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Abstract

We study an exchange economy with overlapping generations of

consumers who derive utility from consuming a non-durable commod-

ity and housing. A banking sector offers loans to finance housing.

We provide a complete characterization of the equilibrium dynamics

which alternates between an expansive regime where housing prices

increase and banks expand loans and a contractive regime associated

with decreasing housing values and shrinking credit volume. Regime

switches occur even under small but persistent income changes giving

rise to large booms and busts in housing prices not reflecting changes

in fundamentals.
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1 Introduction

For more than a decade from 1997 to 2007 the world had witnessed a long-

lasting increase in U.S. residential values with housing prices in July 2007

being almost three times as high as in mid 1996.1 In mid 2007, this increase

came to an abrupt halt and housing prices dropped by almost 17% until

June 2008 and by more than 30% between June 2007 and June 2009. In

retrospect, most researchers today seem to agree that houses were overvalued

in 2006/2007 (cf. Kocherlakota (2011b)), i.e., the increases in housing values

were not backed by fundamentals. Hence, it seems justified to speak of a

housing bubble which burst in mid 2007.

A closer inspection of the potential reasons also reveals that the build-up

of the housing bubble was accompanied by a continual increase in mort-

gage loans and an ever increasing mortgage debt which dropped sharply

after the burst in 2007. This observation points to a potential linkage be-

tween the lending activities of banks and the evolution of housing prices.

As most residential investments are financed by mortgage loans, this seems

fairly intuitive. As the U.S. housing market constituted the triggering event

for the 2008 world financial crises, many recent papers study the role of

housing and, more generally, of durable consumption goods for the macroe-

conomy (e.g.Bajari, Chan, Krueger & Miller (2010),Chen & Winter (2010),

and Lustig & Nieuwerburgh (2010)).

The purpose of the present paper is to contribute to the previous body

of research by developing a mechanism, which explains large movements in

housing prices accompanied by corresponding changes in credit volume. Con-

ceptually, we adopt an overlapping generations framework in order to assign

a natural role to banks, which mediate intergenerational contracts that oth-

erwise consumers themselves could not commit to. Unlike many studies in

the literature, however, we completely abstract from the role of housing as

collateral.

We demonstrate that the presence of a banking sector is capable of gen-

erating large and and recurrent booms and busts in housing prices. Our

analysis uncovers a simple mechanism through which small but persistent

income changes generate large movements in housing values and the aggre-

gate credit volume. The mechanism generating these boom-bust cycles is due

to a switch between two regimes each associated with a certain income level.

In the first regime, consumers are eager to borrow and willing to pay a high

return such that banks expand their credit volume over time and housing

prices increase without bound. In the second regime, consumers are only

willing to borrow at a lower return for which the credit volume shrinks over

time and housing prices decrease to a lower bound. A switch between these

1These figures are taken from then Casey-Shiller housing index composed over 10 areas.
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two regimes occurs under quite moderate income changes. If the change is

persistent, the system tends to stay in one regime for a number of periods

generating large movements in housing prices and the credit volume.

During boom phases, consumers buy houses at prices they could never

have afforded and take loans they would be unable to repay from their income.

The financial side (credit volume, housing prices) completely decouples from

the real side represented by consumer incomes.

The paper is organized as follows. Section 2 introduces the model. Sec-

tion 3 derives the forward-recursive structure of equilibria and studies the

equilibrium dynamics under constant incomes. Section 4 generalizes the de-

terministic structure to the case with random incomes and analyzes the scope

for bubbles to emerge due to persistent income changes. The theoretical

findings are illustrated and quantified in Section 5 with the help of numerical

simulations. Section 6 concludes, proofs for all results are relegated to the

mathematical appendix.

2 The Model

We consider an exchange economy with discrete time periods t ≥ 0 and a

durable and a non-durable commodity. We refer to the durable commodity

as ‘housing’ and the non-durable good as ‘the consumption good’, which is

chosen as the numeraire.

Consumption sector

The consumption sector consists of overlapping generations of homogeneous,

two-period lived consumers. Each member of the generation born in t ≥ 0 is

endowed with e
y
t > 0 units of the consumption commodity when young and

eot+1 > 0 units when old. The following assumption specifies the probabilistic

nature of their incomes.2

Assumption 1

The process {et}t≥0, where et := (eyt , e
o
t+1), t ≥ 0, consists of random vari-

ables defined on a common probability space (Ω,F ,P) with values in E :=

[eymin, e
y
max] × [eomin, e

o
max] ⊂ R2

++. The process is adapted to some filtration

{Ft}t≥0 such that et : Ω → E is Ft–measurable.

A consequence of Assumption 1 is that young consumers observe their first

and second period income when they make decisions. As the focus of our

analysis is on how predictable income shifts affect housing prices and loans

and not on the role of income uncertainty, this assumption seems innocuous.

2The notion of an adapted stochastic process {ξt}t≥0 implies that each random variable

ξt is Ft-measurable and, therefore, can only depend on incomes eτ observed during periods

τ ≤ t. As a notational convention, inequalities involving random variables are understood

to hold in the P-almost sure sense without explicit notice.
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Housing

Houses are retradable and in constant supply normalized to unity. The young

purchase houses at the end of period t at the price pt > 0, for which they incur

a fixed cost κ > 0 per unit in the following period t+1. Housing investment

provides a possibility to transfer wealth intertemporally and yields utility in

the following period.

Banking Sector

The banking sector consists of a large number of banks which take deposits

and offer loans at riskless rates. Assuming that there is no default risk, perfect

competition implies that deposits and loans pay the same return Rt > 0. Let

bt denote the aggregate credit volume at time t. If bt > 0, the young hold

deposits while they take a loan if bt < 0. Banks do not accumulate any

resources and have a balanced budget such that

bt+1 = Rtbt, t ≥ 0. (1)

Consumer Demand

The young choose (cy, co, h) to maximize their expected lifetime utility based

on some (von-Neumann Morgenstern) utility function U . Given pt > 0,

Rt > 0, and pt+1 > 0, the budget constraints are

cy = e
y
t − b− pt h and co = eot+1 +Rt b+ (pt+1 − κ) h. (2)

where b and h are the loan demand and housing investment respectively.

Let Et[·] := E[· | Ft] denote the expectations operator conditional on the

information available at time t. Using (2), the objective function at time t is

Vt(b, h) := Et

[

U(eyt − b− pt h, e
o
t+1 +Rt b+ (pt+1 − κ) h, h)

]

. (3)

Note that the housing price pt+1 is the only potential source of uncertainty.

The consumer’s decision problem is

max
b,h

{

Vt(b, h) | b+ pt h ≤ e
y
t , e

o
t+1 + bRt + h(pt+1 − κ) ≥ 0, h ≥ 0

}

(4)

Equilibrium.

The following definition of equilibrium reconciles market clearing and indi-

vidual optimality under rational expectations.

Definition 2.1

Let incomes satisfy Assumption 1. Given an initial credit volume b0, an

equilibrium is an adapted stochastic process {bt, ht, Rt, pt}t≥0, which satisfies

pt > 0, Rt > 0, and the following conditions for each t ≥ 0:

(i) The portfolio (bt, ht) maximizes utility (4) given prices and incomes.

(ii) Markets clear, i.e., ht = 1 and bt evolves according to (1).
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Note that Walras’ law implies consumption good market clearing at time

t ≥ 0, i.e, c1t +c2t = e
y
t +eot −κ. From (1) and Rt > 0, it is clear that the credit

volume bt inherits the sign of bt−1 and is therefore uniquely determined by

the sign of b0. In the sequel, we restrict attention to the case where b0 ≤ 0,

i.e., the banking sector offers loans to the young to finance their housing

investments. Hence, the credit volume bt at time t represents the outstanding

payments on previous loans which are claims against old consumers.

3 Housing Price Dynamics

Predictable housing prices

To study the existence and dynamic properties of equilibria, we consider

the case where housing prices are predictable, i.e., their realization can be

predicted one period in advance. This assumption enables us to obtain an

analytically tractable equilibrium. It imposes no restrictions in the case when

incomes are deterministic. Formally, we assume that the housing price pt+1

is Ft-measurable. Under this hypothesis, the young at time t solve a decision

problem under certainty such that the expectations operator in (3) can be

dropped.

Preferences

Determining the structure and properties of equilibrium necessitates addi-

tional restrictions on the consumers’ preferences represented by the utility

function U . Assume first that utility is additively separable over time, i.e.,

U(c1, c2, h) = u(c1) + v(c2, h). (5)

The function u is taken to be of the isoelastic form

u(c) =
c1−α − 1

1− α
, α > 0. (6)

Second period utility v is the composition of u and an aggregator function

g : R2
++ −→ R+ which aggregates durable and non-durable consumption to

a composite commodity g(ct, ht). Following Bajari, Chan, Krueger & Miller

(2010) or Lustig & Nieuwerburgh (2010), we use a CES aggregator

g(c, h) = [βcρ + (1− β)(θh)ρ]
1

ρ , 0 < β < 1, θ > 0, ρ < 1.

The young discount second-period utility by γ > 0 and thus v takes the form

v(c, h) = γ u(g(c, h)) = γ
[βcρ + (1− β)(θh)ρ]

1−α

ρ − 1

1− α
. (7)

If ρ = 0, v is Cobb-Douglas while it is additively separable in housing and

consumption if ρ = 1− α.

4



Recursive Equilibrium

As a first step, we wish to unveil the forward-recursive structure of equilib-

rium and the state dynamics of the model. In this regard, we will show that

the dynamics is essentially driven by the evolution of the variable

mt := bt + pt, t ≥ 0. (8)

Recalling that ht ≡ 1, the quantity mt represents the net investment of the

young at time t consisting of housing investment and the loan taken. If mt >

0, housing investment at time t is not fully financed by loans while these loans

exceed housing investment if mt < 0. Since housing prices are predictable

and banks offer riskless returns , the process {mt}t≥0 is predictable as well

due to (1).

To derive the recursive equilibrium structure, consider the solution to a

young consumer’s decision problem (4). Since no sign-restrictions are im-

posed on b at the individual level, it is clear that the first order conditions

must be satisfied in equilibrium. Exploiting this and (5) and (8), the follow-

ing Euler equations have to hold for each period t ≥ 0:

u′(eyt −mt) = Rt vc(e
o
t+1 − κ+mt+1, 1) (9a)

pt u
′(eyt −mt) = (pt+1 − κ) vc(e

o
t+1 − κ +mt+1, 1) + vh(e

o
t+1 − κ+mt+1, 1). (9b)

Given e = (ey, eo) ∈ E , let F (·, ·; e) : (κ− e0,∞) × (−∞, ey) −→ R where

F (m1, m; e) := mu′(ey−m)−vc(e
o−κ+m1, 1) (m1−κ)−vh(e

o−κ+m1, 1).

(10)

Then, adding (9a) and (9b) using (1) and (8) gives the following equilibrium

condition

F (mt+1, mt; et) = 0 (11)

which has to hold at each time t ≥ 0. Condition (11) determines the value

mt+1 implicitly as a function of mt and et which will be key to derive the

model’s state dynamics. The following result states necessary and sufficient

conditions under which a unique solution to (11) can be determined.

Lemma 1

Suppose the parameters in (7) satisfy ρ ≥ 0 and α < 1. Then, for each

e = (ey, eo) ∈ E and m < ey there exists a unique value m1 > κ − eo to

satisfy F (m1, m; e) = 0.

The restrictions ρ ≥ 0 and α < 1 are necessary and sufficient for limc→∞ vc(c, 1) c =

∞ which is crucial for existence of a solution to (11) for arbitrary mt and

et.
3 Under the restriction ρ ≥ 0 and α < 1, Lemma 1 permits to define a

3Although the restriction α < 1 excludes a logarithmic function u used in Bajari, Chan,

Krueger & Miller (2010), this case can be approximated as the limiting case α → 1 in our

setup.

5



map f(·; ey, eo) : (−∞, ey) −→ (κ− eo,∞) which determines the unique zero

of F (·, m; e) = 0 for each m < ey. Thus, whenever mt < e
y
t , the solution to

(11) can be written as

mt+1 = f(mt; et). (12)

The next result establishes properties of f .

Lemma 2

Let e = (ey, e0) ∈ E be arbitrary and the hypotheses of Lemma 1 be satis-

fied. Then the map f = f(·; e) is continuously differentiable with derivative

f ′(m) > 0 for all m < ey.

Using the result from (12) in (9a) and (9b), the equilibrium loan returns and

housing prices at time t are determined for each et ∈ E and mt < e
y
t as

Rt = R(mt; et) :=
u′(eyt −mt)

vc(eot+1 − κ+ f(mt; e
y
t ), 1)

(13)

pt+1 = P(pt, mt; et) := R(mt, et)pt + κ−
vh(e

o
t+1 − κ+ f(mt; et), 1)

vc(eo − κ + f(m; e), 1)
(14)

while loans bt+1 follow from (1). We focus on the case mt > 0 and bt ≤ 0

for all t. The latter restriction corresponds to the case when banks provide

mortgage loans while the former implies that the young need to make a

downpayment when taking a loan to purchase housing. By (1), bt ≤ 0 holds

automatically if b0 ≤ 0. The remainder will establish conditions under which

mt > 0 for all t. By (8), these restrictions also ensure that pt > 0 for all

times t ≥ 0.

Dynamics under constant incomes

Based on the previous results, the sequel studies the dynamic evolution of

the model and establishes conditions for the existence of equilibrium. To

this end, note that (12) does not yet define a dynamical system because we

have not determined a suitable set M ⊂ (−∞, ey) on which the dynamics

can live. This will be our next goal. As a first step, the remainder of this

section studies the equilibrium dynamics under constant first-period income.

The next section will extend this to the case where first-period income is

random and time-dependent. Thus, fix et ≡ e = (ey, eo) ∈ E for all t ≥ 0.

For notational convenience, the dependence of variables and functions on e

will be suppressed. For the above derivations to be valid for any period,

we need to make sure that mt < ey in each period. In addition, we require

that mt > 0 for all t ≥ 0. Formally, we seek to determine a suitable open

interval M ⊂ (0, ey) which is self-supporting for the map f = f(·; e), i.e.,

f(m) ∈ M for all m ∈ M. In this regard, fixed points of f , i.e., values m̄

which satisfy m̄ = f(m̄) will play a crucial role. Since f maps (−∞, ey) into

(κ− eo,∞), it is clear that any such fixed point must lie in the open interval

(κ − eo, ey). Therefore, a necessary precondition for fixed points to exist is

6



ey + eo > κ. This condition simply says that the resources available in each

period are large enough to cover housing costs which we will assume in the

sequel. Then, it follows from (10) that fixed-points of f obtain as zeros of

the map G : (κ− eo, ey) −→ R where

G(m) := F (m,m; e) (15)

= mu′(ey −m)− vc(e
o − κ+m, 1) (m− κ)− vh(e

o − κ +m, 1).

The following result states properties of the map G.

Lemma 3

Suppose ρ ≥ 0 and α < 1. Then, for each e = (ey, eo) ∈ E satisfying

ey+eo > κ the mapG = G(·; e) is a strictly convex function and the derivative

satisfies the boundary behavior limm→ey G
′(m) = − limm→κ−eo G

′(m) = ∞.

A consequence of the lemma is the existence of a unique value mmin ∈ (κ−

eo, ey) at which G′(mmin) = 0 and G attains its global minimum. Based on

this insight, the next result states conditions for fixed points to exist and

characterizes their properties.

Lemma 4

In addition to the hypotheses of Lemma 3, let G(mmin) < 0. Then, the

following holds:

(i) The map f has precisely two fixed points m̄ ∈ (κ − eo, mmin) and
¯̄m ∈ (mmin, e

y).

(ii) The fixed point ¯̄m is locally unstable while m̄ is asymptotically stable.

Moreover, f(m) > m for all m ∈ (−∞, m̄ ) ∪ ( ¯̄m, ey) and f(m) < m

for all m ∈ (m̄, ¯̄m).

Setting aside the non-generic case whereG(mmin) = 0, the boundary behavior

of G implies that the condition G(mmin) < 0 is not only sufficient but also

necessary for fixed points to exist. Moreover, it can be shown that G(mmin) >

0 would imply f(m; e) > m for all m. In this case, for anym0 < ey a repeated

iteration of the forward-recursion (12) would produce a value mt > ey after

finitely many periods t ≥ 1. Thus, G(mmin) < 0 is also a necessary condition

for the dynamics to be viable. The finding from Lemma 4 is illustrated in the

following figures which depict the map f and the fixed point map G. Note

that the zeros of G in Figure 1(b) correspond to intersections of (the graph

of) f with the principal diagonal in Figure 1(a). Lemma 4(ii) reveals that

the set (−∞, ¯̄m) is self-supporting under f . Thus, the map f restricted to

this set becomes the time-one map of a one-dimensional dynamical system in

discrete time.4 Moreover, for any initial value m0 ∈ (−∞, ¯̄m) the sequence

{mt}t≥0 defined recursively as mt+1 = f(mt), t ≥ 0 converges monotonically

4For convenience, we denote the restriction of f to a subset M ⊂ (−∞, ey) by f as well.
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f(m)

m

(a) The map f

-0.05 0.05 0.1 0.15 0.2 0.25

G(m)

m

(b) Fixed point map G

Figure 1: Time-one map of state dynamics

to m̄. By contrast, for any initial value m0 ∈ ( ¯̄m, ey) the forward-recursion

mt+1 = f(mt) exceeds ey after finitely many periods. Thus, the forward

dynamics are well-defined if and only if m0 ∈ (−∞, ¯̄m) and it would be

possible to restrict the map f to the interval (−∞, ¯̄m) which is the largest

subset on which the m-dynamics defined by (12) are viable.

To ensure mt > 0, we seek to impose additional restrictions under which

the dynamics can further be restricted to a subset of R++. For this purpose,

assume that eo − κ > 0 and suppose that the smaller fixed point satisfies

m̄ > 0. Then, Lemma 4(ii) in conjunction with Lemma 2 imply that the

interval M := (0, ¯̄m) is self-supporting under f as well. Thus, restricting f

to M defines a discrete dynamical system which governs the evolution of the

variable mt ∈ M over time. The long-run behavior is now characterized in

the following result.

Lemma 5

Suppose ρ ≥ 0 and α < 1 and let e = (ey, e0) ∈ E be given and satisfy

eo > κ. In addition, let G(mmin) < 0 < m̄ and define M := (0, ¯̄m). Then,

the following holds:

(i) The restricted map f : M −→ M has m̄ as its unique fixed point.

(ii) This fixed point is globally stable and for each m0 ∈ M the sequence

{mt}t≥0 defined recursively as mt+1 = f(mt; e
y), t ≥ 0 converges mono-

tonically to m̄.

In addition to the parameter restrictions ρ ≥ 0 and α < 1, the previous

findings show that the main restrictions needed for the dynamics to be well-

defined are that G(mmin) < 0 and, in addition, m̄ > 0. The latter is necessary

and sufficient for the dynamics to live in a subset of R++ and satisfied if and

only if G′(0) < 0 < G(0). Using (15) and (A.2), these two conditions hold if

and only if

κ >
vh(e

o − κ, 1)

vc(eo − κ, 1)
=

1− β

β
θρ[eo−κ]1−ρ∧u′(ey) < (1−α)vc(e

o−κ, 1)−eovcc(e
o−κ, 1).
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The first condition is violated for κ = 0 and, therefore, requires housing costs

to exceed a critical level which depends on eo. As this condition is indepen-

dent of first-period income, the value ey can always be chosen sufficiently

large to satisfy the second condition. Notice, however, that the condition

G(mmin) < 0 also depends on these choices as well. Given that mmin is only

implicitly defined by G′(m) = 0, it is difficult to fully characterize the un-

derlying parameter sets. The numerical simulation of the following section

shows that all three conditions are satisfied for a broad range of economically

reasonable parameterizations.

Equilibrium under constant incomes

Employing the previous findings, we are now in a position to characterize the

complete equilibrium dynamics for a fixed income process et ≡ e = (ey, eo) ∈

E for which all hypotheses of Lemma 5 are satisfied. Fix an initial value

(p0, b0) which satisfies b0 ≤ 0, p0 > 0, and m0 := p0 + b0 ∈ M = (0, ¯̄m).

Then, combining our previous results with (1), (13), and (14) one obtains

the following three-dimensional system which governs the evolution of all

equilibrium variables:

mt+1 = f(mt; e) (16a)

bt+1 = B(bt, mt, e) := R(mt; e)bt (16b)

pt+1 = P(pt, mt, e) = R(mt, e)pt + κ−
vh(e

o − κ+ f(mt; e), 1)

vc(eo − κ+ f(mt; e), 1)
.(16c)

The dynamics (16a) of mt is decoupled from the other two variables and con-

verge monotonically to a unique steady state m̄ by Lemma 5. It is clear from

(16b) and (16c) that the qualitative long-run dynamic behavior of housing

prices pt and the credit volume bt depend on the steady state loan return

R(m̄; e). If R(m̄; e) < 1, the credit volume asymptotically converges to zero

while, by (8) prices converge to p̄ = m̄. Conversely, if R(m̄; e) > 1 and

b0 < 0, both the credit volume and housing prices grow without bound and

converge to plus and minus infinity, respectively. Notice, however, that the

equilibrium dynamics are well-defined in either case. The following final the-

orem of this section summarizes these insights and establishes the existence

and properties of equilibrium.

Theorem 1

Let incomes e = (ey, eo) ∈ E be constant and satisfy the hypotheses of Lemma

5. Then, the following holds:

(i) Each p0 > 0 and b0 ≤ 0 for which p0 + b0 ∈ M =]0, ¯̄m[ defines an

equilibrium where the evolution of the equilibrium variables follows

(16a–c) and limt→∞ mt = m̄.

(ii) If b0 < 0 and R(m̄; e) > 1, then limt→∞ pt = − limt→∞ bt = ∞.

(iii) If b0 = 0 or R(m̄; e) < 1, then limt→∞ pt = m̄ while limt→∞ bt = 0.
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4 Housing Booms and Busts

Dynamics under random incomes

We now analyze the case where incomes fluctuate randomly over time. For

ease of exposition, we will confine attention to the case where only first-

period incomes change over time while second-period incomes are assumed

to be constant. Thus, assume as in the previous section that eot ≡ eo > κ

while eyt fluctuates over time taking values in the set Ey := [eymin, e
y
max] ⊂ R++.

In the sequel, we will therefore drop the argument eo writing e.g. f(m; ey)

instead of f(m; ey, eo). Consider first how the process {mt}t≥0 defined in

(8) evolves over time. It is clear from (12) that this process is well-defined

if and only if mt < e
y
t for all t ≥ 0 P–a.s., i.e., mt < e

y
min for all t ≥ 0

P–a.s. Suppose this can be satisfied. Then, the forward-recursive structure

of the model is well-defined and generated by randomly mixing the family

of mappings (f ·; ey)ey∈Ey . That is, given mt, the value e
y
t ∈ E realized at

time t ’selects’ a particular map f(·; eyt ) which determines the next value

mt+1 = f(mt; e
y
t ). For this forward-recursion to be well-defined, we seek to

determine a stable interval M ⊂]0, eymin[ which is self supporting under the

family (f ·; ey)ey∈Ey , i.e., m ∈ M implies f(m; ey) ∈ M for all ey ∈ Ey. To

accomplish this, assume that the hypotheses of Lemma 5 are satisfied for all

ey ∈ Ey. Then, each map f(·; ey) has precisely two fixed points in (0, ey)

which we denote by m̄(ey) and ¯̄m(ey), respectively as a way of stressing their

dependence on ey. The next result describes how these fixed points vary with

income.

Lemma 6

Let the hypotheses of Lemma 5 be true for each ey ∈ Ey. Then, the following

holds:

(i) For each m > 0 the map ey 7→ f(m; ey) is continuously differentiable

(on the interior of Ey) and strictly decreasing.

(ii) The fixed point maps ey 7→ m̄(ey) and ey 7→ ¯̄m(ey) are both continu-

ously differentiable. Moreover, m̄(·) is strictly decreasing while ¯̄m(·) is

strictly increasing.

Using the previous result, define

m̄min := min
ey∈Ey

{

m̄(ey)
}

= m̄(eymax) (17a)

m̄max := max
ey∈Ey

{

m̄(ey)
}

= m̄(eymin) (17b)

¯̄mmin := min
ey∈Ey

{

¯̄m(ey)
}

= ¯̄m(eymin). (17c)

Note that the values defined in (17a–c) satisfy 0 < m̄min < m̄max < ¯̄mmin.

Thus, defining M̄ := [m̄min, m̄max] and
¯̄M := (0, ¯̄mmin) we have the inclusions

10



∅ 6= M̄ $ ¯̄M ⊂ R++. The following result essentially extends Lemma 5 to

the more general stochastic case.

Lemma 7

Let the hypotheses of Lemma 5 be satisfied for each ey ∈ Ey. Then, the

following holds:

(i) Both intervals M̄ and ¯̄M are self-supporting for the family (f · : ey)ey∈Ey .

(ii) For eachm0 ∈
¯̄M, the dynamics generated by randomly mixing (f ·; ey)ey∈Ey

converge to the set M̄ P–a.s..

It follows from Lemma 7 that asymptotically, the process {mt}t≥0 will take

values in the set M̄. Thus, if {eyt }t≥0 is sufficiently regular, e.g., follows a

Markov process, standard results from the literature (cf. Brock & Mirman

(1972), Wang (1993)) imply the existence of a unique invariant distribution

supported on M̄ which governs the long-run probabilistic behavior of the pro-

cess {mt}t≥0. In particular, this process will be asymptotically stationary.5

Figure 2 illustrates the finding from Lemma 7 for the case with two shocks

where e
y
t ∈ {eymin, e

y
max} for all t.

mm̄min m̄max

f(·; ey

min
) f(·; ey

max
)f(·; ey)

¯̄mmin

Figure 2: Time-one maps generating the dynamics under two shocks

Equilibrium under random incomes

Based on the previous result, the following theorem generalizes Theorem 1 to

the case with stochastic first-period incomes. Note that Theorem 1 obtains

as a special case where e
y
min = eymax = ey.

5Lemma 4(ii) and the definitions (17a–c) imply that the family f = (f · : ey)ey∈E

restricted to the interval ¯̄M possesses a stable fixed-point configuration in the sense of

Brock & Mirman (1972). Thus, the assertion follows from their results, see also Wang

(1993).
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Theorem 2

Let the hypotheses of Lemma 5 be satisfied for each ey ∈ Ey. Then, each

p0 > 0 and b0 ≤ 0 for which m0 := p0 + b0 ∈ ¯̄M = (0, ¯̄mmin) defines an

equilibrium.

Since we are interested in the long-run properties of equilibrium, we can

confine attention to the set M̄ := [m̄min, m̄max] by virtue of Lemma 7(ii).

Analogously to the previous section, the behavior of loan returns is crucial

for the long-run behavior of equilibrium housing prices and the credit volume.

The following result characterizes how the loan return changes along with the

shocks and the value of m.

Lemma 8

Let the hypotheses of Lemma 5 be satisfied for each ey ∈ Ey. Then, the

map R defined in (13) is continuously differentiable with partial derivatives

Rey(m; ey) < 0 < Rm(m; ey) for all ey > 0 and m < ey.

For ey ∈ Ey, let R̄(ey) := R(m̄(ey); ey) and set

Rmin := min{R(m; ey) |m ∈ M̄, ey ∈ E} = R(m̄min, e
y
max) = R̄(eymax)(18a)

Rmax := max{R(m; ey) |m ∈ M̄, ey ∈ E} = R(m̄max, e
y
min) = R̄(eymin).(18b)

Thus, the minimum (maximum) loan return observed in the long-run is at-

tained at the maximum (minimum) fixed point of f . We now have the

following result which provides a first characterization of equilibrium.

Theorem 3

Let the hypotheses of Lemma 5 be satisfied for each ey ∈ Ey. Then, the

following holds:

(i) If b0 < 0 and Rmin > 1, then limt→∞ pt = − limt→∞ bt = ∞, P–a.s.

(ii) If b0 = 0 or Rmax < 1, then limt→∞ bt = 0 P–a.s. while limt→∞ |pt −

mt| = 0 P–a.s.

Theorem 3 describes two cases where the long-run behavior of housing prices

and the credit volume is either expansive (i) or stationary (ii). We also ob-

serve that if b0 = 0, i.e., in the absence of a banking sector, the housing price

coincides with the process {mt}t≥0 which is stationary and well-behaved.

Thus, any possible long run expansion of the credit volume and the housing

price is exclusively due to the banking sector. Excluding the non-generic

cases of either Rmin = 1 or Rmax = 1, recurrent housing booms and busts

emerge only if Rmin < 1 < Rmax.

The mechanism for booms and busts

To illustrate the mechanism that generates booms and busts of housing

prices, consider the simplest case where ey takes two values eymin and eymax with

positive probability. Suppose that b0 < 0 and Rmin < 1 < Rmax and incomes

12



initially take the lower value eyt = e
y
min. Then, the dynamics generated by the

map f(·; eymin) start converging to the associated steady state m̄(eymin) = m̄max

and we have Rt > 1 for t sufficiently large as R(m̄max, e
y
min) = Rmax > 1. By

(1), the credit volume starts to expand (in absolute value) and so do housing

prices as their sum mt is stationary. Intuitively, the low first period income

increases the need for consumption smoothing and the demand for credit,

for which the young are willing to pay a high interest rate. Although the

supply of credit expands over time as well, this is absorbed by a correspond-

ing higher demand due to the increase in housing prices. Thus, we see that

as long as the low income regime prevails, both housing prices and credit

volume increase whereas their sum converges to m̄max.

Now, suppose that at some time t̃ > 0, income take the higher value

eymax. The corresponding dynamics is generated by the map f(·; eymax) which

has m̄min as its unique steady state to which the variable mt start to con-

verge. For sufficiently large t > t̃, we will have Rt < 1 implying that both

the credit volume and housing prices will contract. Combining these ob-

servations, it is clear that the system will alternate between an expansion-

ary regime and a contractive regime. These changes are most profound if

R(m; eymin) > 1 and R(m; eymax) < 1 for all m ∈ M̄. The first requirement

is equivalent to R(m̄min, e
y
min) > 1 and implies that the credit volume starts

to expand immediately when et = e
y
min. The second condition is equivalent

to R(m̄max, e
y
max) < 1 and implies that the credit volume starts to contract

immediately when et = e
y
min. Now if the income process is persistent, then

long periods of credit expansion will follow long periods of credit contraction.

This mechanism offers a potential to generate large movements in housing

prices simply due persistent income changes.

This mechanism straightforwardly generalizes to the case where incomes

are continuously distributed on the interval [eymin, e
y
max] as long as the dynam-

ics alternate between the expansive regimeMx := {(m, e) ∈ M̄×Ey | R(m; e) >

1} and the contractive regime Mc := {(m, e) ∈ M̄ × Ey | R(m; e) < 1}. In

the following section we will employ numerical simulations to show that the

previous scenario occurs under realistic parameter choices and the switch

between the two regimes is triggered by relatively small income changes.

5 Simulation Results

Parameters

We calibrate our model based on various sources in the literature. Ba-

jari, Chan, Krueger & Miller (2010) use a logarithmic function u which we

approximate in our setup by choosing α close to unity. They also devise a

an elasticity of substitution between housing and second-period consumption

slightly larger than unity (about 1.3) corresponding to ρ = 0.24. For sim-
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plicity, we follow Li & Yao (2007) by confining ourselves to the case of unit

elasticity setting ρ = 0 which yields a Cobb-Douglas function for second-

period utility. For this choice, the parameter 1− β can be interpreted as the

share of housing expenditure in consumer income and Bajari, Chan, Krueger

& Miller (2010) choose a value of β ≈ .77. Given that housing is confined

to the second period of life in our setup, we choose a smaller value β = 2
3
.

As in Lustig & Nieuwerburgh (2010), the scaling parameter θ is set to unity

and we also assume, again for simplicity, that γ = 1.

As for the income processes, survey data on household incomes typically

exhibit a hump-shaped distribution over the life cycle, cf. Bajari, Chan,

Krueger & Miller (2010). We choose (expected) incomes slightly higher in

the first than in the second period. This seems broadly consistent with

cf. Bajari, Chan, Krueger & Miller (2010) and the values in their Table 3.

Finally, the housing cost parameter κ was chosen equal to about 1
3
of second

period income eo. This may be justified given that housing consumption is

confined to the second period of life. Table 1 lists the set of parameter values

employed.

Parameter Value Parameter Value Parameter Value

α .97 γ 1 β .67

θ 1 ρ 0 κ 0.35

e
y
min 1.06 eymax 1.09 eo 1.05

Table 1: Parameters

Under this parametrization, the hypotheses of Lemma 4 hold for all ey ∈ Ey.

Thus, for each fixed income stream e
y
t ≡ ey ∈ Ey, the dynamics (16a)

converges to a unique steady state m̄(ey) > 0.6 In particular, the above

parametrization implies thatRmin = R(m̄(eymax), e
y
max) < 1 < R(m̄(eymin), e

y
min) =

Rmax such that the necessary conditions for booms and busts of housing prices

to occur are satisfied. For these to be sufficient, it is essentially required to

specify the probabilistic nature of the income process such that the con-

tractive and the expansionary regime both occur with a sufficient degree of

persistence.

Income processes

Assume that the income process {eyt }t≥0 is governed by a two-state Markov

process {st}t≥0 where the random variable st takes values in {H,L}. In the

state st = H income is high, while it is low in the state st = L. Transitions

between the two states occur with time-invariant probabilities given by the

stochastic matrix

Π =

[

πHH πHL

πLH πLL

]

=

[

.8 .2

.2 .8

]

. (19)

6We remark that the chosen parametrization guarantees positivity of steady states,

which may fail to exist at all or m̄(ey) < 0 for some ey ∈ Ey under other parametrizations.
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Here πss′ is the probability of moving from state s ∈ {H,L} to state s′ ∈

{H,L} and the initial distribution of s0 is π0. Thus, the process {st}t≥0 is

highly persistent with an 80% chance of retaining its current state and only

a 20% chance of switching to the opposite state.

Two-state incomes

Suppose that the income process takes values in E = {eymin, e
y
max} such that

e
y
t = eymax if st = H and e

y
t = e

y
min if st = L. Thus, consumer income directly

mirrors the two-state Markov process defined by (19). Figure 3 portrays

time series’ of the model’s variables for T = 1500 periods. The left panel in

Figure 3 shows a time window of housing prices pt and the credit volume |bt|.

To relate movements in these variables to the fundamentals of the economy

we also depict the aggregate net income e
y
t + eo − κ which represents the

total resources available in period t net of housing costs. The right panel

depicts the leverage ratio |bt|

e
y
t+eoR−1

t

which measures the percentage share of

loans backed by consumers’ discounted lifetime incomes.
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Figure 3: Two-state incomes

The figures confirm that the mechanism identified in the previous section

generates large and persistent movements in housing prices and the credit

volume. These two variables are intimately interconnected and are almost

impossible to distinguish in Figure 3(a). By our previous results, we know

that pt − |bt| follows a stationary stochastic process. We also see that for

most time periods both housing investments and the credit volume exceed

the aggregate income by an order of magnitude. To provide a quantitative

illustration of these phenomena, consider the situation in period t0 = 596

where the bubble reaches its peak. In this period, the young are in the

low-income state receiving e
y
t0

= 1.06 such that aggregate net income is

e
y
t +eo−κ = 1.76. The current credit volume supplied by banks is |bt0 | = 5.77
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and the interest on loans is 3%, i.e., Rt0 = 1.03. The young buy houses at the

current price pt0 = 5.78 which is financed by taking a loan equal to |bt0 |. This

corresponds to a leverage ratio of 275%, i.e., the loan taken exceeds young

consumer’s lifetime income by a factor in the ballpark of three. Moreover,

the loan repayment Rt0bt0 = −5.85 is more than five time as large as second-

period non-housing income eo. However, the next period’s housing price

p
t0
+1 = 5.86 allows consumers to repay their loan from the revenues of selling

their houses at the end of period t0+1 = 597. This confirms our earlier insight

that a credit volume exceeding real incomes by an order of magnitude can

still be sustained by corresponding increase in housing values. In fact, the

net flow from young to old consumers is only equal to pt0+bt0 = mt0 = 0.011.

Continuously distributed income

We now consider the case where first period income has an absolutely-

continuous and state dependent probability distribution. Thus, employing

the previous model for the state variable st, we assume that the random

variable e
y
t has probability distribution νH if st = H and νL if st = L.

Both distributions are uniform on [eLmin, e
L
max] = [1.03, 1.09] and [eHmin, e

H
max] =

[1.06, 1.12], respectively. Observe that their supports overlap and that their

mean values correspond to the choices for eH and eL in the previous case.

Despite the fact that the income regimes overlap and , we see from Figure
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Figure 4: Continuously distributed income

4 that all qualitative findings from the previous experiment remain intact.

Thus, the previous phenomena are not due to the extreme specification of in-

come following a two-state process and continue to hold under a more general

and less restrictive specification.
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6 Conclusions

In the absence of a banking sector the only intergenerational trade tak-

ing place is through the housing market. Consequently, housing values are

bounded by young consumers’ income. Introducing a banking sector adds a

channel of intergenerational trade in the form of a credit market, which me-

diates an exchange of commodities from the old to young. The combination

of these channels permits each flow of intergenerational trade to become arbi-

trarily large as long as the net flow remains bounded by consumer’s income.

The transfer of resources between generations amplifies small but persistent

income changes into large movements of housing prices.

Housing prices and the credit volume are non-stationary while a linear

combination of them follows a stationary stochastic process. The presence of

such cointegration relationship between these variables is therefore a testable

implication of the model that might be interesting to explore.

A Mathematical Proofs

A.1 Proof of Lemma 1

Let e = (ey, eo) ∈ E and m < ey be arbitrary but fixed. For brevity, set

m := κ− eo and

H(m1) := vc(m1 −m, 1) (m1 − κ) + vh(m1 −m, 1), m1 > m. (A.1)

Since v in (7) is homogeneous of degree 1 − α, Euler’s theorem for homo-

geneous functions implies vc(c, 1) c + vh(c, 1) = (1 − α)v(c, 1) for all c > 0

permitting us to write

H(m1) = (1− α) v(m1 −m, 1)− vc(m1 −m, 1) eo, m1 > m. (A.2)

Since ρ ≥ 0, the function v satisfies the Inada condition limc→0 vc(c, 1) = ∞.

Thus,

lim
m1→m

H(m1) = (1− α) v(0, 1)− eo lim
m1→m

vc(m1 −m, 1) = −∞. (A.3)

Furthermore, the restrictions ρ ≥ 0 and α < 1 together imply limc→∞ c vc(c, 1) =

∞. Using this in (A.1) yields the right limit as

lim
m1→∞

H(m1) ≥ lim
m1→∞

vc(m1 −m, 1) (m1 − κ) = ∞. (A.4)

Existence of the desired solution thus follows from (A.3), (A.4), and continu-

ity of H . Uniqueness is a consequence of (A.2) and the concavity of v which

give the derivative

H ′(m1) = (1− α)vc(m1 −m, 1)− vcc(m1 −m, 1) eo > 0. (A.5)

�
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A.2 Proof of Lemma 2

Since Fm1
(m1, m; e) = −H ′(m1) < 0 by (10) and (A.5) and F is continuously

differentiable, so is the implicit function f by the Implicit Function Theorem.

The partial derivative of (10) with respect to m computes

Fm(m1, m; e) = u′(ey −m)−mu′′(ey −m) = (ey −m)−α e
y − (1− α)m

ey −m
> 0.

(A.6)

By the implicit function theorem f ′(m) = − ∂mF (m1,m;e)
∂m1

F (m1,m;e)
> 0 where m1 =

f(m; e). �

A.3 Proof of Lemma 3

By (15), the function G can be written as G(m) = D(m) − H(m) with H

being defined as in (A.2) andD(m) := mu′(ey−m) = m(ey−m)−α, m < ey.

Consider first the behavior of the function D whose derivatives satisfy

D′(m) =
ey − (1− α)m

(ey −m)1+α
> (1− α)

ey −m

(ey −m)1+α
=

1− α

(ey −m)α
> 0 (A.7)

D′′(m) =
α

(ey −m)2+α

(

2ey − (1− α)m
)

>
α(1− α)

(ey −m)2+α

(

ey −m
)

> 0.(A.8)

The second inequality shows that D is a strictly convex function while

the first one implies that D is strictly increasing with boundary behavior

limm→ey D
′(m) = ∞.

As shown in the proof of Lemma 1, the derivative of H is given by (A.5) and,

therefore, satisfiesH ′(m) > 0 and limm→κ−eo H
′(m) ≥ (1−α) limm→κ−eo vc(e

o−

κ +m, 1) = ∞. We claim that H ′ is a strictly decreasing function implying

that −H is strictly convex. The first term in (A.5) is strictly decreasing

by strict concavity of v. It therefore suffices to show that c 7→ −vcc(c, 1) is

decreasing as well. Defining g as in (3), direct calculations reveal that the

second derivative of v can be written as

− vcc(c, 1) =
∂cv(c, 1)

c

[

1− ρ− (1− ρ− α)
βcρ

g(c, 1)ρ

]

= ∂cv(c, 1)

[

α

c1−ρ

β

g(c, 1)ρ
+

1− ρ

c
·
(1− β)θρ

g(c, 1)ρ

]

. (A.9)

Recalling that 1 − ρ ≥ 0, all three terms in (A.9) are positive and strictly

decreasing functions of c which implies that c 7→ −vcc(c, 1) is decreasing as

claimed.

Thus, −H is a strictly convex function as claimed and G being the sum of

two (strictly) convex functions is also strictly convex. The boundary behavior

of G′ follows directly from the limits computed above and the monotonicity

properties of D and −H . �
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A.4 Proof of Lemma 4

(i) Using (15) in conjunction with (A.2), a routine calculation shows that

limm→ey G(m) = limm→κ−eo G(m) = ∞. Thus, G(mmin) < 0 implies that G

has a fixed point in each of the intervals (κ − eo, mmin) and (mmin, e
y). By

strict convexity and the boundary behavior of the first derivative (cf. Lemma

3), the map G is strictly decreasing on (κ− eo, mmin) and strictly increasing

on ]mmin, e
y[. Thus, there can be at most one fixed point in each of the two

intervals.

(ii) It is obvious from (i) that G′(m̄) < 0 < G′( ¯̄m). Utilizing the result

from Lemma 2 and the definitions of D and H given in the proof of Lemma 4,

this implies that G′(m̄) = D′(m̄)−H ′(m̄) < 0 and G′( ¯̄m) = D′( ¯̄m)−H ′( ¯̄m) >

0. Therefore,

0 < f ′(m̄) =
D′(m̄)

H ′(m̄)
< 1 <

D′( ¯̄m)

H ′( ¯̄m)
= f ′( ¯̄m) (A.10)

which implies the local stability properties asserted. The remaining inequal-

ities follow from this and the uniqueness of the fixed points on the respective

intervals. �

A.5 Proof of Lemma 5

Assertion (i) follows immediately from Lemma 4(i). The result in (ii) is a

consequence of local stability of m̄ and Lemma 4(ii). Monotonicity of the

sequence {mt}t≥0 follows from this and Lemma 2. �

A.6 Proof of Theorem 1

(i) Lemma 5 and m0 ∈ M imply that mt ∈ M for all t and limt→∞ mt = m̄.

By (1) and (13), bt < 0 for all t which implies pt > 0 by (8) proving (i).

(ii) If R(m̄; e) > 1, then there exists t0 ≥ 0 such that R(mt; e) > 1 for all

t ≥ t0. In fact, since m 7→ R(m; e) is strictly increasing (cf. Lemma 8) and

{mt}t≥0 converges monotonically, we have R(mt; e) ≥ Rt0 := R(mt0 ; e) > 1

for all t ≥ t0. Thus, limt→∞ bt ≤ bt0 limt→∞Rt−t0
t0

= −∞ and pt = mt − bt >

−bt for all t gives limt→∞ pt = ∞.

(iii) If b0 = 0, then bt = 0 and mt = pt for all t and the claim follows from

(i). If b0 < 0 and R(m̄; e) < 1, the same arguments as in the previous

step show that R(mt; e) ≤ Rt0 := R(mt0 ; e) < 1 for all t ≥ t0. Thus,

0 ≥ limt→∞ bt ≥ bt0 limt→∞Rt−t0
t0

= 0 and limt→∞ pt = limt→∞mt = m̄. �

A.7 Proof of Lemma 6

(i) The proof of Lemma 2 revealed that Fm1
(m1, m; e) < 0 with F defined

in (10). Invoking the Implicit Function Theorem, the claim follows follows
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from ∂eyF (m1, m; e) = mu′′(ey −m) < 0 for all m > 0.

(ii) Recall that fixed points are solutions to G(m; e) = F (m,m; e) = 0.

By (i), Gey(m; e) = ∂eyF (m,m; e) < 0. Also, the boundary behavior of

G (limm→κ−eo G(m; e) = limm→ey G(m; e) = ∞) implies that ∂mG(m̄; e) <

0 < ∂mG( ¯̄m; e). Thus, the claim follows again from the Implicit Function

Theorem. �

A.8 Proof of Lemma 7

(i) We first show that M̄ is self-supporting. Let m ∈ M̄ be arbitrary. Then,

using Lemma 4(ii) and the monotonicity properties of f together with the

definitions (17a–c) we have for each ey ∈ E :

m̄min = f(m̄min; e
y
max) ≤ f(m̄min; e

y) ≤ f(m; ey) ≤ f(m̄max; e
y) ≤ f(m̄max; e

y
min)) = m̄max.

(A.11)

Thus, f(m; ey) ∈ M̄. To prove that ¯̄M is self-supporting, let m ∈ ¯̄M and

ey ∈ Ey be arbitrary. The case m ∈ M̄ is evident, so suppose first that m ∈

(m̄max, ¯̄mmin). Then, by (17a–c), m̄(ey) ≤ m̄max < m < ¯̄mmin ≤ ¯̄m(ey) which

implies, by Lemma 4(ii) and monotonicity of f that m̄(ey) < f(m; ey) < m.

Thus, f(m; ey) ∈ ¯̄M. Conversely, suppose m ∈ (0, m̄min). Then, by (17a–c)

0 < m < m̄min ≤ m̄(ey) which implies m < f(m; ey) < m̄(ey) by Lemma 4(ii)

and monotonicity of f . Thus, f(m; ey) ∈ ¯̄M again.

(ii) Let m0 ∈
¯̄M be arbitrary. Define the sequences {mt}t≥0 and {mt}t≥0 by

setting m0 = m0 = m0 and mt+1 := f(mt; e
y
min) and mt+1 := f(mt; e

y
max) for

each t ≥ 0. Then, by the monotonicity properties of f , mt ≤ mt ≤ mt P–a.s.
for all t ≥ 0 and the claim follows from limt→∞mt = m̄(eymax) = m̄min and

limt→∞mt = m̄(eymin) = m̄max. �

A.9 Proof of Theorem 2

Lemma 7 ensures that mt ∈
¯̄M ⊂ (0, eymin) P–a.s. for all t ≥ 0. Thus, b0 ≤ 0

implies bt ≤ 0 by (1) and pt ≥ mt > 0 by (8) P–a.s. for all t ≥ 0. �

A.10 Proof of Lemma 8

The claim follows directly by taking the partial derivatives of (13) and using

Lemmata 2 and 6(i). �

A.11 Proof of Theorem 3

(i) Suppose Rmin > 1. Then, R(m; e) ≥ Rmin > 1 for all m ∈ M̄ and e ∈ Ey.

Let R̂min be a number between 1 and Rmin. By continuity ofR, we can choose

an open neighborhood M̂ of M̄ such that R(m; e) > R̂min for all m ∈ M̂ and

e ∈ Ey. Let m0 ∈ M be arbitrary. By Lemma 7(ii), there exists t0 > 0 such
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that mt ∈ M̂ for all t > t0 P–a.s. Hence, Rt > R̂min > 1 for all t > t0 P–a.s.
and it follows from (1) that limt→∞ bt ≥ limt→∞ bt0

(

R̂min
)t−t0

= ∞. Since mt

remains uniformly bounded, the limit of the process {pt}t≥0 follows from (8).

(ii) Similar to the previous part, choose a number R̂max between Rmax and

1 and an open neighborhood M̂ of M̄ such that R(m; e) < R̂max < 1 for all

m ∈ M̂ and e ∈ Ey. Let m0 ∈ M be arbitrary. By Lemma 7(ii), there exists

t0 > 0 such that mt ∈ M̂ for all t > t0 P–a.s. Hence, Rt < R̂max < 1 for all

t > t0 P–a.s. and it follows that 0 ≤ limt→∞ bt ≤ limt→∞ bt0
(

R̂max
)t−t0 = 0.

Finally, the previous result and (8) imply directly that limt→∞ |pt − mt| =

limt→∞ |bt| = 0. �
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