xi

]
.

9See GDV (2005, page 88-93).
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The solvency capital requirement can be expressed with the following
formulae10:

SCR =
√

SCR2
mkt + 2 · ρmkt ,life · SCRmktSCRlife + SCR2

life

SCRmkt =
√

SCR2
int + 2 · ρint ,eq · SCRintSCReq + SCR2

eq

SCRlife =
√

SCR2
mort + SCR2

lapse + SCR2
exp + 2 · ρmort ,lapse · SCRmortSCRlapse

+2 · ρmort ,exp · SCRmortSCRexp + 2 · ρlapse,exp · SCRlapseSCRexp.

The corresponding correlation factors can be obtained from table 1.
According to the principles of Solvency II, a ”best estimate is equal

to the probability-weighted average of future cash-flows, taking account
of the time value of money, using the relevant risk-free interest rate term
structure. The calculation of best estimate should be based upon current
and credible information and realistic assumptions and be performed us-
ing adequate actuarial methods and statistical techniques.”11. In this case,
the best estimate of technical provisions equals the best estimate of lia-
bilities. In order to simplify the task, a risk margin will not be calculated.
The valuation of assets is performed with a mark to model procedure. This
framework ensures a market-consistent valuation of all assets and liabili-
ties.

CorrSCR= SCRmkt SCRlife
SCRmkt 1 0.25
SCRlife 0.25 1

CorrMkt= SCRint SCReq
SCRint 1 0
SCReq 0 1

CorrLife= SCRmort SCRlapse SCRexp
SCRmort 1 0 0.25
SCRlapse 0 1 0.5
SCRexp 0.25 0.5 1

Table 1: Correlation matrices

Let Π = Assets − Liabilities denote the value of an insurance policy.
Then, the solvency capital requirement for the particular risk modules as

10See chapter 2.5 for details on the relevant risk modules.
11See CEIOPS (2008c, page 13-14).
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described in chapter 2.5 is defined as

SCRint−up = Π− Π|up−shock

SCRint−down = Π− Π|down−shock

SCRint = max
(
SCRint−up, SCRint−down; 0

)
SCReq = max

(
Π− Π|eqshock ; 0

)
SCRmort = max (Π− Π|mortshock ; 0)

SCRlapse−up = Π− Π|up−shock

SCRlapse−down = Π− Π|down−shock

SCRlapse−mass = Π− Π|mass−shock

SCRlapse = max
(
SCRlapse−up; SCRlapse−down; SCRlapse−mass; 0

)
SCRexp = max

(
Π− Π|expshock ; 0

)
.

The solvency capital requirement for operational risk for unit-linked in-
surance is calculated with a factor-based formula. The risk factor (25%) is
set by CEIOPS and is multiplied with the best estimate annual expenses
(without aquisition costs) Expul of the unit-linked policy portfolio:

SCRop = 0.25 · Expul .

2.3 Methodology – developing a partial internal model

Partial internal models are an interesting approach especially for midsized
or small insurers. Using a partial internal model, the difficult task of model-
ing the insurance company as a whole can be avoided. With a full internal
model, the insurer is also required to model the correlations between all
risks in order to obtain an empirical distribution function of the economic
balance sheet and its quantiles. Instead, one can use the Solvency II
standard formula as a starting point. Further aspects of the nature of the
business can be modeled within the standard formula in the relevant risk
modules while the correlation matrices and most of the remaining modules
remain unchanged. The following partial internal model for calculating the
SCR of unit-linked insurance products is designed to mirror the high de-
pendency on financial markets of such products and probable dynamic
policyholder behavior.
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market model product model
best estimate
parameters for

mortality,
expenses, lapses

stress scenarios

Monte-Carlo Simulations

PVFP PVFP|Stressi
PVFP|Stressj

SCR

Figure 2: Methodology

For its deterministic parts such as mortality, expenses or deterministic
lapses, the partial internal model requires the same best estimate param-
eters as the standard formula. The financial market model consists of
stochastic models for assets and interest rates. The main part of the par-
tial internal model is the product model. It contains all relevant parameters
of the unit-linked policy, information about the insurers portfolio, manage-
ment rules and a model for dynamic lapses. With most of the cash flows
being stochastic now, Monte-Carlo simulations are used to determine the
expected discounted value of the insurance portfolio (denoted by PVFP).
In order to obtain the solvency capital requirement, stress scenarios of the
standard formula are implemented. They affect either the best estimate
assumptions or parameters of the market model. Again, Monte-Carlo sim-
ulations are used to determine the value of the insurance portfolio, now
under the assumption that a stress occurs. Applying this procedure to ev-
ery stress scenario of every relevant risk module, the outcomes can be
aggregated to the resulting SCR the same way as in the standard formula.
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2.4 The risk absorbing effect of future profit sharing

Future bonuses paid out to the policyholders will change while calculating
the PVFP under a stress scenario when stochastic profit sharing rules are
used. The solvency capital calculated with adjusted bonuses is referred to
as the net solvency capital requirement (nSCR). The solvency capital cal-
culated with constant bonuses through a stress is referred to as the basic
solvency capital requirement (BSCR). The value of the future discretionary
bonuses (FDB) can be defined as

FDB = Π|no profit sharing − Π|profit sharing.

The adjustment for the risk absorbing effect of future profit sharing to the
BSCR is then defined as

AdjFDB = min (BSCR − nSCR, FDB)

and the overall SCR or net basic solvency capital requirement nBSCR is
defined as

SCR = nBSCR = BSCR − AdjFDB + SCRop.

The calculation of the BSCR is performed with ”constant” bonuses through-
out all stress scenarios. There are several interpretations what ”constant”
means. One interpretation is that the BSCR ”should be calculated under
the condition that the absolute amount of future discretionary benefits cash
flows per policy and year remain unchanged before and after the shock
being tested”12. This direct calculation of the BSCR requires storage of
bonuses for every simulation step and every simulation path. In order to
avoid a huge computational capacity requirement and improve the practi-
cability, the problem can be simplified using an alternative interpretation:
The calculation of the BSCR is performed with a ”constant value” of bonuses.
Therefore, the BSCR is ”calculated under the condition that the value of fu-
ture discretionary benefits remains unchanged before and after the shock
being tested”13. Let Liabilities = Bonuses + otherLiabilities be a decompo-
sition of the liabilities, then Π and BSRC can be defined as

Π = Assets − Bonuses − otherLiabilities
BSCR = (Assets − Bonuses − otherLiabilities)

− (Assets|stress − Bonuses|stress − otherLiabilities|stress) .

12See CEIOPS (2009b).
13See CEIOPS (2009b).
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Since the bonuses should be constant in order to calculate the BSCR and
therefore Bonuses = Bonuses|stress, the above equation can be simplified
to

BSCR = (Assets − otherLiabilities)
− (Assets|stress − otherLiabilities|stress) .

The above BSCR corresponds to the nSCR calculated without any profit
sharing. Therefore, in order to calculate the BSCR the profit sharing pa-
rameters ”risk profit participation rate” and ”expense profit participation
rate” are set to zero. In general, with participation rates other than zero,
the nSCR is defined as:

nSCR = (Assets − Bonuses − otherLiabilities)
− (Assets|stress − Bonuses|stress − otherLiabilities|stress)

with

Bonuses 6= Bonuses|stress.

Figures 3 and 4 show solvency balance sheets for both BSCR and
nSCR.

2.5 QIS4 stress scenarios

The solvency capital requirement is defined as the difference of the best
estimate net asset value (PVFP) and the net asset value under stress. The
stress scenarios defined in this chapter originate from QIS4. The design of
the regarded insurance product requires the consideration of the following
risks: in the market risk module, the interest rate risk and the equity risk
are relevant. Mortality risk, lapse risk and expense risk are the relevant
risks in the life underwriting risk module.

interest rate risk 14 – The interest rate risk module includes two stress
scenarios: up-shift of the interest rate curve (zero coupon bond rate)
and down-shift of the interest rate curve. The exact magnitude of the
shifts can be found in the QIS4 tables.

equity risk 15 – The equity risk module contains an immediate loss of 32%
of the risky assets16.

14See CEIOPS (2008c, pages 134-137).
15See CEIOPS (2008c, pages 137-143).
16The risky assets are assumed to belong to the asset category ”Global”.
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mortality risk 17 – The mortality stress is defined as an increase of the
mortality rates amounting to 10%.

lapse risk 18 – The lapse risk includes three stress scenarios: a long-
term increase of the lapse rates (50%), a long-term decrease of the
lapse rates (50%) and a massive immediate lapse of 30% of the
policyholders.

expense risk 19 – The expense risk stress scenario is defined as an in-
crease of 10% in future expenses and an increased expenses infla-
tion (+1% per annum).

BSCR

Assets Assets

Liabilities

Bonus

PVFP

Liabilities

Bonus

PVFP

best estimate stressed

Figure 3: Risk absorbing effect of future profit sharing I

nSCR

Assets Assets

Liabilities

Bonus

PVFP

Liabilities

Bonus

PVFP

best estimate stressed

Figure 4: Risk absorbing effect of future profit sharing II

17See CEIOPS (2008c, pages 162-164).
18See CEIOPS (2008c, pages 167-169).
19See CEIOPS (2008c, pages 169-170).
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3 Product design and parameter assumptions

Premiums
In this paper two forms of the product are considered: single premium con-
tracts and regular premium contracts. With a single premium contract, the
policyholder has to pay only a lump-sum at the beginning of the contract
period. Concluding a regular premium contract, the policyholder commits
to pay a premium at the beginning of every month until the end of the con-
tract period, death of the policyholder or lapse of the policy. The premium
income is immediately used to buy shares of the investment fund after de-
duction of acquisition charges. Let T denote the policy term in years, then
t = 0, ... , 12T is counting the time steps (months). A premium payment at
time t is denoted by Pt .

Expenses
Three kinds of expenses can be identified regarding a standard unit-linked
insurance product: acquisition expenses, fixed monthly expenses, and
variable monthly expenses. In order to refinance, the insurer deducts
charges from the investment fund. These charges represent the prudent
projected expenses. The prudent projected expenses consist of the ex-
pected expenses plus a risk margin. The acquisition charges for regular
premium policies are calculated with expected interest rates but without
any mortality or lapse assumptions. The fixed monthly charges are con-
sidered to be deterministic and constant for all t , while the variable charges
are driven by the current investment fund value. The acquisition charges
are immediately deducted from the premiums; in the single premium case,
they are deducted from the single premium at once, in the regular pre-
mium case, the acquisition charges are decomposed into small payments
and deducted from the premiums (for a maximum of five years). The in-
curred monthly (fixed and variable) expenses are paid at the end of every
month. In order to finance the incurred expenses, the insurer withdraws an
amount equal to the prudent projected expenses from the investment fund
at the beginning of every month and deposits it on a bank account earning
the risk-free interest rate.

Mortality
German DAV 2008 T mortality tables are used for prudent mortality as-
sumptions. Uniform distribution of deaths is used as an assumption for
fractional ages.
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Death benefits
Death benefits are paid at the end of the month. A set of different kinds of
policies varying by their guaranteed death benefits structures were consid-
ered in the study. The paper highlights one typical death benefit scheme,
denoted by ”policy A”. This guarantee refers to the current investment
fund and total premiums (P tot ). Then, the death benefits DBt at time t are
defined as:

policy A: DBt = max
(
1.1 · FVt , P tot

)
.

Like the charges, death benefits are also financed by withdrawing an
amount from the investment fund at the beginning of the month. The
amount withdrawn from the investment fund is referred to as the ”risk pre-
mium” and denotes the prudent estimated excess of the death benefits
over the investment fund value. Let qx be the probability of an x-year-old
dying the ongoing year and let RPt denote the risk premium at time t , then
the following equation holds:

RPt = (DBt − FVt )
qx

12− qx
.

The risk premium is withdrawn from the investment fund at the beginning
of the month and deposited on a bank account earning the risk free in-
terest rate. Therefore, in case the death benefit paid to the policyholder
is larger than the value of the amount of shares of the investment funds
associated with the policy, the risk premium is used to close the gap. It
is worth noting that the risk premium is calculated at the beginning of the
month with respect to the fund value at the beginning of the month while
the death benefit is calculated with respect to the fund value at the end
of the month. An unfavorable development of the investment funds during
the month can lead to insufficient funds and therefore to a negative impact
on the PVFP for the insurer.

Assumptions
Best estimate assumptions are formulated for mortality, seperate assump-
tions are used for expenses.

• The best estimate mortality is assumed to be 60% of the prudent
mortality.

• The fixed monthly expenses are considered to be deterministic but
monthly increasing with a expenses inflation factor.

• The variable expenses are assumed to be zero.
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• The aquisition charges equal the aquisition expenses.

The insurer uses prudent and best estimate assumptions for mortality
and different assumptions for charges and expenses. Therefore, in the
long run, the insurer will make profits out of the assumption of parame-
ters. According to German law, these profits have to be shared with the
policyholders. Two kinds of profits can be identified: mortality profits are
profits generated by mortality risk taking and expense profits are profits
generated by expenses risk taking. Expense profits also include profits
from lapse fees and kickbacks20. Profits are generated every month and
deposited on a bank account earning the risk free interest rate. At the
end of the year the insurer credits at least 75% of the mortality profits and
at least 50% of the expense profits to the policyholders investment fund.
The rest of the profits are profits of the insurance company and denote the
value of the policy (discounted at time t = 0) to the insurer.

Lapses
Evaluating the value of the policies in its portfolio, the insurance company
must take into account that the insured might use their option to surrender,
withdraw, or lapse his policy21. There are several factors that influence the
number of lapses: the remaining policy term, the performance of the pol-
icy compared to other products, the age of the policyholder, unemployment
rates, growth of the GDP, the rating of the insurance company, marketing
and marketing channels as well as personal reasons22. Lapses triggered
by these factors are not incorporated in this model in particular but com-
bined and defined as deterministic lapses and modeled by deterministic
lapse rates.
Dynamic lapses are triggered by the value of the policy to the policyholder,
more precisely, the surrender value of the policy. Dynamic lapses are also
often referred to as dynamic policyholder behavior, since they cannot be
modeled with deterministic assumptions. In literature, dynamic lapses are
frequently used in connection with the valuation of a surrender option and
therefore lapses are assumed to occur at any time the surrender value
is larger than the value of the policy. Note that this definition of lapses,
also denoted as rational lapses, differs from the lapses as presented in
this paper. Dynamic policyholder behavior should be carefully managed

20The investment fund management pays kickbacks to the insurer. Kickbacks are seen
as an allowance on management fees due to a high transaction volume.

21The three expressions are used synonymously in literature.
22For more information about lapse, see Anzilli & De Cesare (2007), Cerchiara et al.

(2008), Kuo et al. (2003), Mauer & Holden (2007), Bacinello (2003), Cox & Lin (2006),
Outreville (1990) and Prestele (2006).
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by the insurance company because changes might be excessive and lead
to huge financial losses23. This paper also examines dynamic lapses (dy-
namic lapse functions)24.

Deterministic lapses are assumed to evolve with a deterministic mono-
tonically decreasing lapse rate lr det

t . Deterministic lapse rates start at 10%
and decrease by 1% yearly until they reach 2%. They remain constant at
2% for the rest of the policy term.

Parameter Value Description Category
T 30 policy term in years

general

gender male gender of the policyholders
x 30 age of the policyholders at t = 0
NP0 10000 number of policyholders at t = 0
P0 100000 single premium in Euro
Pt=0,...,12·T 305 regular premium in Euro
achargesrate 6% acquisition charges in per cent of P tot

charges

cpu 4 fixed charges per policy per month in Euro
vchargesrate 0% variable charges per month in per cent of FVt (single premium)
vchargesrate 0.15% variable charges per month in per cent of FVt (regular premium)
aexpensesrate′ 6% acquisition expenses in per cent of P tot

expensescpu′ 4 fixed expenses per policy per month in Euro
cinf 2% fixed expenses inflation per annum
vexpensesrate′ 0% variable expenses per month in per cent of FVt

rbrate 75% risk profit participation rate bonus
systemcbrate 50% expense profit participation rate

Table 2: Parameter assumptions

The insurance company is allowed to deduct a lapse fee from the sur-
render value of the policy in most European countries25. The main reasons
for lapse fees are adverse selection, administration expenses, acquisition
expenses and solvency26.

Lapse fees are set to have a deterministic and monotonically decreas-
ing lapse fee rate. In case a policyholder decides to surrender his policy,
he receives the investment fund value less the lapse fee. The lapse fee
rate starts at 5% and decreases by 0.5% yearly until it reaches 0%.

The parameters set in table 2 represent the standard setting unless
otherwise noted.

23See CEIOPS (2009a) for more information about deterministic and dynamic lapses.
24See chapter 6.
25E.g. in Germany (see VVG §169(5)), but not in France (see Helfenstein & Barnshaw

(2003)), Norway (see Nordahl (2008)).
26See DAV-Arbeitsgruppe Stornoabzüge (2007) and Gatzert (2009) for further informa-

tion.
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4 Financial market model and simulations

The financial market model consists of one risky asset (e.g. a share) and a
riskfree investment possibility (e.g. a state bond). The risky asset is mod-
eled by using the standard Black-Scholes-Merton model, while the interest
rates are modeled with the Cox-Ingersoll-Ross model.

Investment fund
The investment fund contains only risky assets and is modeled with re-
spect to investment fund fees and kickbacks to the insurance company.
Let St denote the value of one share of the risky asset with a constant
volatility σ, the risk-free short-rate rt

27 and a Brownian motion Wt under
the risk-neutral measure28 at time t ∈ [0, T ], then St solves the following
stochastic differential equation:

dSt = rtStdt + σStdWt .

The explicit analytical solution is given by:

St = St−1 exp
(∫ t

t−1

(
rs −

σ2

2

)
ds +

∫ t

t−1
σ dWs

)
.

Now let FundFee denote a constant rate of fees, which will be retained
by the investment fund management and let At denote the value of one
share of the investment fund, then

dAt = rtAtdt + σAtdWt + ln (1− FundFee) Atdt

describes the evolution of the investment fund. The investment fund is
modeled as a dividend paying share29. The analytical solution of this SDE
can be written as

At = At−1 exp
(∫ t

t−1

(
rs −

σ2

2
+ ln (1− FundFee)

)
ds +

∫ t

t−1
σ dWs

)
= At−1

St

St−1
(1− FundFee) .

Kickbacks are paid by the investment fund management to the insurer
and are financed by the investment fund management fees30. The amount

27Assuming an adapted interest rate process rt , see Shreve (2000, page 215).
28See Shreve (2000, page 214-217).
29See Shreve (2000, page 234-240).
30Therefore, the rate of kickbacks should be chosen smaller than the rate of investment

fund management fees.
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of kickbacks per investment fund share is

Kickbacks (per share) = At · kickbackrate.

Interest rates
The Cox-Ingersoll-Ross model is used to model the short rate31. Unfor-
tunately, this model has no closed-form solution. Despite this drawback
compared to e.g. the Vasiceck model, the interest rates stay always posi-
tive. Let lm denote the constant long run short rate, mrs the constant mean
reversion speed, σr the volatility of the interest rates and W r

t a Brownian
motion (uncorrelated to Wt ), then the model for the short rate process rt is

drt = mrs (lm − rt ) dt + σr
√

rtdW r
t .

Parameter assumptions
The parameters set in table 3 represent the standard setting and are used
unless otherwise noted.

Parameter Value Description Category
n 200000 number of simulations general
ρ 0 correlation between the Brownian motions
S0 100 starting value of the risky asset risky asset
σ 20% volatility per annum
r0 4% starting value

interest ratemrs 0.3 mean reversion speed
lm 4.5% long run short rate
σr 2.5% volatility per annum
aFundFee 1.5% investment fund fee per annum investment fundakickbackrate 0.5% kickback rate per annum

Table 3: Financial market model parameter assumptions

31See Shreve (2000, page 151-153).
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Figure 5 shows the simulation steps in a schematic manner.
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Figure 5: Timeline

Numerical results

Policy type P type SCR PVFP Solvency ratio BSCR SCR SES-BSCR SES-SCR

A sin € 14,98 mln € 39,69 mln 264,99% € 28,64 mln € 14,86 mln -4,51% -4,79%

A reg € 14,82 mln € 40,00 mln 269,92% € 27,37 mln € 14,70 mln -6,41% -6,28%

Table 4: Numerical results I

Table 4 presents the simulated SCRs and the insurer’s PVFP for poli-
cies with both premium types (”sin” for single premium and ”reg” for reg-
ular premium). Furthermore, it presents an important financial ratio, the
solvency ratio32. Figures 6 and 7 show the composition of the BCSR and
the nSCR before diversification.

The first observation is that market risks and lapse risk dominate the
risk structure of the respective product. Throughout all simulation runs the
long-term increase of the lapse rates proved to be the relevant stress sce-
nario. Expense risk and mortality risk are both almost negligible. There-
fore, the type of death benefits has also only little impact on the solvency
capital requirement.

32With solvency ratio = Π
SCR .
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Figure 6: Composition of the SCR – single premium
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Figure 7: Composition of the SCR – regular premium

Secondly, comparing the results of the simulations, the premium type
of the policy proves to be very important for the policies’ risk structure.
Although the regular premium policy is just insignificantly more risky than
the single premium policy (by comparing the solvency ratio), interest rate
risk accounts for market risks almost completely. This fact is not surpris-
ing, since, with a regular premium policy, the fund value is small at the
beginning. On the other hand, the market risk of a single premium policy
is dominated by the equity risk. A shock of interest rates does not have a



55

significant impact on the PVFP. Since a change of interest rates does af-
fect the discounting of future profits as well as the trend of the risky assets
and since the profits are mostly generated or triggered by the investment
fund value, both effects seem to offset each other.

Thirdly, the solvency capital requirement calculated with the standard
formula of the Solvency II framework, seems to be much higher than the
solvency capital requirement calculated according to the Solvency I frame-
work (which is about 1% of the investment fund value, the risk premium is
almost negligible). For the regular premium policy, Solvency I requires only
little solvency capital at the beginning of the policy term and the largest
amount of solvency capital at the end of the policy term although this is
illogical since the risk obviously decreases by the end of the policy term in
general.

SCRmkt

SCRlife
Div

FDB

SCR

Figure 8: SCR - Structure - single premium

SCRmkt

SCRlife

Div

FDB

SCR

Figure 9: SCR - Structure - regular premium
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PVFP distribution with profit sharing Policy Type A Premium Type sin

total from risk from expenses

total from lapse from kickbacks

PVFP € 39,69 mln € 0,59 mln € 39,10 mln € 7,37 mln € 32,26 mln 

PVFP after mort-shock € 39,56 mln € 0,50 mln € 39,06 mln € 7,37 mln € 32,22 mln 

PVFP after exp-shock € 39,01 mln € 0,59 mln € 38,42 mln € 7,37 mln € 32,25 mln 

PVFP after lapse-shock up € 34,84 mln € 0,41 mln € 34,43 mln € 10,03 mln € 24,78 mln 

PVFP after eq-shock € 27,03 mln € 0,72 mln € 26,31 mln € 5,00 mln € 21,83 mln 

PVFP after int-shock up € 39,72 mln € 0,44 mln € 39,28 mln € 7,37 mln € 32,31 mln 

PVFP distribution without profit sharing Policy Type A Premium Type sin

total from risk from expenses

total from lapse from kickbacks

PVFP € 78,02 mln € 2,39 mln € 75,63 mln € 14,61 mln € 62,08 mln 

PVFP after mort-shock € 77,59 mln € 2,03 mln € 75,56 mln € 14,60 mln € 62,01 mln 

PVFP after exp-shock € 76,70 mln € 2,39 mln € 74,31 mln € 14,61 mln € 62,08 mln 

PVFP after lapse-shock up € 68,37 mln € 1,66 mln € 66,71 mln € 19,86 mln € 47,60 mln 

PVFP after eq-shock € 53,81 mln € 2,99 mln € 50,82 mln € 9,92 mln € 41,96 mln 

PVFP after int-shock up € 77,74 mln € 1,75 mln € 75,99 mln € 14,61 mln € 62,18 mln 

PVFP distribution with profit sharing Policy Type A Premium Type reg

total from risk from expenses

total from lapse from kickbacks

PVFP € 40,00 mln € 1,11 mln € 38,90 mln € 0,37 mln € 8,48 mln 

PVFP after mort-shock € 39,70 mln € 0,94 mln € 38,76 mln € 0,37 mln € 8,45 mln 

PVFP after exp-shock € 39,27 mln € 1,11 mln € 38,16 mln € 0,37 mln € 8,47 mln 

PVFP after lapse-shock up € 28,25 mln € 0,84 mln € 27,41 mln € 0,47 mln € 5,93 mln 

PVFP after eq-shock € 39,92 mln € 1,11 mln € 38,81 mln € 0,37 mln € 8,47 mln 

PVFP after int-shock up € 34,21 mln € 0,86 mln € 33,36 mln € 0,35 mln € 7,26 mln 

PVFP distribution without profit sharing Policy Type A Premium Type reg

total from risk from expenses

total from lapse from kickbacks

PVFP € 74,57 mln € 4,68 mln € 69,89 mln € 0,72 mln € 15,26 mln 

PVFP after mort-shock € 73,74 mln € 3,98 mln € 69,76 mln € 0,72 mln € 15,23 mln 

PVFP after exp-shock € 73,25 mln € 4,68 mln € 68,56 mln € 0,72 mln € 15,26 mln 

PVFP after lapse-shock up € 52,93 mln € 3,53 mln € 49,40 mln € 0,92 mln € 10,69 mln 

PVFP after eq-shock € 74,43 mln € 4,69 mln € 69,74 mln € 0,71 mln € 15,23 mln 

PVFP after int-shock up € 63,43 mln € 3,59 mln € 59,83 mln € 0,68 mln € 13,02 mln 

Table 5: Composition of the PVFP

Table 5 presents the impact of the stress-scenarios on the PVFP. Fur-
thermore, the composition of the PVFP is shown. Note that PVFP from
lapse fees and kickbacks are part of the PVFP from expenses. Table 5
also displays the impact of profit sharing on PVFP and its risk absorbing
effect. Table 6 presents the effect of profit sharing in more detail. The in-
surer is able to mitigate the risk almost identical to the profit participation
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rates.

Policy Type A Premium Type sin

with profit sharing without profit sharing risk mitigation

PVFP € 39,69 mln € 78,02 mln 49%

SCR € 14,86 mln € 28,64 mln 48%

SCReq € 12,66 mln € 24,21 mln 48%

SCRint € 0,00 mln € 0,28 mln 100%

SCRmort € 0,13 mln € 0,43 mln 70%

SCRlapse € 4,85 mln € 9,66 mln 50%

SCRexp € 0,68 mln € 1,32 mln 49%

Policy Type A Premium Type reg

with profit sharing without profit sharing risk mitigation

PVFP € 40,00 mln € 74,57 mln 46%

SCR € 14,70 mln € 27,37 mln 46%

SCReq € 0,08 mln € 0,14 mln 43%

SCRint € 5,79 mln € 11,15 mln 48%

SCRmort € 0,30 mln € 0,84 mln 64%

SCRlapse € 11,75 mln € 21,64 mln 46%

SCRexp € 0,74 mln € 1,32 mln 44%

Table 6: Risk absorbing effect of future profit sharing

5 Linearities

The Solvency II standard formula is based on the assumption of linearity.
Two types of linearity can be identified: Linearity within a risk and linear
relations between risks. Linearity within a risk ensures that the solvency
capital requirement of a single risk module increases linearly with the risk
factor. Following equation holds

kSCR(Xi) = SCR(kXi)

for any positive k and every risk i . The linearity between risks guarantees
that the separately calculated diversified solvency capital requirement of
several risk modules equals the solvency capital requirement of a simulta-
neous shock with adjusted risk factors

SCRk ·SES(X ) =
√∑

i ,j

ρi ,jSCR(kXi)SCR(kXj)

with X =
∑

i
Xi and the single equivalent scenario SES33.

Non-linearities can compromise the accuracy of the solvency capital re-
quirement calculated with the standard formula. Excessive non-linearities
nearing the defined stress scenarios can lead to significant changes of
the solvency capital requirement. More crucially, non-linearities between
risks can not be evaluated with the standard formula. It is possible that an
insurance company facing unfavorable developments in several risk mod-
ules is in need of much more or much less capital than aggregated with
the standard formula. Furthermore, the single equivalent scenario method

33See chapter 8 for a thorough investigation on SES.
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requires both, intra and inter risk linearities.
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Figure 10: Numerical results - Linearities - single premium
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Figure 11: Numerical results - Linearities - regular premium
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Figure 12: Numerical results - Non-linearities between risks

Figures 10 and 11 show sensitivity graphs of the relevant risks, equity
and lapse (up-shock) for a single premium policy (type A). For a regular
premium policy (type A), sensitivity graphs of the interest rate (up-shock)
and lapse (up-shock) are presented. The values on the x-axis denote
the reduction factor for the risk from zero (”no stress”) to one (”full QIS4
stress-scenario”)34. The grey curves represent the impact on the PVFP
while the black curves represent an assumed linear impact. Most graphs
indicate almost perfect linearity. However, a nonlinear behavior can be
found within the lapse risk. There is also non-linearity between market
risks and lapse risk as seen in figure 12. Here, the grey curves represent
the impact on the PVFP of simultaneous stress-scenarios with adjusted
risk factors, the black curves represent the total impact on the PVFP of
separately calculated stress-scenarios including diversification. This result
is important for the single equivalent scenario.

6 Dynamic policyholder behavior

Dynamic policyholder behavior is a major concern to actuaries. The lack
of statistical data and the amount of factors that may influence the poli-
cyholder’s behavior have to be taken into account and make it difficult to
model or project the policyholder’s actions. The challenge is even bigger
considering a situation of a new product launch and therefore only little
experience. On the other hand, it is common sense among actuaries that
dynamic policyholder behavior, especially dynamic lapses, can be a major
risk. Throughout the literature, there are indicators that suggest a more

34A value of 0.5 for the equity risk would denote an immediate loss of 16% of the risky
assets.
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distinct dynamic behavior for unit-linked products35 caused by a higher
volatility in the ”value” of options, guarantees or the fund value. CEIOPS
addresses the existence of options and guarantees as well as the financial
markets as reasons for possible dynamic policyholder behavior36.

In this chapter, since it is rather unlikely that policyholders would tie
their lapse behavior to the guaranteed death benefits of a simple German
unit-linked insurance, dynamic lapses are triggered by the fund value. A
very simple lapse function is used, more sophisticated lapse functions can
be found in literature37.

The impact of dynamic policyholder behavior on the solvency capital re-
quirement is measured with the following approach: the output of a lapse
function, denoted as the dynamic lapse multiplier, adjusts the deterministic
lapse rates. The lapse rates therefore reflect a combination of determin-
istic lapse bahavior and dynamic lapse behavior. This setup ensures that,
when the lapse stress scenario is performed, only the deterministic lapse
rates are affected directly while the risk from dynamic lapses is taken into
account in the sub-module of the trigger (here: the market risk at most)38.
In the second step, the solvency capital requirement is recalculated with
the average annual lapse rates of the first step just as if the insurer would
experience lapses without the assumption of dynamic policyholder behav-
ior. The impact of dynamic lapse rates is then the ratio of the SCR’s ob-
tained.

Using a simple step function and assuming that bad fund performance
leads to higher lapse rates while good fund performance reduces lapses,
the dynamic lapse multiplier can be defined as follows:

lrt = lr det
t · dlmt with

dlmt =


dlmmin, for At

Amax {0,t−d}
> adja

dlmmax , for At
Amax {0,t−d}

< adjb
1, else

35See Helfenstein & Barnshaw (2003, page 20), Hochreiter et al. (2007, page 8), Ed-
wards (2008), Cerchiara et al. (2008) and Milliman (2009).

36See TS.II.D.11-15 CEIOPS (2008c, page 34).
37See Kolkiewicz & Tan (2006), Smink (2001), Zenios (1999), De Giovanni (2010) and

Kochanski (2009).
38This approach is presented in CEIOPS (2009a, page 20-24).
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where dlmmax and dlmmin denote the maximum and the minimum value of
the dynamic lapse multiplier, while adja and adjb set the fund value perfor-
mance that triggers dynamic lapse behavior and d denotes the number of
months the policyholder monitors the fund value until he makes a decision.

Parameter Value Description Category
dlmmax 1.5 maximum value of the dynamic lapse multiplier

Dynamic lapse
multiplier triggered by
the fund value

dlmmin 0.5 minimum value of the dynamic lapse multiplier
adja 1.5 fund value performance triggering lower lapses
adjb 0.9 fund value performance triggering higher lapses
d 12 monitoring period in months

Table 7: Dynamic lapse model parameter assumptions

Policy Type P type lapse function SCR PVFP Solvency ratio SCRmkt SCRmort SCRlapse SCRexp

A sin 2 -3,20% -1,04% 2,23% -3,99% -0,47% -0,10% -0,06%

A reg 2 0,52% -0,84% -1,35% 2,32% -0,20% 0,07% -0,13%

Table 8: Numerical results - dynamic lapses triggered by the fund value

Table 8 shows relevant results from simulations with dynamic lapses trig-
gered by the fund value (lapse function 2). Dynamic lapses lead mainly
to changes of the SCRmkt . For single premium policies, the SCRmkt has a
bigger influence on the SCR than for regular premium policies. The PVFP
decreases in both cases. Overall, the use of dynamic lapses triggered
by the fund value defined as in the model improves the solvency ratio for
single premium policies and worsens the solvency ratio for regular pre-
mium policies. The changes of the deterministic lapses (run 1 – original
deterministic lapses and run 2 – average overall lapses from run 1) are
presented in table 14 (see Appendices).

The impact of dynamic lapse behavior as modeled in this paper on
the solvency capital requirement of a German unit-linked insurance with
guaranteed death benefits is not alarming. However, this may not be the
case with unit-linked products that contain strong guarantees and options.

7 Parameter analysis

In order to gain stability for the results achieved so far, simulations should
also be performed with other values of the crucial parameters policy term
and deterministic lapse vector. The solvency capital requirement for unit-
linked products is calculated for policy terms of 10, 20, 40 and 50 years
(parameter 0.5 to 1.5) and for several multiples of the original deterministic
lapse vector (0.5, 0.75, 1.25, 1.5).
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parameter SCR PVFP solvency ratio SCReq SCRint SCRmort SCRlapse SCRexp

0,5 € 9,53 mln € 28,27 mln 296,71% € 9,01 mln € 0,00 mln € 0,04 mln € 1,05 mln € 0,34 mln 

0,75 € 12,27 mln € 34,29 mln 279,54% € 10,94 mln € 0,00 mln € 0,07 mln € 2,92 mln € 0,51 mln 

1 € 14,98 mln € 39,69 mln 264,99% € 12,66 mln € 0,00 mln € 0,13 mln € 4,85 mln € 0,68 mln 

1,25 € 17,20 mln € 43,78 mln 254,53% € 13,94 mln € 0,00 mln € 0,23 mln € 6,53 mln € 0,83 mln 

1,5 € 18,78 mln € 46,51 mln 247,72% € 14,77 mln € 0,05 mln € 0,38 mln € 7,76 mln € 0,93 mln 

Table 9: Parameter analysis – policy term – single premium

parameter SCR PVFP solvency ratio SCReq SCRint SCRmort SCRlapse SCRexp

0,5 € 4,84 mln € 17,82 mln 367,80% € 0,08 mln € 1,60 mln € 0,05 mln € 3,87 mln € 0,36 mln 

0,75 € 9,34 mln € 28,89 mln 309,20% € 0,09 mln € 3,41 mln € 0,14 mln € 7,48 mln € 0,54 mln 

1 € 14,82 mln € 40,00 mln 269,92% € 0,08 mln € 5,79 mln € 0,30 mln € 11,75 mln € 0,74 mln 

1,25 € 19,81 mln € 48,33 mln 243,99% € 0,07 mln € 8,12 mln € 0,58 mln € 15,53 mln € 0,91 mln 

1,5 € 23,27 mln € 52,97 mln 227,67% € 0,06 mln € 9,88 mln € 0,98 mln € 18,04 mln € 1,03 mln 

Table 10: Parameter analysis – policy term – regular premium

parameter SCR PVFP solvency ratio SCReq SCRint SCRmort SCRlapse SCRexp

0,5 € 17,61 mln € 46,87 mln 266,13% € 14,95 mln € 0,00 mln € 0,19 mln € 5,55 mln € 0,95 mln 

0,75 € 15,88 mln € 42,93 mln 270,40% € 13,69 mln € 0,00 mln € 0,16 mln € 4,63 mln € 0,80 mln 

1 € 14,98 mln € 39,69 mln 264,99% € 12,66 mln € 0,00 mln € 0,13 mln € 4,85 mln € 0,68 mln 

1,25 € 14,10 mln € 37,03 mln 262,61% € 11,81 mln € 0,00 mln € 0,11 mln € 4,77 mln € 0,58 mln 

1,5 € 13,27 mln € 34,84 mln 262,61% € 11,12 mln € 0,00 mln € 0,09 mln € 4,50 mln € 0,50 mln 

Table 11: Parameter analysis – lapse vector – single premium

parameter SCR PVFP solvency ratio SCReq SCRint SCRmort SCRlapse SCRexp

0,5 € 19,52 mln € 57,16 mln 292,78% € 0,11 mln € 8,52 mln € 0,42 mln € 14,88 mln € 1,02 mln 

0,75 € 15,42 mln € 47,77 mln 309,74% € 0,09 mln € 7,02 mln € 0,36 mln € 11,49 mln € 0,87 mln 

1 € 14,82 mln € 40,00 mln 269,92% € 0,08 mln € 5,79 mln € 0,30 mln € 11,75 mln € 0,74 mln 

1,25 € 14,10 mln € 33,58 mln 238,20% € 0,07 mln € 4,78 mln € 0,26 mln € 11,66 mln € 0,63 mln 

1,5 € 13,11 mln € 28,25 mln 215,54% € 0,07 mln € 3,95 mln € 0,22 mln € 11,14 mln € 0,54 mln 

Table 12: Parameter analysis – lapse vector – regular premium

8 Single equivalent scenario

The single equivalent scenario was developed to avoid double-counting of
the loss-absorbing capacity of future discretionary benefits and to detect
non-linearities39. As opposed to perform single stress tests to determine
the solvency capital requirement for every risk module and then using the

39See CEIOPS (2009b) for general description and CEIOPS (2008b) for implementa-
tion in the standard formula.



63

SCR-formulas, only one stress scenario is performed but with all stresses
simultaneously and therefore with reduced shocks. The calibration of the
shocks should be performed on the BSCR, therefore the derivation starts
with the standard formula for basic solvency capital requirement:

BSCR =
√∑

i ,j

ρi ,jSCRiSCRj .

Since the stresses in the single equivalent scenario happen simultane-
ously, all correlation factors are changed to ρi ,j = 1, ∀i , j40. The change
of the correlation factors increases the level of significance. To ensure a
constant level of significance, a change of correlation factors must be ac-
companied by an adjustment to the stress scenarios. Furthermore, linear-
ity is assumed throughout the entire model, therefore, the solvency capital
requirement for every sub-module can be adjusted by multiplying with a di-
versification reduction factor, which is also applied to the stress scenarios.
Using the adjusted SCRi and replacing the correlation factors, the BSCR
can be expressed as

BSCR =

√√√√(∑
i

drfi SCRi

)2

=

√(
SCRSES

int + SCRSES
eq + SCRSES

mort + SCRSES
lapse + SCRSES

exp

)2

= SCRSES
int + SCRSES

eq + SCRSES
mort + SCRSES

lapse + SCRSES
exp

= BSCRSES

= Π− Π|SES (without profit sharing)

where SCRSES
i denotes the solvency capital requirement of the sub-module

i resulting from an adjusted shock41. In QIS4, most shocks are expressed
with factors to the relevant rates (e.g. mortality rates, lapse rates), reduced
shocks as used in the single equivalent scenario are created with diversi-
fication reduction factors. The diversification reduction factors that adjust
the shock rates are derived through the following approach: The diver-
sified solvency capital requirement is allocated to every sub-module with
the covariance principle42. Then, the diversification reduction factors that

40The single equivalent scenario method requires positive definite initial correlation ma-
trices (see CEIOPS (2009a) for further information).

41SCRSES
i = drfi SCRi holds only with a linear model.

42See Albrecht & Koryciorz (2004).
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adjust the stress scenarios are defined as the proportion of the allocated
diversified solvency capital requirement to the stand-alone solvency capi-
tal requirement. Let CSCR, Cmkt and Clife denote the correlation matrices of
the overall SCR, the market risk and the underwriting risk modules. Let

U =
(

SCRmkt

SCRlife

)
, V =

(
SCRint

SCReq

)
, W =

SCRmort

SCRlapse

SCRexp

 ,

then the 1st step diversification reduction factors f are defined by:(
fmkt

flife

)
=

1
BSCR

CSCRU,(
fint

feq

)
=

1
SCRmkt

CmktV , fmort

flapse

fexp

 =
1

SCRlife
ClifeW .

The 2nd step diversification reduction factors drf are obtained by multiply-
ing the risk module 1st step diversification reduction factors with the overall
1st step diversification reduction factors, e.g. drfmort = fmort flife (the reduced
mortality shock would be 10% · drfmort ).

Now, the reduced shocks can be used to calculate the net solvency
capital requirement via the single equivalent scenario. A significant differ-
ence between the nSCR and the nSCRSES suggests a significant double
counting of loss-absorbing capacity of future discretionary benefits.

The existence of non-linearities leads to significant difference between
the BSCR and the BSCRSES. Therefore, the single equivalent scenario
can also be used to detect non-linearities.

Table 13 shows the BSCR and the SCR obtained by the standard for-
mula and the percental deviation of the BSCR and the SCR obtained by
the single equivalent scenario method. There is no indication for double
counting of loss-absorbing capacity of future discretionary benefits since
the deviation is almost identical for the BSCR and the SCR. The deviation
does not change with different bonus participation rates43. The reason for
the difference of the solvency capital requirements is non-linearity44. The

43Tested with higher and lower bonus participation rates and also without minimum
participation rates.

44As shown in chapter 5, figure 12.
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diversification reduction factors are presented in table 15, the composition
of the PVFP is shown in table 16 (see Appendices for both tables). Nev-
ertheless, requiring less computational capacities than the standard for-
mula, the single equivalent scenario can be useful, once the diversification
reduction factors are obtained. Unfortunately, the adjustment of the diver-
sification reduction factors requires the calculation of the solvency capi-
tal requirement with the standard formula method. Therefore, the single
equivalent scenario can not be used to replace the standard formula.

Policy type P type SCR PVFP Solvency ratio BSCR SCR SES-BSCR SES-SCR

A sin € 14,98 mln € 39,69 mln 264,99% € 28,64 mln € 14,86 mln -4,51% -4,79%

A reg € 14,82 mln € 40,00 mln 269,92% € 27,37 mln € 14,70 mln -6,41% -6,28%

Table 13: Numerical results - SES

9 Summary

The analysis reveals that market and lapse risk are in fact the main risks
associated with a German unit-linked insurance product with guaranteed
death benefits. Mortality and expense risks are negligible. The type of
the death benefits has no impact on the solvency capital requirement. On
the other hand, the premium type influences the type of market risks. The
product is linear to the risk factors for the most part. Some non-linearity
has been revealed attached to lapse risks. This matter of fact causes a
lower solvency capital requirement calculated with the single equivalent
method. There is no indication of double-counting of the loss-absorbing
capacity of future discretionary benefits so far. The single equivalent sce-
nario method also proves to be a tool to review main assumptions of the
standard formula. Dynamic policyholder behavior does not have a large
impact on the solvency capital requirement for this particular insurance
product. Nevertheless, dynamic lapses have the potential to be a major
risk and an analysis with other unit-linked products and other lapse func-
tions is left for further research.
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Appendices
policy det. lapse det. lapse

year Run 1 Run 2

1 10,00% 10,94%

2 9,00% 10,14%

3 8,00% 9,01%

4 7,00% 7,89%

5 6,00% 6,76%

6 5,00% 5,64%

7 4,00% 4,51%

8 3,00% 3,38%

9 2,00% 2,26%

10 2,00% 2,26%

11 2,00% 2,26%

12 2,00% 2,26%

13 2,00% 2,26%

14 2,00% 2,26%

15 2,00% 2,26%

16 2,00% 2,26%

17 2,00% 2,25%

18 2,00% 2,26%

19 2,00% 2,26%

20 2,00% 2,26%

21 2,00% 2,26%

22 2,00% 2,26%

23 2,00% 2,26%

24 2,00% 2,26%

25 2,00% 2,26%

26 2,00% 2,25%

27 2,00% 2,26%

28 2,00% 2,25%

29 2,00% 2,26%

30 2,00% 2,25%

Table 14: Change of deterministic lapses - dynamic lapses triggered by
the fund value - single and regular premium policy type A

Policy Type A

premium type sin

drf_eq 0,936

drf_int 0,011

drf_mort 0,042

drf_lapse 0,570

drf_exp 0,346

Policy Type A

premium type reg

drf_eq 0,008

drf_int 0,612

drf_mort 0,048

drf_lapse 0,917

drf_exp 0,508

Table 15: Diversification reduction factors - SES
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PVFP distribution – SES Policy Type A Premium Type sin

total from risk from expenses

total from lapse from kickbacks

with profit sharing

PVFP € 39,69 mln € 0,59 mln € 39,10 mln € 7,37 mln € 32,26 mln 

PVFP after combined shock € 25,55 mln € 0,57 mln € 24,97 mln € 6,27 mln € 19,32 mln 

without profit sharing

PVFP € 78,02 mln € 2,39 mln € 75,63 mln € 14,61 mln € 62,08 mln 

PVFP after combined shock € 50,67 mln € 2,37 mln € 48,30 mln € 12,41 mln € 37,11 mln 

PVFP distribution – SES Policy Type A Premium Type reg

total from risk from expenses

total from lapse from kickbacks

with profit sharing

PVFP € 40,00 mln € 1,11 mln € 38,90 mln € 0,37 mln € 8,48 mln 

PVFP after combined shock € 26,23 mln € 0,74 mln € 25,49 mln € 0,45 mln € 5,56 mln 

without profit sharing

PVFP € 74,57 mln € 4,68 mln € 69,89 mln € 0,72 mln € 15,26 mln 

PVFP after combined shock € 48,96 mln € 3,08 mln € 45,88 mln € 0,88 mln € 10,01 mln 

Table 16: Composition of the PVFP – SES
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