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Abstract

We analyse the well-known TORQ dataset of trades on the NYSE over a 3-month period,

breaking down transactions depending on whether the active or passive side was institu-

tional or private. This allows us to compare the returns on the di¤erent trade categories.

We �nd that, however we analyse the results, institutions are best informed, and earn

highest returns when trading with individuals as counterparty. We also con�rm the con-

clusions found elsewhere in the literature that informed traders often place limit orders,

especially towards the end of the day (as predicted on the basis of laboratory experiments

in Bloom�eld, O�Hara, and Saar (2005)). Finally, we �nd that trading between institutions

accounts for the bulk of trading volume, but carries little information and seems to be largely

liquidity-driven.

JEL Classi�cation: G14, G12

Keywords: liquidity trade, informed trades



1 Introduction

A large literature has appeared in recent years dealing with questions relating to the way

information is disseminated in modern stock markets, which is hardly surprising given that

the issues are of obvious importance for traders, investors and regulators. Are institutions

informed �or at least better informed than individuals? Do informed traders place limit

orders? Is there more information in early morning trades? Are spreads larger for informed

trades? The microstructure literature has addressed questions like these empirically, some-

times theoretically, and in one important recent case, experimentally, yet they remain far

from being resolved.

A possible starting point would be the question of how to distinguish informed from

uninformed traders. A number of di¤erent approaches have been taken here. On the one

hand, the question can be sidestepped by simply identifying institutions as informed traders

and taking individuals as uninformed, an assumption which has been challenged on empiri-

cal grounds by Lee, Lin and Liu (1999). Alternatively, it has been traditionally argued that

to be informed is to be active (e.g. Glosten (1994)). On this view, the relevant distinc-

tion involves no more than separating market orders from limit orders, an assertion which

has been questioned on both theoretical and empirical grounds (Kaniel and Liu (2006),

Bloom�eld, O�Hara, and Saar (2005)). A more indirect, less arbitrary approach starts from

a theoretical model and tries to estimate the probability that any given transaction is

information-based or purely noise trade, using as an indicator a measure of order imbal-

ance (e.g. Easley, Hvidkjaer and O�Hara (2002), Easley et al (2002)).

In an in�uential recent paper, Bloom�eld, O�Hara, and Saar (2005)addressed these ques-
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tions in an experimental setting, �nding that informed traders do not, as previously assumed,

always take liquidity o¤ the market. Instead, they start the day by using their informational

advantage to pick o¤ mispriced limit orders while they are available, thereby driving the

market towards the true price and progressively eroding the value of their information. To-

wards the end of the day, they switch increasingly to limit orders, presumably because the

value of their information has diminished to the point where it is outweighed by the prospect

of avoiding the bid-ask spread.

However, the acid test of informativeness is whether it makes money in actual market

conditions. In other words, if informed traders are those who rationally make the best

possible use of available information, then by de�nition they must on average make excess

returns in dealing with the uninformed. It follows that, wherever the data makes it possible

to track subsequent returns, we can measure information directly and, moreover, use the

results as a check on the accuracy of other, more indirect measures, like the probability of

information-based trade (henceforth: PIN) mentioned earlier, and of the other assumptions

made in the literature.1

In this paper, we get to the heart of the matter by examining the well-known TORQ

dataset in detail. Speci�cally, we take the approach of Anand, Chakravarty and Martell (2005)

a stage further. Whereas they analyse the data by whether trades are initiated by institu-

tions or individuals, we do the same on the active and passive sides. In other words, we

break down the set of all transactions into subsets, depending on whether the traders are

institutional or individual2, whether they are active or passive, and whether they are buys

1 Our use of returns is closely related to Hasbrouck�s (1991a, 1991b) measure of trade informativeness by

price impact via a vector autoregressive model of trades and mid-quote returns.
2 Strictly, as a result of the clustering of deals, it is impossible completely to unscramble institutional
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or sells. Thus, we have eight classes: institution-initiated buys from (sales to) passive in-

dividuals , denoted B(i-u) and S(i-u) respectively, institution-initiated buys from (sales to)

passive institutions, B(i-i) and S(i-i), and similarly, individual-initiated buys from (sales to)

passive individuals, B(u-u) and S(u-u), and individual-initiated buys from (sales to) passive

institutions, B(u-i) and S(u-i). The motivation for following this route is that, if informed

traders sometimes choose to place limit orders, as suggested by Kaniel and Liu (2006) in the

context of a model of optimal trade strategy and by Bloom�eld, O�Hara, and Saar (2005) in

an experimental setting, looking only at the active side of trades may be seriously misleading.

Examining returns (as well as other market variables such as volume and spread) disag-

gregated in this way, we are able to answer a number of the questions in the literature. First,

we show that institutions are indeed better informed than individuals, an advantage they are

able to exploit to earn higher returns, through actively initiating trades (Chakravarty (2001),

Wong and Girardin (2007)). Second, we are able to track the changing situation over the

six and a half hours in the trading day, to show that the informativeness of trade drops

steadily over the day and, moreover, that informed traders tend to submit limit buy or-

ders towards the end of the day�s trading, both of which results con�rm the �ndings of

Bloom�eld, O�Hara, and Saar (2005)in their experiment-based research. We are also able

to show that the bulk of trading throughout the day is between institutions. As such, it

carries little information and seems to be largely motivated by liquidity considerations. This

conclusion may provide some justi�cation for the insistence by Duarte and Young (2007)

and individual deals. We initially apply the 50% rule here: if more than half of the active side of a trade is

institutional, we classify it accordingly. Later, we examine the robustness of our results to changes in this

criterion.
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on decomposing PIN into its liquidity and information components. It may also be seen

as supporting the association of high trade volume with di¤erences in the way information

is interpreted, which (Kandel and Pearson (1995) and Bamber, Barron and Stober (1999))

o¤er as an explanation of the fact that high levels of activity often result in only small

movement in prices.3

We start with a brief discussion of our dataset. We then go on to examine the evidence

from the disaggregation of trades on whether or not institutions appear to be informed

traders able to earn excess returns. The evidence from gross returns data for periods that

are sometimes overlapping turns out to be largely con�rmed by formal regressions. We go

on in the succeeding section to consider the pattern of trading over the day, before �nishing

with a few concluding comments.

2 The TORQ Dataset

The TORQ database of transactions, quotes, orders and audit trail data for the 3 months

November 1990 to January 1991 has been widely used in the published literature and is

well-known enough not to need detailed description.4 In this paper, only 8 �rms with

fewer than 100 lines of quotes and with spreads larger than 50% are excluded from the

study, so that our �ndings are free from the e¤ects of outliers. We thus have 136 NYSE

stocks as our sample. The descriptive statistics given in Table 1 show the sample size

broken down by transaction type. Out of a total dataset comprising nearly half a million

buy and sell trades, institutions were the active side (i.e placed market orders) in about

3 See also the market-sidedness interpretation in Sarkar and Schwartz (2007).
4 See Hasbrouck (1992) for more details.
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two out of every three cases which could be classi�ed. In volume terms, the institutional

predominance is even more marked, as their trades are on average over three times as great

as those of individuals.5 We are concerned here with measuring the information in share

dealing, as indicated by the post-trade return, de�ned as the log di¤erence in the mid-quote

price in the hour following a transaction. Average and median returns were signi�cantly6

positive for buy trades, but negative on average (median zero) for sells. The net e¤ect was

positive, since the market rose somewhat over this three-month period. In addition to the

(best) bid-ask spreads , the Table also gives two indicators related to market depth. The

sum of the number of shares on o¤er at the lowest selling price and the number being bid

for at the highest buying price represents a measure of liquidity. The di¤erence between

the two could be regarded as a re�ection of information asymmetry (e.g. Ranaldo (2004),

Harris and Panchapagesan (2005)), a proposition which is consistent with the sign pattern:

a positive (negative) bid minus ask depth implies that investors are impatient to buy (sell),

which in turn forecasts an upward (downward) movement in price.

3 Are institutions informed?

The top section of Table 2 contains an analysis of the dataset by type of transaction. In the

top half, we give the results for buy trades where both sides were individuals (u-u), where the

active side was an institution while the passive was a private individual (i-u), the opposite

5 Interestingly, for both institutions and individuals, as far as average trade size is concerned it seems to

make little di¤erence whether they are active or passive.
6 Note that signi�cance tests are not strictly warranted in this case, because many of the returns are for

overlapping periods, a problem we address later.
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case (u-i), and where both parties were institutions (i-i). The lower half of the table gives

the same analysis for sells. In both cases, the last two lines cover cases where one or the

other party was unclassi�ed (labelled �other�).

The most notable results in the table are in the i-u and u-i lines. From the returns

column, it can be seen that institutions buying shares o¤ered by individual traders earned

an average return of just under 0.5%. On the other hand, when the roles were reversed,

individuals earned only 0.16%, with the other two categories generating returns in between

these two extremes. Looking at the sell trades, the same pattern is repeated, with the return

in the aftermath of institutional sales to individuals averaging -0.35%, while the reverse deals

were followed only by a share price fall of 0.07%.7 The obvious interpretation of these results

is that, judged by the most direct criterion, institutions are better informed than individuals,

so they make signi�cantly higher returns when they initiate trades with individuals than with

other institutions. At the same time, some individual traders are apparently well-informed

enough to pro�t from deals with other individuals, as evidenced by the return of 0.31% from

u-u buys and -0.27% from u-u sells. Note that when individuals buy shares from sales o¤ers

posted by institutions, they earn only 0.16%, and when selling to institutions, the subsequent

price fall is only 0.04%.

The advantages enjoyed by the institutions is also apparent from the spread, which is

about 0.7% on i-i deals, but averages 1.8% on buys between individuals and over 2.5% on

7 Note that most of the hour returns are overlapping. But the di¤erences between i-u and u-i categories

are signi�cant, as can be seen from the regression analyses later in the section. For all other variables, most

of the di¤erences are signi�cant based on the Newey-West robustness correction. Results are available from

authors upon request.
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sell trades. The lower spreads on all-institution deals is likely to be explained to a great

extent by the fact that they tend to be around 3 to 7 times as large as trades between

individuals. However, the literature relates the spread to two other variables. On the one

hand, the more information asymmetry in the market (or believed to be in the market), the

wider spreads have to be in order to protect traders submitting limit orders from the peril

of adverse selection bias. On the other hand, the more liquid the market for a stock, the

lower the spread, other things being equal. In the present case, the fact that the spread on

all-institution trades is so small (roughly 0.7%) means that the di¤erence in returns between

u-u and i-u has to be attributable to information asymmetry.

There are two possible objections to these results. The �rst is that they are based on an

arbitrary classi�cation criterion: if more than 50% of the buying (selling) side is institutional,

the buyer (seller) is treated as an institution in Table 2. Otherwise, it is treated as a private

trade. However, to ensure the results are not distorted by the application of this criterion,

Table 3 compares the results of using three di¤erent cut-o¤ points: 25%, 50% and 75%. We

also take the opportunity to analyse the results for small, medium and large �rms.

Looking at the �nal column of the table �rst, it is evident that, as expected, the return

ranking is preserved across trade-types. It remains the case that i-u trades earn the highest

returns for all three classi�cation criteria, while u-i still earn the lowest, con�rming our con-

clusions regarding the informational disadvantage faced by private traders. The conclusion

is reinforced insofar as returns tend to be higher the greater the proportion of institutional

trade, and lower the more �private�is a trade.

The analysis by �rm size also conforms to expectations. Although small �rms generate

higher returns than large other things being equal, it remains true that within each size
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category, the highest returns are earned when institutions hit individuals�limit orders.

Insofar as they relate to partially overlapping periods, these results su¤er from another

possible shortcoming. In order to remedy this problem and to allow more rigorous hypothesis

testing, we present regressions on non-overlapping returns in Tables 4 and 5, for 50% and

75% volume criteria respectively. (Note that the number of observations is reduced to just

over 16000 for both buy and sell trades, as a result of eliminating overlaps.) In the �rst

instance, the constant is associated with u-i and the other independent variables are simply

four indicator dummies taking the value 1 when the trade is u-u (i-u, i-i and other), zero

otherwise. Doing so gives an easy reading as to whether the returns of other trade categories

are signi�cantly larger than that of u-i. The results here are striking. As can be seen

from the second and third columns of the table, the key �nding is that institutions make

signi�cant returns from deals they initiate with individuals, whether they buy or sell, whereas

individuals tend to lose when they hit limit orders posted by institutions. Moreover, this

conclusion is quite robust to the introduction of more conventional explanatory variables.

Both beta and (log of) market value enter the equation with the correct sign, the latter highly

signi�cant, but neither causes the signs on the four trade-type dummies to change. In the last

two columns of the table, we introduce variables which �gure largely in the microstructure

literature: (log of) trade size (Hasbrouck (1991b)), bid-ask spread, total depth and net depth.

Again the trade-type dummies point to the same conclusion. Noticeably, beta remains

insigni�cant, while market value remains signi�cant and correctly signed i.e. larger stocks

provide lower returns to stock buyers and larger returns to sellers. On the other hand, trade

size has a positive e¤ect on returns, as in Hasbrouck (1996). The �nal three variables in

Tables 4 and 5 relate to the level of information asymmetry. The spread is believed to be
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positively related to information asymmetry, a point re�ected in the fact that it is associated

with signi�cantly higher returns to both buy and sell trades. The same applies to the net

depth (D-depth in the table). On the other hand, greater liquidity, as measured by total

depth on both buy and sell sides, attracts a lower return since it implies less risk, other

things being equal. Not surprisingly, our conclusions emerge even more sharply when the

75% criterion is applied (Table 5) than with the 50% cuto¤ (Table 4).

4 Intraday Trading Patterns

In their experiment-based research, Bloom�eld, O�Hara, and Saar (2005) found that informed

traders choose to place market orders in the morning, so as to maximise their advantage be-

fore their private information can leak into the public domain. Towards the close of business,

as the price is driven towards its fair value, in the process eroding their trading advantage,

they switch to limit orders. On the other hand, uninformed liquidity traders submit limit

orders at �rst, then market orders as the end of trading approaches, in order to achieve their

trading objectives by the close of business. While Anand, Chakravarty and Martell (2005)

provide some evidence in support of these experimental �ndings, their approach is indirect

insofar as they show only that the informativeness of limit orders declines in the second half

of trading. Our intraday analysis of the disaggregated data, on the other hand, provides

direct evidence of an increase in the number of informed, passive limit orders as market

closing approaches.

Table 6 summarises the intraday data.

First, our previous analyses have established that institutions are better informed than
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individuals. As such, the passive sell orders by institutions in the B(u-i) category suggest

that the stocks concerned would underperform the market. This knowledge is likely to be

shared by other equally informed institutions and this leaves the relatively uninformed retail

investors to actively buy these stocks. Now if we consider the volume data in the top segment

of the table, we see in broad terms the familiar U-shape replicated. Closer observation on

the �rst and last hour of trading, however, reveals a surge of 40% more passive sell limit

orders (1,978,000 shares) placed by institutions in the B(u-i) category at the close of market,

which is in sharp contrast with other categories in which the volume of �nal hour trading

remains about the same or even less. We take this as evidence supporting the claim that

informed traders switch to limit orders when the price is near its fair value towards the close

of market. Though no such evidence is found for the S(u-i) case, we o¤er a possible reason.

We �rst note that the TORQ sample experienced a general increase in stock prices over

the period studied. As our analysis is only based on realised trades, it is possible that the

buy limit orders by the more informed institutions were not taken up in an upward moving

market.8

Throughout the day, the overwhelming majority of trades involve institutions on both

sides. Moreover, the return earned on this type of trade is relatively low �less than half that

on trades between institutions and individuals, con�rming that most are motivated more

by liquidity requirements than by information. We can relate this evidence to the conclu-

sion of Duarte and Young (2007), who �nd that Easley, Hvidkjaer and O�Hara (2002)�s PIN

8 We remark that Chakravarty (2001) and Anand, Chakravarty and Martell (2005), which use the same

TORQ database, consider only buy trades in their analysis of informativeness of institutions� trades and

limit orders.
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predominantly re�ects trading driven by liquidity requirements rather than by information,

and may also shed some light on why PIN is found by Vega (2006) to be insigni�cant in

explaining the price reaction to public and private information.

As far as returns are concerned, the decreasing pattern over the day is broadly consistent

with the Hasbrouck (1991b) price impact measure based on a vector autoregressive model

for trades and returns. In fact, institutions buying from individuals make average returns

of 0.66% in the �rst hour, 0.52% in the middle of the day and still a substantial 0.4% in

the �nal hour�s trade. Moreover, as passive sellers to individuals, they earn more in the

�nal hour than in the rest of the day, suggesting that they do indeed switch to limit orders

in late afternoon, con�rming the �ndings of Anand, Chakravarty and Martell (2005) and

Bloom�eld, O�Hara, and Saar (2005).

5 Conclusions

This paper has presented results based on a novel disaggregation of the well-known TORQ

dataset by private versus institutional trader on both active and passive sides, to allow for the

fact that in the light of work by Bloom�eld, O�Hara, and Saar (2005), Kaniel and Liu (2006)

and Anand, Chakravarty and Martell (2005), we can no longer assume that informed traders

always use market orders. On the whole, our �ndings con�rm the results from the theoretical

models, without the need to make the same simplifying assumptions needed to rule out strate-

gic behaviour by informed agents. More generally, while volume is indicative of information

�ow (e.g. Clark (1973), Tauchen and Pitts (1983) and Lamoureux and Lastrapes (1990),

Lamoureux and Lastrapes (1994)), we �nd the bulk of trade is generated by the intra-
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institution category, which has all the characteristics of liquidity trading (low information

content, low return and the narrowest spread).

The approach followed here opens up a number of di¤erent avenues for exploration. It

would, for example, be interesting to know whether the Easley, Hvidkjaer and O�Hara (2002)

PIN is robust enough to survive as a measure of information content in the context of the

type of disaggregation used here.
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Table 1: DESCRIPTIVE STATISTICS

Total Institution Individual Unclassified Institution Individual Unclassified
#buy trades (thousands) 256 108 49 99 111 40 106
Total volume (million shares) 393 237 31 125 211 25 157
Average volume per trade (shares) 1532 2189 630 1266 1900 629 1484

Average Std error Min Q1 Median Q3 Max
Mid-quote price 1 hr log-return (%) 0.249 0.006 -87.821 -0.164 0.050 0.534 117.401
Spread (%) 0.997 0.005 0.098 0.283 0.580 1.183 30.769
Bid plus ask depth (shares) 204.7 0.900 2 53 115 250 1998
Bid minus ask depth (shares) 18.6 0.584 -993 -30 0 50 998

Buy trades
Active Passive

#best buy quotes = 83018

Total Institution Individual Unclassified Institution Individual Unclassified
#sell trades (thousands) 215 90 48 77 93 35 87
Total volume (million shares) 321 200 31 91 177 20 124
Average volume per trade (shares) 1494 2221 638 1177 1899 577 1427

Average Std error Min Q1 Median Q3 Max
Mid-quote price 1 hr log-return (%) -0.119 0.007 -87.821 -0.409 0.000 0.241 139.216
Spread (%) 1.098 0.006 0.098 0.257 0.576 1.250 31.579
Bid plus ask depth (shares) 220.8 0.999 2 55 120 270 1998
Ask minus bid depth (shares) 56.6 0.674 -995 -10 10 90 998

Only NYSE quotes and trades are used in our analyses. To remove potential outliers from our sample, firms with less than 100 quotes or with spread 
larger than 50% are removed. After applying the filter rules, we are left with 136 firms in the sample. Each trade's direction (buy or sell) is determined 
using the method given by Lee and Ready (1991). For buyer (seller) initiated trades, the buy (sell) shares are described as active whereas the sell (buy) 
shares are passive, with classification based on the TORQ  audit trail. The 1 hour mid-quote log return is the log of mid-quote at (t + 1 hour )  less the  
log of mid-quote at t , where t  is the time the trade takes place. Spread is the quoted spread divided by the mid-quote. The depth refers to the size (in 
number of shares) at the best bid and ask being quoted.

Sell trades
Active Passive

#best sell quotes = 73811



Table 2: RETURNS AND TRADE CATEGORIES

nq return Spread Depth nt trade size nt trade size
u-u 2991 0.315 1.835 185 219 412 5019 506
i-u 2886 0.474 1.375 194 4957 1216 6874 957
u-i 6720 0.161 1.275 226 10671 872 13692 805
i-i 19409 0.218 0.689 234 51681 2833 74048 2229
other 53751 0.268 1.063 189 52299 1674 163684 1315

BUY TRADES

SELL TRADES

Institution Inst + Indi + uncl

nq return Spread Depth nt trade size nt trade size
u-u 3395 -0.274 2.535 201 299 371 6156 517
i-u 2555 -0.348 1.740 210 4358 1131 6107 884
u-i 7292 -0.041 1.407 251 11491 841 14790 767
i-i 17147 -0.072 0.738 253 42301 3042 61055 2333
other 46312 -0.145 1.150 200 43967 1575 133700 1242

Institution Inst + Indi + uncl
SELL TRADES

u and i are used to denote trades where individuals and institutions respectively account for more than 50% of 
shares traded. There are 8 categories of buy and sell trades to be considered. For example, an i-u buy trade 
means institutions account for more than 50% of the trade-initiating (active) buy shares whereas individuals 
account for more than 50% of the liquidity-providing (passive) sell shares. nq and nt are the number of quotes 
and trades respectively. Return is the 1-hr mid-quote log-return, spread is quoted spread divided by mid-
quote, depth is the bid-plus-ask depth, and trade size is the average number of shares traded in each trade. 
Figures that are bold and italic denote significantly different from zero at 1% level.



Table 3: FIRM SIZE AND VOLUME BREAKDOWN 

ALL FIRMS
n ret spr vol n ret spr vol n ret spr vol ret

75%< r 684 0.500 3.680 776 1089 0.344 1.509 599 752 0.140 0.618 347 0.326
50%< r 777 0.483 3.773 1074 1275 0.343 1.548 946 939 0.137 0.622 548 0.315
25%< r 964 0.556 4.041 1270 1692 0.336 1.630 919 1649 0.108 0.607 500 0.298
All 6143 0.751 4.377 1001 17821 0.385 1.590 733 61793 0.171 0.539 559 0.257

75%< r 331 1.316 3.796 1073 653 0.522 1.599 1341 1049 0.233 0.546 1029 0.502
50%< r 416 1.265 3.953 1446 892 0.540 1.630 1458 1578 0.229 0.552 1250 0.474
25%< r 559 1.205 4.107 1927 1359 0.551 1.670 1609 3364 0.192 0.518 1270 0.391
All 6143 0.751 4.377 2018 17821 0.385 1.590 2449 61793 0.171 0.539 2278 0.257

75%< r 635 0.355 4.453 934 1655 0.074 1.517 793 3090 0.078 0.502 742 0.109
50%< r 767 0.396 4.585 1089 1950 0.117 1.548 1038 4003 0.137 0.509 1094 0.161
25%< r 981 0.475 4.726 1097 2573 0.163 1.583 844 6167 0.130 0.517 966 0.174
All 6143 0.751 4.377 1750 17821 0.385 1.590 2243 61793 0.171 0.539 2071 0.257

75%< r 393 0.648 4.186 2894 1704 0.485 1.537 3863 10892 0.167 0.463 3190 0.224
50%< r 514 0.641 4.154 2446 2299 0.480 1.560 2711 16596 0.168 0.461 2303 0.218
25%< r 712 0.616 4.152 1812 3208 0.496 1.586 1833 23215 0.169 0.463 1780 0.219
All 6143 0.751 4.377 1490 17821 0.385 1.590 1606 61793 0.171 0.539 1490 0.257

ALL FIRMS

u-u

i-u

u-i

Small firms Medium firms Large firms
BUY TRADES

i-i

Small firms Medium firms Large firms
SELL TRADES

n ret spr vol n ret spr vol n ret spr vol ret
75%< r 1059 -0.345 4.905 702 996 -0.426 1.669 605 772 -0.036 0.612 576 -0.289
50%< r 1214 -0.361 4.931 1085 1181 -0.395 1.686 852 1000 -0.025 0.628 581 -0.274
25%< r 1463 -0.423 4.943 996 1613 -0.387 1.721 917 1769 -0.031 0.619 454 -0.268
All 7378 -0.543 4.877 843 15521 -0.252 1.627 855 53802 -0.040 0.521 554 -0.131

75%< r 381 -0.750 4.884 984 557 -0.502 1.618 1210 904 -0.083 0.579 940 -0.348
50%< r 491 -0.880 4.984 1481 723 -0.454 1.679 1344 1341 -0.096 0.585 1178 -0.348
25%< r 686 -0.874 5.147 1572 1126 -0.494 1.747 1398 2770 -0.082 0.570 1332 -0.302
All 7378 -0.543 4.877 1839 15521 -0.252 1.627 2357 53802 -0.040 0.521 2340 -0.131

75%< r 841 -0.238 5.132 793 1653 -0.068 1.581 928 3324 0.012 0.476 709 -0.047
50%< r 980 -0.277 5.098 897 1986 -0.087 1.600 1242 4326 0.033 0.482 925 -0.041
25%< r 1210 -0.264 5.030 659 2603 -0.108 1.616 801 6753 0.003 0.487 788 -0.055
All 7378 -0.543 4.877 1733 15521 -0.252 1.627 2364 53802 -0.040 0.521 2140 -0.131

75%< r 423 -0.532 4.384 2536 1642 -0.216 1.600 3764 9679 -0.050 0.459 3528 -0.091
50%< r 529 -0.500 4.500 2930 2301 -0.258 1.601 2469 14317 -0.027 0.461 2350 -0.072
25%< r 708 -0.559 4.564 1697 3098 -0.279 1.617 1741 19974 -0.023 0.462 1711 -0.072
All 7378 -0.543 4.877 1274 15521 -0.252 1.627 1368 53802 -0.040 0.521 1404 -0.131

r is the proportion of shares traded that are attributable to institutions or individuals e.g. a buy i-u category with r > 75% means 
that both the institutional active buy shares and the individual passive sell shares account for at least 75% of shares traded. n, 
ret, spr and vol are the number of quotes, mid-quote 1-hr log return, spread and trade size respectively. Firms are divided into 
small, medium and large depending on whether their market value is in the top, middle or bottom third.

u-u

i-u

u-i

i-i



Table 4: Regression using 50% volume criterion

Variables Coefficient t-stat Coefficient t-stat Coefficient t-stat
Constant(u-i) 0.157 2.801 0.176 3.166 0.210 3.562
Indicator(u-u) 0.120 1.724 0.052 0.775 0.043 0.668
Indicator(i-u) 0.367 5.352 0.410 5.874 0.353 5.027
Indicator(i-i) 0.054 0.918 0.093 1.564 0.010 0.135
Indicator(other) 0.083 1.394 0.019 0.329 -0.004 -0.074
beta 0.049 1.664 0.011 0.358
ln(MV) -0.093 -8.112 -0.056 -4.219
ln(trade size) 0.051 4.851
spread 0.057 2.242
D-depth (x1000) 0.968 9.110
depth (x1000) -0.164 -4.015

V i bl C ffi i t t t t C ffi i t t t t C ffi i t t t t

#Observations = 16272

BUY TRADES REGRESSION

R-sq = 0.0027 R-sq = 0.0128 R-sq = 0.0230

#Observations = 16270

SELL TRADES REGRESSION

R-sq = 0.0013 R-sq = 0.0073 R-sq = 0.0142
Variables Coefficient t-stat Coefficient t-stat Coefficient t-stat
Constant(u-i) -0.030 -0.722 -0.057 -1.401 -0.093 -2.265
Indicator(u-u) -0.186 -3.377 -0.116 -2.248 -0.091 -1.699
Indicator(i-u) -0.288 -4.197 -0.300 -4.338 -0.234 -3.440
Indicator(i-i) -0.096 -2.110 -0.119 -2.542 -0.036 -0.789
Indicator(other) -0.113 -2.209 -0.048 -1.014 -0.025 -0.534
beta -0.054 -1.905 -0.040 -1.397
ln(MV) 0.073 6.968 0.042 3.465
ln(trade size) -0.047 -4.294
spread -0.051 -3.023
D-depth (x1000) -0.852 -9.576
depth (x1000) 0.255 5.960

Non-overlapping mid-quote log returns are used in the regressions.Beta is obtained using 36 monthly 
stock returns regressing on the equal-weighted return index. ln(MV), ln(trade size) are logs of firm size 
and trade size). Spread and depth are as defined in Table 2. For buy (sell) trades regression, D-depth is 
the bid-minus-ask (ask-minus-bid) depth. Except for the constant and indicator variables, all control 
variables are mean adjusted (to have zero means). The 50% criterion is used to define both u and i. The 
coefficient of the constant gives the mean return on u-i trades, whereas the other categories give the 
incremental returns over u-i. t-stat is calculated using White's (1980) method to correct for 
heteroscedasticity.



Table 5: Regression using 75% volume criterion

Variables Coefficient t-stat Coefficient t-stat Coefficient t-stat
Constant(u-i) 0.104 2.659 0.127 3.189 0.162 3.916
Indicator(u-u) 0.181 3.098 0.107 1.807 0.099 1.702
Indicator(i-u) 0.418 7.465 0.450 8.151 0.400 7.354
Indicator(i-i) 0.161 2.732 0.206 3.620 0.127 1.984
Other 0.156 3.635 0.099 2.296 0.064 1.418
beta 0.058 2.079 0.017 0.562
ln(MV) -0.090 -8.430 -0.048 -3.750
ln(trade size) 0.043 5.419
spread 0.067 2.604
D-depth (x1000) 0.991 11.531
depth (x1000) -0.158 -4.048

Variables Coefficient t-stat Coefficient t-stat Coefficient t-stat
Constant(u-i) -0 034 -0 742 -0 061 -1 368 -0 099 -2 215

BUY TRADES REGRESSION
#Observations = 16270

R-sq = 0.0027 R-sq = 0.0132 R-sq = 0.0249

SELL TRADES REGRESSION
#Observations = 16272

R-sq = 0.0007 R-sq = 0.0070 R-sq = 0.0146

Constant(u-i) -0.034 -0.742 -0.061 -1.368 -0.099 -2.215
Indicator(u-u) -0.171 -2.832 -0.098 -1.737 -0.072 -1.242
Indicator(i-u) -0.235 -3.338 -0.243 -3.437 -0.187 -2.657
Indicator(i-i) -0.095 -1.890 -0.126 -2.437 -0.041 -0.796
Other -0.132 -2.536 -0.078 -1.602 -0.043 -0.896
beta -0.064 -2.284 -0.046 -1.609
ln(MV) 0.072 6.993 0.036 3.053
ln(trade size) -0.047 -4.540
spread -0.058 -3.468
D-depth (x1000) -0.850 -9.206
depth (x1000) 0.224 5.224

Non-overlapping mid-quote log returns are used in the regressions. Beta is obtained using 36 monthly 
stock returns regressing on the equal-weighted return index. ln(MV), ln(trade size) are logs of firm size 
and trade size). Spread and depth are as defined in Table 2. For buy (sell) trades regression, D-depth is 
the bid-minus-ask (ask-minus-bid) depth. Except for the constant and indicator variables, all control 
variables are mean adjusted (to have zero means). The 75% criterion is used to define both u and i. The 
coefficient of the constant gives the mean return on u-i trades, whereas the other categories give the 
incremental returns over u-i. t-stat is calculated using White's (1980) method to correct for 
heteroscedasticity.



Table 6: INTRADAY ANALYSIS

0930-1030 1030-1500 1500-1600 0930-1030 1030-1500 1500-1600
u-u 14 13 19 18 17 16
i-u 955 907 990 1070 655 914
u-i 1414 1315 1978 2031 1336 1623
i-i 30515 20016 25801 28325 17599 21162

other 17498 12072 15727 15375 9196 12490
u-u 0.319 0.283 0.212 -0.424 -0.177 -0.182
i-u 0.664 0.518 0.409 -0.396 -0.353 -0.135
u-i 0.163 0.151 0.178 -0.105 -0.078 0.224
i-i 0.280 0.199 0.188 -0.179 -0.134 -0.042

other 0.242 0.249 0.212 -0.271 -0.144 -0.034

BUYS per hour SELLS per hour

Volume 
(1000 

shares)

Return

other 0.242 0.249 0.212 0.271 0.144 0.034
u-u 1.657 1.850 1.937 2.616 2.512 2.548
i-u 1.528 1.350 1.328 1.627 1.762 1.777
u-i 1.306 1.268 1.276 1.521 1.362 1.455
i-i 0.675 0.688 0.708 0.699 0.752 0.736

other 1.044 1.056 1.101 1.113 1.133 1.241
u-u 165 188 189 215 202 185
i-u 175 198 198 232 203 213
u-i 214 231 214 276 249 230
i-i 228 239 221 268 253 237

other 180 195 175 193 206 187

Various statistics are provided for 0930-1030, 1030-1500 and 1500-1600 time intervals. Volume is the total 
number of institutional shares on the active side for u-u, i-u, i-i and 'other' categories; for u-i, number of passive 
institutional shares is calculated. For the 1030-1500, volumes are divided by 4.5 so that the reported figures are 
representative of an hour's volume in the time interval. Non-overlapping mid-quote log returns are used to 
calculate the average returns. Spread is the quoted spread divided by mid-quote and depth is the bid-plus-ask 
depth. Figures in bold (italic bold) are significant at the 5% (1%) level. For the 10.30-15.00 time-interval, 
significance is with respect to differnce from zero; for the first and last hour time intervals, significance is with 
respect to difference from the 10.30-15.00 time interval.

Spread

Depth
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