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Abstract 
The paper deals with rent-seeking behaviour among agents competing for 
future shares of a common renewable natural resource. Rent-seeking might 
become profitable when the agents expect that the distribution of the natural 
resource in future periods will be dependent on the agents’ extraction of the 
resource in the past, even though high exploitation might reduce the stock 
that future individual quotas will be based upon. Whether aggressive rent-
seeking behaviour by one agent will encourage other agents to rent-seek 
more, however, is generally found to be ambiguous. 
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RENT-SEEKING AND QUOTA REGULATION OF A RENEWABLE RESOURCE 

 

1. Introduction 

It is well known that agents who share a common-pool resource will not take account of the 

full social cost of their actions. This means that the non-cooperative solution leads to a sub-

optimal management of the resource (Gordon, 1954). A usual response to this problem is to 

attempt to regulate extraction of the resource in some way in order to enforce optimal 

management. Indirect regulation can be implemented through a system of taxes, whilst direct 

regulation involves a quantity constraint on production (see for instance the overviews written 

by Bohm and Russell, 1985 and Munro and Scott, 1985). In this paper we examine how 

rational actors’ expectations of a direct regulatory regime can influence its efficiency. This 

type of regulation implies a reduction in the exploitation of the resource for some or all of the 

actors, according to some pre-specified criterion. Equal rate of reduction is an often-used 

principle; for instance, a fishery may be regulated by the use of quotas which specify a total 

allowable catch for each nation. The sizes of the nations’ quotas are very often based upon 

observable and verifiable variables such as historic catch or the number of vessels 

participating in the different fisheries. These magnitudes can be freely chosen by the nations 

in an unregulated (free) fishery. When the participants know (or suspect) that resource 

extraction will be directly regulated, they may have an incentive to adjust their behaviour in 

anticipation of this, even before regulation is implemented. Imagine that quotas will be 

awarded on the basis of historic catch, defined over a certain period. The nation can then 

attempt to secure a larger quota ex post by increasing the size of their catches in the periods 

leading up to the implementation of regulation. The incentive to over-fish is an example of 

rent-seeking behaviour which can counteract the efficiency of the regulatory regime. It is 

precisely this mechanism which is the focus of this paper. We concentrate our analysis on two 
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aspects: first we discuss under which conditions the regulation will lead to over-fishing 

compared to a welfare optimal allocation and different non-cooperative solutions (situations 

without any explicit regulation); secondly, we examine the strategic interaction between 

actors which may arise within the regulatory regime. For instance, one may ask whether one 

nation’s over-fishing may stimulate or moderate other nations’ incentives to adopt such a 

strategy. 

 

Rent-seeking has been discussed systematically in applied economic theory since the seminal 

work of Tullock (1967). The term ”rent-seeking” appears to have been coined by Krueger 

(1974), but the same type of activity was discussed and analysed formally as early as in 1954; 

see Haavelmo (1954)1 who called the activity ”grabbing” and introduced an allotment 

function where the value obtained by an actor from unproductive activities is a function of his 

capacity for such activity relative to others. The quota allocation mechanism that we will 

focus on in our model is similar to the allotment function introduced by Haavelmo. 

 

Game-theoretic resource modelling is primarily concerned with strategic aspects of 

externalities arising from the common exploitation of natural resources. Mesterton-Gibbons 

(1993) surveys resource games in fisheries and other renewable resources. Most of the 

literature is concerned with comparing different Nash equilibria with welfare solutions (or 

global optima). Many papers deal with the case of two agents (see for instance Levhari and 

Mirman, 1980 and Fisher and Mirman, 1996). However, the importance of the number of 

agents is considered by e.g. Clark (1980) and Hannesson (1997). Within the context of an 

infinitely repeated game, Hannesson considers how the number of agents who share a fish 

                                                 

1 Professor Tore Thonstad, University of Oslo, made us aware of this contribution in an open 
lecture at University of Tromsø, 14 February 2000. 
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stock affects the possibility of finding a self-enforcing solution that yields the welfare-

maximizing allocation. In our paper we will use game-theoretic resource modelling to focus 

on a rent-seeking mechanism which can result from regulation. The analysis is simplified by 

considering a model with only two agents and two time periods, in which there is no 

regulation in the first period, and where a quota regime is implemented in the second period. 

Two-period models have also been used to fisheries in a game-theoretic approach by e.g. 

Naito and Polasky (1997). 

 

The model which we use to discuss the phenomenon of rent-seeking in anticipation of 

regulation may have other applications than fisheries, e.g. the extraction of other renewable 

natural resources or the emission of pollution. However, in order to motivate the type of 

regulation considered in our model, we will now present some evidence from international 

fisheries. For resources that are exploited by more than one nation, it is common that a total 

allowable catch (TAC) is negotiated by the interested parties; the size of the TAC is often 

determined under advisement from marine researchers. The actual allocation of this TAC 

between the participating nations often depends upon past harvests. An early example of such 

a quota allocation between nations is the whale quota agreement from 1962. According to this 

agreement, the five involved nations (Norway, Japan, United Kingdom, Netherlands and 

Soviet Union) shared the total quota according to the relative catch distribution before the 

agreement (Tønnesen 1970)2. A thorough study of quota allocation between nations is found 

in Underdal (1980), who examines the quota regulation of North East Atlantic fisheries within 

the North East Atlantic Fishery Commission. The study includes 11 different fisheries 

                                                 

 
2 One exception was that the Soviet Union received a considerably higher share than their 
historic share of catches. This was explained by the fact that the Soviet Union, at the time it 
entered into this agreement, was building up its whaling industry. 
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involving different numbers of nations. Underdal examines to what extent the actual quota 

allocation deviates from the pre-regulation catch distribution. He also studies the arguments 

and the principles used in the negotiation process. One important conclusion is that the 

redistribution implied by the introduction of quota regulations is in most cases very small3. 

 

A final example of an international quota allocation is the agreement between the members of 

the European Union established in 1983. According to this agreement, the TAC - mainly 

based on biological criteria - is shared by the members according to a rule which is fixed from 

one year to the next. One of the determinants of the shares is the historic catch distribution 

between the EU nations, especially for the period 1973-1978 (Holm 1990). 

 

Our examples suggest that, in the regulation of international fisheries, the distribution of 

historic catches play an important role in the division of the TAC among the involved nations. 

This leads us to the following conjecture: given that past catch performance will play a 

prominent role in the allocation from any future regulatory regime, there is an incentive to 

increase current catches in order to secure a large share of the TAC in the future, i.e. there is 

an incentive to rent-seek. Possible rent-seeking mechanisms in natural resource quota 

allocation have earlier been mentioned by Hannesson (1991) and formally studied by Boyce 

(1998). When searching for optimal allocation principles and evaluating different possible 

allocation rules which might be used to distribute the common resource to several participants 

in a competition, Boyce finds that the allocation where the winner takes all, combined with 

full compensation from the winner to the losers, gives a first-best solution. Unlike Boyce, we 

                                                 

3 When comparing the last year with free fishing and the first year of quota regulation, he 
finds that in 3/5 of the cases the changes are less than +/-2% of the total. In only 
approximately 15% of the cases are the changes +/-5% or more - see table 4.3 in Underdal 
(1980). 
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do not go through any normative analysis searching for optimal allocation mechanisms. As 

commented on above we restrict ourselves to discussing allocations where all participants 

obtain a level of the resource after regulation has been implemented which is a function of the 

actors’ historical exploitation of the resource. 

 

The model on which the analysis is based is introduced in Section 2. There we present widely 

known solutions to the resource allocation problem, which we compare with our rent-seeking 

solution in Section 3. Conclusions are offered in Section 4. 

 

 

2. The Model 

We consider a model with two periods and two actors (countries). In order to simplify our 

analysis, the actors exploit a common renewable natural resource. At the beginning of 

period 1 we have a given historic stock volume. The natural growth of the stock in each 

period is depending on the stock volume at the beginning of the period. Furthermore, because 

we consider only two periods, it is reasonable to introduce a restriction on the stock volume at 

the end of period 2. This means that the stock cannot be lower than a certain level at the end 

of period 2. In this section we will consider the resource constraint and establish the welfare 

optimum solution and two non-cooperative solutions. 

 

Let tS  be the stock volume at the end of period t and th  be the total harvest in period t. Then 

we can define the resource dynamics in the model by: 

 1 0 0 1( )S S G S h= + − ,   2 1 1 2( )S S G S h= + − ,   2S S= , (1) 
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where 0S  is a given stock size at the start of period 1, and S  is a given stock volume which is 

required at the end of period 2.4 Furthermore, ( )tG S  is the natural growth of the stock in 

period t; the function has first derivative denoted by ( )tG S′ . Normalizing the product price in 

both periods to unity, we can write actor i’s rent in period t as: 

 1( , ), 1,2, 1,2i i i i
t t t tr h C S h i t−= − = =  (2) 

 
2 2 2

2 2
1 11

0, 0, 0, 0, 0
i i i i i

i ii
t t t ttt

C C C C C
h S h SSh − −−

∂ ∂ ∂ ∂ ∂> > < ≥ ≤
∂ ∂ ∂ ∂∂∂

, 

where i
th  is actor i’s harvest in period t and iC  is the cost function for actor i, assumed to be 

identical for both periods. The cost is supposed to be strictly increasing and convex in the 

harvest volume and decreasing in the stock volume. Furthermore, we assume that the cost is 

convex in stock volume and that the marginal cost in harvest is non-increasing in the stock 

volume. 

 

We can now define the present value of actor i’s two-period profit as: 

 1 0 1 2 1 2( , ) ( , ) , 1,2i i i i i i iV h C S h h C S h i = − + δ − =  , (3) 

where 1 0≥ δ ≥  is a common discount factor. Using the three equations in (1), we may write 

the resource dynamic constraint as: 

 0 0 1 0 0 1 2( ) ( ( ) )S S G S h G S G S h h= + − + + − −  (4) 

where 1 2, 1,2t t th h h t= + = . 

                                                 

 
4 We may think of two types of history for the resource stock we consider: 
(a) High historic exploitation and therefore a requirement of building up the stock, i.e. 

SS <0 . 
(b) A resource which is “discovered” in period 1 and therefore high historic stock volume 

compared to the required future stock size, i.e. SS >0 . 
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2.1 Three Allocations 

In the following we will define three standard solution concepts for the allocation problem. 

As they are standard, we give a brief definition of each and then collect the first-order 

conditions which govern their solutions in a table to facilitate comparison with the rent-

seeking approach adopted in Section 3. 

 

Welfare Solution (WS) 

We define the welfare solution (WS) as the catch allocation which maximises the sum of the 

actors’ present value 1 2W V V= +  subject to the resource constraint in (4). The solution to 

this problem is given by equations (5) and (6) in Table 1, where λ  is the increase in the 

welfare (total present value) from a small reduction in the required stock volume at the end of 

period 2 ( S ). 

 

Non-cooperative Solutions 

Within the standard neo-classical framework, each actor will exploit the resource in order to 

maximize his own resource rent. The solution concept is of the Nash-Cournot type meaning 

that each actor takes into account the effect that his own actions have on the common resource 

stock but disregards the effects emanating from others. We will consider two cases of this 

non-cooperative solution depending upon the actors’ attitude towards the resource constraint. 

 

NS(I)  The non-cooperative solution with a binding common resource constraint 

The non-cooperative solution with a common resource constraint, denoted by NS(I), is the 

catch allocation which maximises iV  subject to the resource constraint in (4). In this case it is 

assumed that the actors are individually rational, and that they consider the common future 

stock requirement given by (4) to be a real constraint on their behaviour. The solution in this 
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regime is given by equations (7) and (8), where iµ  is the increase in agent i’s present value 

from a small reduction in the required stock volume at the end of period 2 ( S ). 

 

NS(II)  The non-cooperative solution without a binding resource constraint 

Here the actors are assumed to disregard the resource constraint ( S ), so that (4) does not 

constrain their behaviour (i.e. 0, 1,2i iµ = = ). This is equivalent to free maximization of iV ; 

equations (9) and (10) dictate the solution to this problem. 

 

In Table 1 below we have collected the first order conditions for these three standard 

regimes.5 One of our main concerns will be how regulation affects the allocation of the 

harvest between time periods.6 Table 2 presents the conditions which govern this allocation in 

the three regimes presented so far. 

                                                 

5 We have dropped the presentation of the second order conditions which here, and for all 
other regimes analysed throughout the paper, are supposed to be satisfied. 
6 It should be noticed that in the NS(I) regime the actual catch distribution between the actors 
in period 2 is not determined in the model. One could possibly think that the catch volumes in 
period 2 are decided upon in a negotiation between the agents, or by public authorities. For 
our purpose here, the main thing is that the agents under this regime want to meet the resource 
constraint in (4) and that the decisions taken in period 1 do not influence the actual catch 
distribution in period 2. 
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Table 1 

First-Order Conditions for the Standard Solutions 

Allocation First-order conditions 

WS 
1

1 1 1

1 (1 ( )) 0, 1,2, 1,2,
i i j

i

C C C G S i j i j
h S S

 ∂ ∂ ∂ ′− + δ + − λ + = = = ≠ ∂ ∂ ∂ 
 (5) 

2

1 0, 1,2
i

i

C i
h

 ∂δ − − λ = = ∂ 
 (6) 

NS(I) 
1

1 1

1 (1 ( )) 0, 1,2
i i

i
i

C C G S i
h S

∂ ∂ ′− + δ − µ + = =
∂ ∂

 (7) 

2

1 0, 1,2
i

i
i

C i
h

 ∂δ − − µ = = ∂ 
 (8) 

NS(II) 1 1

1 0, 1,2
i i

i

C C i
h S

∂ ∂− + δ = =
∂ ∂

 (9) 

2

1 0, 1,2
i

i

C i
h

 ∂δ − = = ∂ 
 (10) 

 

 

Table 2 

Allocation of Harvest between Periods7 

Allocation First-order conditions 

WS 

 

1
1 1 1 2

1 1 (1 ( )), , 1,2,
i i j i

i i

C C C C G S i j i j
h S S h

   ∂ ∂ ∂ ∂ ′− + δ + = δ − + = ≠  ∂ ∂ ∂ ∂   
 (11) 

 

NS(I) 

 

1
1 1 2

1 1 (1 ( )), 1,2
i i i

i i

C C C G S i
h S h

 ∂ ∂ ∂ ′− + δ = δ − + = ∂ ∂ ∂ 
 (12) 

 

NS(II) 

 

1 1 2

0 1 1 , 1,2
i i i

i i

C C C i
h S h

 ∂ ∂ ∂= − + δ = δ − = ∂ ∂ ∂ 
 (13) 

 

                                                 

7 Equation (11) is derived from (5) and (6); (12) comes from (7) and (8), whilst (13) follows 
from (9) and (10). 
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2.2 Comments on the Allocations 

 

Welfare Solution (WS) 

From (5) and (6) it follows that: 

 
1 2

1 2 , 1,2
t t

C C t
h h

∂ ∂= =
∂ ∂

, 

so that the marginal costs for each of the periods should be the same for both actors. 

 

Equation (11) corresponds to the standard “golden rule equation” for the optimal equilibrium 

biomass.8 However, this condition for optimality in the harvest allocation between the periods 

can also be directly interpreted from (11). The two first terms of the left hand side express the 

marginal rent in period 1. The third term is the discounted marginal cost effect following from 

reduced stock volume in period 2. This marginal increase in the present value for an extra unit 

catch in period 1, measured by the left hand side of (11), should be equal to the right hand 

side. We see that the right hand side is a product of three factors. The two first factors are the 

discounted marginal rent for period 2, while the third factor is the harvest volume effect in 

period 2 caused by one unit harvest in period 1, where the resource constraint is taken into 

account9. 

 

                                                 

8 In order to deduce the standard golden rule equation (see Clark and Munro, 1975) from 
equation (11), one has to formulate biological equilibrium harvest, introduce the connection 
between the discount factor and the rate of interest and specify the cost function as 

iii hScC )(= . 
9 It is reasonable to assume that 11 ( ) 0G S′+ >  for an exploited resource (i.e. in the case where 
S is not too high), and this condition is assumed to hold in the rest of this paper. 
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Non-cooperative Solution NS(I) 

In this case, iµ  is the increase in agent i’s present value from a small reduction in the required 

stock volume at the end of period 2 ( S ). If the two agents have different costs, these resource 

shadow prices will also be different. If the stock requirement represents a true constraint on 

actor i, it follows that iµ >0. Furthermore, by comparing the NS(I) and WS solutions in Table 

1, it is seen that in the second period, the NS(I) solution gives a sub-optimal allocation of 

harvest between the agents when their resource shadow prices differ. It also follows that the 

allocation between actors in the first period is not optimal, both because of possible difference 

in resource shadow prices and because the cost effects of the stock volume might be different 

for the two actors, i.e. 1 2
1 1/ /C S C S∂ ∂ ≠ ∂ ∂ . 

 

Equation (12) shows that the NS(I) solution will not give an optimal harvest allocation 

between periods. The right hand side of (12) is the same qualitative expression as the right 

hand side of (11). However, by comparing the left hand side of these two equations, we see 

that the non-cooperative actors, although being aware of the stock requirement in the future, 

will not take account of the full social cost of their actions. Each actor takes account of the 

cost increase only for himself in period 2 caused by lower resource stock in period 2, but 

disregards the same effect for the other actor. Because of the assumption that the cost is 

strictly increasing and convex in the harvest volume, we find that the harvest volume in 

period 1 is too high in the NS(I) case compared to the welfare solution (WS). 

 

 

Non-cooperative Solution NS(II) 

Here it follows directly from (10) that the marginal rents for both actors in the second period 

will be identical, meaning an optimal allocation of the total harvest in period 2. However, the 
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total harvest in period 2 will be higher than for NS(I) and WS. Furthermore, it follows from 

(9) that each agent only takes account of the private cost effect on reducing stock in period 2, 

meaning that the harvest volume for both actors also will be too high in period 1. From 

equation (13), it is seen that the relative catch distribution between the periods will be 

different in this case compared to both NS(I) and WS. Ignoring the resource constraint means 

a relatively more intensive fishery in period 1 compared to the harvest volume in period 2 

than in NS(I) or WS. 

 

 

3. Quota Regulation and Rent-seeking 

So far our model findings correspond to the standard results. Agents who share a common-

pool resource will not take account of the full social cost of their actions, which means that 

the non-cooperative solutions lead to a sub-optimal management of the resource. This is well 

known in the literature back to Warming (1911) and Gordon (1954). A natural response to 

this problem is to attempt to regulate extraction of the resource in some way in order to 

enforce optimal management. For fishery resources where more than one nation are involved 

in the exploitation, it is common that a total allowable catch (TAC) are determined and 

distributed among the involved nations. Past harvest is often one important criterion when it 

comes to the allocation between nations as mentioned in Section 1. When participants know 

(or suspect) that the resource extraction will be directly regulated in this way, they may have 

an incentive to adjust their behaviour in anticipation of this. Imagine that quotas will be 

awarded on the basis of historic catch, defined over a certain period. The country can then 

attempt to secure a larger quota ex post by increasing the size of their catch in the periods 

leading up to the implementation of regulation. In this section we will focus on this possible 

rent-seeking mechanism and compare this to the allocations in Section 2. 
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In our analysis of a quota regulation regime based on historic catch, we will consider two 

different situations: in the first case, both actors choose their harvest in period 1 

simultaneously, denoted by RS(A); the second solution is characterised by sequential choices 

where one of the nations observe the other nations harvest in period 1 before it chooses its 

own harvest in period 1. This solution is denoted by RS(B). In both cases, the actors are 

supposed to be unregulated in period 1, whilst direct regulation is introduced in the second 

period. This means that the countries are free to choose the level of economic activity 

(harvest) in the first period, but face a quantity constraint in the second via the introduction of 

a quota scheme which limits the total amount of resource extraction. Countries’ individual 

shares of the total quota in period 2 are decided by the size of their harvest in period one. The 

introduction of this quota regime is known to both actors in the first period. In order to 

simplify the analysis, we assume that these allocations in period 2 are non-tradeable. 

 

We begin our analysis of this regulated case by noting that the resource constraint in (4) 

defines the total quota for period 2, i.e. 

 2 0 0 1 0 0 1 2 1( ) ( ( ) ) ( )h S G S h G S G S h S h h= + − + + − − = , (14) 

where 1 2
2 2 2h h h= +  and 2

ih  is the individual quota for actor i in period 2. Furthermore, we 

assume that the actors’ catch volumes in period 1 determine the distribution of the total quota 

in period 2. This can be written as: 

 1 2
2 1 1 2 1( , ) ( ), 1,2i ih g h h h h i= = , (15) 

where the individual share functions sum up to one, 1 1 2 2 1 2
1 1 1 1( , ) ( , ) 1.g h h g h h+ =  Furthermore, it 

is supposed that actor i’s share is increasing and strictly concave in own harvest in period 1 

and decreasing in the other actor’s harvest in period 1, i.e. 
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1 2
1 1

1

( , ) 0, 1,2
i

i

g h h i
h

∂ > =
∂

   and   
1 2
1 1

1

( , ) 0, , 1,2,
i

j

g h h i j i j
h

∂ < = ≠
∂

. 

 

As mentioned above, a special case of this allocation rule will be that the relative amounts of 

the total harvest in period 2 in the regulation case are the same as the catch distribution before 

regulation is implemented, i.e.10 

 1
1 1 1 2

1 1

( , ) , 1,2, 1,2, .
i

i i j hg h h i j i j
h h

= = = ≠
+

 (16) 

The problem facing actor i in period 2 is to maximise its profit in period 2, subject to the 

given quota. This means that actor i maximises (2), interpreted for period 2, subject to: 

 2 2 , 1,2.i ih h i≤ =  (17) 

The first-order condition for maximum is then given by: 

 
2

1 , 1,2
i

i
i

C i
h

∂− = β =
∂

, (18) 

where iβ  is the increase in actor i’s rent from a small increase in its individual quota. We will 

assume that the direct regulation represents a true constraint on actor i, which means that 

iβ >0 and (17) holds as an equality. When the quota allocation in period 2 is non-tradeable, as 

we have assumed, these quota shadow prices might be different because the actors may have 

different costs and because the quota obtained by the actors in period 2 may vary.11 

 

                                                 

10 According to Underdal (1980) this has been a common principle in the quota allocation 
between nations in the North East Atlantic Fishery Commission (NEAFC). 
11 In this case we have that the welfare optimum condition from (6) is not fulfilled. However, 
if the individual quotas in period 2 are tradeable in an atomistic quota market, the marginal 
rent in period 2 would be equal for all actors (identical β ’s), and the condition in (6) is 
fulfilled. However, the model and its results concerning the allocation between actors in 
period 1 and the allocation between period 1 and period 2 would not be affected if the quotas 
were supposed to be tradeable. 
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Let us now consider the actors’ choices of harvest in the first period. The present value of the 

actors’ rents can now be written as: 

 1 0 1 2 1 2( , ) ( , ) , 1,2.i i i i i i iV h C S h h C S h i = − + δ − =   (19) 

 

(a) Simultaneous Moves 

The actors who are unregulated in the first period can freely choose the harvests which 

maximise (19). This means that the first-order conditions in the case of simultaneous moves, 

are given by: 

 2

1 1 2 1

1 1 , 1,2.
i i i i

i i i

C C C h i
h S h h

 ∂ ∂ ∂ ∂− + δ = −δ − = ∂ ∂ ∂ ∂ 
 (20) 

Furthermore, it follows from (14) and (15) that: 

 2 2
2

1 1 1

, 1,2
i i

i
i i i

h g hh g i
h h h

∂ ∂ ∂= + =
∂ ∂ ∂

, (21) 

where 2 2
1

1 1

(1 ( )) 0, , 1,2.i j

h h G S i j
h h

∂ ∂ ′= = − + < =
∂ ∂

 

 

Let us take a closer look at the expressions in (21). In general, when an actor increases his 

harvest in period 1, he may experience higher or lower individual quota in period 2. The first 

term on the right hand side is clearly positive because the actor i’s share of the total quota is 

increasing in his harvest volume in period 1, see (15). However, the second term measures the 

decrease in the total quota in period as a consequence of increasing harvest in period 1. 

Rearranging (21) gives us that: 

 2

1

0
i

i

h
h

∂ >
∂

   if   
1 1

1 2 1
2

1 1 2

, 1,2i i

i i i
i

i i ih h

g h h hEl g El h i
h g h h

∂ ∂= > − = − =
∂ ∂

. (22) 

Equation (22) tells us that actor i’s quota in period 2 will be increasing in his harvest volume 

in period 1 if the relative increase in actor i’s share of the quota in period 2, caused by a 



 16 

marginal increase in harvest in period 1, is higher than the relative decrease in the total quota 

in period 2, caused by the same marginal increase harvest in period 1. Using the allocation 

rule in (16), the condition in (22) becomes 2 1 1(1 ( )), , 1,2, ,j ig h h G S i j i j′> + = ≠  where the 

left hand side is the quota for actor j in period 2, and the right hand side is the reduction in 

total quota in period 2 caused by a marginal increase in the catch of actor i in period 1. In the 

case of the allocation rule in (16), this means that (22) holds for both actors when the 

individual catch quotas for period 2 are higher than the reduction on the stock in period 2 

which one unit catch in period 1 causes. 

 

By inserting (20) in (21), we obtain the first order conditions in this RS(A) case: 

 1 2
1 1 2 1

1 1 (1 ( )) , 1,2.
i i i i

i
i i i

C C C gg G S h i
h S h h

   ∂ ∂ ∂ ∂′− + δ = δ − + − =   ∂ ∂ ∂ ∂   
 (23) 

Let us now compare the condition in (23) with the condition in (12). Generally, we know that 

1 2 1
1

(1 ( )) 1 ( )
i

i
i

gg G S h G S
h

∂′ ′+ − < +
∂

 because 1ig <  and 
1

0
i

i

g
h

∂ >
∂

. This means that the right 

hand side of (23) is always less than the right hand side of (12). Because the cost function is 

strictly increasing and convex in the harvest volume, we find that the harvest volume in 

period 1 will always be higher for both actors in this regulated solution, (RS(A)), than in the 

non-cooperative solution with a binding resource constraint (NS(I)). However, if we compare 

this regulated solution to the case where the actors do not feel any responsibility to meet the 

common future stock constraint (NS(II)) it follows that harvest for the two actors in period 1 

under RS(A) will be higher only if (22) holds. This means that more intensive harvesting is 

seen in the RS(A) case than in the NS(II) case if the individual quotas in period 2 are 

increasing in the actors’ harvest volume in period 1. The conclusions are summed up in result 

1 below. 
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Result 1: 

(I) The individual harvests in period 1 under the regulated solution with simultaneous 

moves, RS(A), are always higher than the harvests in period 1 under the non-

cooperative solution when actors feel responsible for meeting the common future stock 

requirements, NS(I). 

(II) Moreover, the actors’ harvests in period 1 under the quota regime with simultaneous 

moves, RS(A), will also be higher than the actors’ harvests in period 1 under the non-

cooperative solution without a binding resource constraint, NS(II), if the individual 

quotas are increasing in the harvest volume in period 1, i.e. 2

1

0
i

i

h
h

∂ >
∂

, implying that 

condition (22) holds. 

 

To give a better understanding of Result 1, we may think of what is going on in our model 

both as a game against the other actor, and a stock game from the resource constraint. To see 

this, we divide the total game into a pure “strategic game” and a pure “stock game”. Isolating 

the strategic game by excluding the stock game means that we ignore the common future 

stock constraint in the non-cooperative solution, i.e. we have the NS(II) case where 

0, 1,2.i iµ = =  The analogous solution in the RS(A), where the stock game is excluded, will 

be found by disregarding that the individual harvest volume in period 1 has any quota effect 

in period 2, i.e. assuming 2

1

0, 1,2.i

h i
h

∂ = =
∂

 In this pure strategic game we have that the left 

hand side of (12) is equal to zero, while the right hand side of (23) is negative. This means 

that in the pure strategic game caused by the quota allocation mechanism in (15) leads to 

over-fishing compared to the non-cooperative solution, i.e. the allocation rule results in a race 

for quotas between the two actors. 
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The pure stock game is found by excluding the strategic game. The relevant non-cooperative 

solution is now NS(I). In order to obtain the isolated effects caused by the stock game in 

RS(A), we look on the case where the quota shares are given in advance, i.e.
1

0
i

i

g
h

∂ =
∂

. The 

right hand side of (23) now becomes 1
2

1 (1 ( ))
i

i
i

C g G S
h

 ∂ ′ δ − +   ∂ 
, which is less than the right 

hand side of (12) because 1ig < . Hence, the regulation quota regime leads to over-fishing in 

period 1 compared to the relevant non-cooperative solution. The reason is quite simple: the 

introduction of an individual quota means that the actors will feel less responsible for the 

future of the resource stock in the regulation case than in the non-cooperative case with a 

binding common resource constraint. This is because in the regulation case, the quota effect in 

period 2 of increased harvest in period 1 is only multiplied by the private share which the 

actor obtains (equal to 1ig < ), while it is multiplied with the whole effect on the future stock 

in the NS(I) case (equal to1). 

 

(b) Non-simultaneous Moves 

The following regulation solution is symbolised by RS(B). We now assume that actor i is 

taking his action after actor j’s harvest volume in period 1 is known, i.e. that actor j is a leader 

and actor i is a follower in a non-simultaneous game going on in period 1. This means that the 

optimal behaviour of actor i is still defined by equation (23). However, when actor j chooses 

his catch volume in period 1, he will take into account the reaction which he causes on actor 

i’s behaviour in the same period. Generally, this reaction will be implicitly defined by (23) 

and might be written as: 

 1 1 1( )i iR jh h h=  (24) 
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where differentiation of (23) with regard to the leader’s harvest in period 1, in general terms, 

gives: 

 

2

1 1 1
2

1
2

1( )

i

iR i j

ij

i

V
dh h h

Vdh
h

∂
∂ ∂= −
∂

∂

 

The denominator is negative when the second order conditions are fulfilled, so the sign of the 

reaction is determined by the sign of the numerator. By using the specifications in our model, 

the numerator can be written as: 

 

2 2

2 1 2
1 2 1 1 1

2 2
2 2 2

2 2 1 12
1 1 2 1 1 1 1

2 (1 ( ))
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i i i i
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i i j
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i i i i i i
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i j i i j i j

III

C g g Ch g G S
S h h h S

V C g g g gh h g G S g G S
h h h h h h h
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h h h h h

 
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 
 
 
 
 + 
 
 
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(25) 

When taking a closer look at (25), it is seen that our general assumptions regarding the cost 

function and the distribution function give ambiguity regarding the sign of the sum of the four 

terms of the right hand side. Only the sign of the second term II is clearly non-positive. 

Furthermore, it is seen that the first, the third and the fourth term consist of combinations of 

what we above have called strategic effects, where the actor i’s share changes, and stock 

effects which influence on actor i’s marginal present value. One way to examine the sign of 

the expression in (25) further, will be to separate the total effect into a pure “stock game” 

(where 
1 1

0
i i

i j

g g
h h

∂ ∂= =
∂ ∂

) and a pure “strategic game” (where 2

1

0i

h
h

∂ =
∂

), see the Appendix. 

However, as seen in the appendix, the sign of (25), and thereby the sign of the slope of the 

reaction function in (24), is generally ambiguous in both the pure strategic and pure stock 
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game. This is a consequence of many different kinds of mechanisms working simultaneously 

in our model. As an illustration let us consider two effects which work in opposite directions. 

For instance, a positive effect follows from term I as a consequence of the stock game. The 

marginal cost for actor i in period 2 is lowered because actor i’s quota is reduced as a 

consequence of reduced stock when the leader increases his harvest in period 1. An example 

of a negative effect that reduces the marginal present value for actor i is seen in term II. This 

effect measures the increase in marginal cost when the stock level is reduced as a 

consequence of more intensive harvesting in period 1. 

 

Let us now turn to the leader’s optimal choice of harvest in period 1. Given the reaction 

function in (24), actor j, as the first mover, maximises the present value 1 1 1( , ( ))Rj j i jV h h h  with 

regard to his harvest volume in period 1. The first order condition for maximum is then given 

by: 

 1

1 1 1

0
Rj j i

j i j

V V dh
h h dh

∂ ∂+ =
∂ ∂

 (26) 

where 2
1

1 1 2 1

1 (1 ( )) 0
j j i i

i i j

V h C C G S
h h h S

  ∂ ∂ ∂ ∂ ′= δ − + + <  ∂ ∂ ∂ ∂  
 (27) 

In (27) it is seen that the present value for actor j is a decreasing function of the harvest 

volume for actor i in period 1. Increased harvest in period 1 from actor i causes reduced 

present value for actor j in two different ways: The first term in (27) is the effect of reduced 

quota for actor j, both as a consequence of a lower share of the total quota and lower total 

quota in period 2. The second term measures the increased costs because of reduced stock in 

the regulated period. 
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When we now use (27) in (26), it is seen that the sign of the second term on the left hand side 

will be conditional on the sign of the slope of the reaction function. If the harvest volumes in 

period 1 are strategic substitutes (complements), i.e. that the slope is negative (positive), the 

sign of this second term in (26) will be positive (negative); see Bulow et al (1985). 

Remembering that the present value for actor j is assumed to be concave in actor j’s harvest 

volume in period 1, this leads to a higher (lower) catch volume for first mover actor j in 

period 1 in this non-simultaneous case compared to the situation where the actors move 

simultaneously if the harvests are strategic substitutes (complements). Furthermore, it follows 

that second mover actor i chooses lower harvest in case RS(B) than in RS(A), no matter what 

the slope of the reaction function. This means than in the case where the harvest volumes in 

period 1 are strategic complements, we know for sure that the total harvest in period 1 in the 

situation of non-simultaneous moves is less than the total harvest in the situation of 

simultaneous moves. However, when the fish levels in period 1 are strategic substitutes, the 

total harvest in period 1 in the RS(B) case can be both higher, the same and lower than in the 

RS(A) case, conditional on the sizes of increase and decrease in actor j’s and i’s harvest 

respectively, when going from the simultaneous to the non-simultaneous case. These findings 

are summed up in Result 2 below. 

 

Result 2: 

In a non-simultaneous game (denoted RS(B)), the first mover’s harvest in period 1 will 

be higher (lower) and the second mover’s harvest in period 1 will be lower than in a 

simultaneous game (RS(A)) when the these harvests are strategic substitutes 

(complements). The total harvest in period 1 will be lower in case RS(B) than in RS(A) 

when the harvest volumes in the unregulated period are strategic complements, while it 
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is not clear whether RS(B) gives lower or higher total harvest in period 1 than RS(A) 

when the harvest levels in period 1 are strategic substitutes. 

 

Hence, whether the non-simultaneous game gives less or more rent-seeking than the 

simultaneous game is an open question. Based on our analyses above, it is seen that in 

situations where the harvest levels in period 1 are strategic complements, and in situations 

where the harvests are strategic substitutes, but the increase in actor j’s harvest is less than the 

reduction of actor i’s harvest when moving from the simultaneous to the non-simultaneous 

case, we would see a less intensive rent-seeking behaviour in the RS(B) compared to the 

RS(A) case. 

 

 

4. Conclusions 

Fisheries have often been regulated by agreements which determine total allowable catches 

for different fish stocks. Furthermore, the total quota is often distributed to agents based on 

actual choices of individual catches in the past. Based on a simple model in which the agents 

know this allocation mechanism and the dynamic growth in the renewable resource, we have 

seen that it might be individually advantageous for agents to attempt to influence the 

allocation through rent-seeking behaviour. This individual quota regime might be worse than 

a situation without any regulation for two reasons: firstly, if the actors feel responsible for 

meeting a future resource constraint in a non-regulated situation, the first period harvests will 

be lower than when the fishery is regulated by giving individual quotas in period 2 if the 

actors move simultaneously. This is because the individual quota regulation weakens the 

actor’s individual responsibility for meeting the future constraint on the level of the resource. 

Secondly, individual quota regulation where the actors’ shares are based on historical catches, 
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unlike the non-regulated situation, opens the possibility for the actors to influence the level of 

the individual shares of the total quota which induces a race for quotas (Result 1). 

 

Furthermore, we have focused on whether the order of moves taken by the actors influences 

the rent-seeking activity within a quota regulation without finding unambiguous conclusions. 

Among other things, the results are conditional on whether the first mover, by choosing an 

aggressive strategy induces the second mover to choose an aggressive reply, i.e. whether the 

harvests in period 1 are strategic complements or substitutes (Result 2). 

 

Our conclusions are based on a model where we have made several simplifying assumptions. 

Finally, let us comment on some of the most critical assumptions. Firstly, in practical policy 

the total quota may be distributed to agents based on actual choices of other individual 

variables than only catch volume in the past (e.g. inputs). This aspect, together with the case 

of an endogenous number of agents, is discussed in Bergland et al (2000). Furthermore, we 

have assumed that the agents have perfect information about the future total quota (i.e. the 

resource constraint), the actual quota allocation rule chosen by the regulation authority, and 

the exact point of time when regulation is implemented. However, in practice agents will 

often have only imperfect information concerning possible future regulation, which means 

that there will be uncertainty as to the possible future gains from rent-seeking. This would 

very possibly lead to less rent-seeking compared to a situation where the relevant information 

concerning the future public regulation was known for sure. For instance, we could think of a 

situation where the authorities shared the total allowable quota in the future on individual 

average production and individual average levels of inputs, estimated on the basis of statistics 

for some unknown years in the past. Then the agent’s current ability to influence future 
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individual quotas is weakened, and the possible advantage of adopting rent-seeking behaviour 

for a single year is reduced. 

 

Even though our analysis is based on several simplifying assumptions, also others than those 

explicitly commented on here, we believe that this paper points to an important issue which 

occurs in the practical regulation of common natural resources. However, further theoretical 

research concerning the type and size of possible rent-seeking mechanisms is necessary, as 

are empirical studies from different common natural resources. For instance, it is still an open 

question whether the over-fishing seen in many international fisheries today can be attributed, 

at least in part, to the type of rent-seeking mechanism that we have examined. As we have 

demonstrated, the regulation of a renewable resource is considerably complicated by the 

existence of rent-seeking behaviour. Furthermore, there are many relationships that need to be 

determined and quantified in order before one can be sure that quota regulation will have the 

desired effect. 
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APPENDIX 

Here we analyse the sign of the components of (25) by looking at a stock game and a pure 

strategic game (as defined in the text). Firstly, by ignoring the strategic game in order to 

isolate the influence from the stock game, (25) becomes: 

2 2 2 2
2 2

1 1 12 2
1 1 1 2 1 2 2

2 (1 ( )) ( ) (1 ( )) 1 ( )
( ) ( )

i i i i i
i i i

i j i i i

I II III IV

V C C C Cg G S g G S g G S
h h S h S h h

 
  ∂ ∂ ∂ ∂ ∂ ′ ′ ′′     = δ − + − − + + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂  
  
14444244443 123 14444244443 144424443

  (A1) 

On the right hand side of (A1), I is supposed to be non-negative, while the other terms (II, III 

and IV) are supposed to be either negative or non-positive when 1( ) 0G S′′ ≤ 12. This means in 

the pure stock game, we know that (A1) is negative if the marginal cost is independent of the 

stock volume, 
2

1 2

0
i

i

C
S h
∂ =

∂ ∂
. This means that in this case the marginal present value for actor i 

w.r.t. actor i’s harvest in period 1 will be decreasing in actor j‘s harvest in period 1. Hence, it 

follows from (24) that in this special case actor i would choose to reduce his harvest volume 

as the harvest volume of actor j increases, implying a negatively sloped reaction function so 

that the individual harvest levels are strategic substitutes in the model. Moreover, when 

2

1 2

0
i

i

C
S h
∂ <

∂ ∂
, we cannot exclude the possibility that the reaction function is positively sloped in 

this pure stock game, i.e. that the individual harvest levels in period 2 are strategic 

complements. This case might occur if the absolute value of 
2

1 2

i

i

C
S h
∂

∂ ∂
 is sufficiently high such 

that the first term dominates the three following terms in (A1). 

 

                                                 

12 This means that the growth in the stock increases less the higher the stock becomes, which 
is a usual assumption in bio-economic models describing the dynamics of a fish stock. 
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When we isolate the effects following from a pure strategic game, i.e. when ignoring the stock 

game, (25) becomes: 

 ( ) ( )

2 2

2 2
1 2 1 1 1

2 2 2

2 12
1 1 2 1 1 1 1

2

2 1 1

( )

1 ( )
( )

1 1

i i i i

i i j

III

i i i i i i
i

i j i i j i j

III

i i

i i j

C g g Ch
S h h h S

V C g g g gh hg G S
h h h h h h h

C g h
h h h

 ∂ ∂ ∂ ∂+ − − ∂ ∂ ∂ ∂ ∂ 

  ∂ ∂ ∂ ∂ ∂ ∂′= δ − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 ∂ ∂− − + ∂ ∂ ∂ 

123144424443

14444444444244444444443

( )1
1 1

( )
i i

i j

IV

g gG S
h h

 
 
 
 
 
 
 
 
 
 
   ∂ ∂ ′ +   ∂ ∂   
 
144444444424444444443

 (A2) 

As in the case of the pure stock game, the slope of the response curve is generally ambiguous 

in this pure strategic game because the sign of (A2) can be both positive, zero and negative. In 

order to obtain some more information about the sign of the right hand side of (A2), we may 

take a closer look at the case where the distribution function is given by (16).13 As in the 

general case, where both the stock and the strategic game are going on, we have that the 

second term in (A2) is non-positive. Furthermore, the first and the fourth term are non-

positive (negative) when 1 1( )j ih h≥ < , while the third term is clearly positive when 1 1
j ih h≥ . 

This means that we are unable to draw any unambiguous conclusions regarding the slope of 

the reaction function in (24), both in the pure stock and pure strategic game, and of course in 

the case where both games are working simultaneously. 

                                                 

13 In this case we have 
2

1 1 1 1
2 2 3

1 1 1 1 1 1 1 1 1 1

, ,
( ) ( ) ( )

i j i i i i j

i i j j i j j i i j

g h g h g h h
h h h h h h h h h h

∂ ∂ ∂ −= = − =
∂ + ∂ + ∂ +

. 
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