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1 Introduction

Volatility modeling is of particular importance to finance practitioners and academics as it

allows them to develop models applicable to, for instance, risk management, derivative pricing

and portfolio allocation. The finance literature has many alternative approaches for modeling

and forecasting volatility of asset returns (see Andersen et al. (2006) for a recent review).

Traditionally, volatility has been treated as a latent variable whose dynamics is governed by

a process from the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) or

Stochastic Volatility (SV) families. However, recent studies have formalized the concept of

realized volatility (RV) as an alternative avenue for modeling financial volatility (Bandorff-

Nielsen and Shephard, 2002a,b; Andersen et al., 2001b, 2003, 2005). In a nutshell, the notion

of RV proposes that daily volatility be computed by summing up intra-day squared returns.

This approach is supported by the theory of quadratic variation which suggests that RV should

provide a consistent and highly efficient non-parametric estimator of asset return volatility over

a given discrete interval.

In this article we propose a new mechanism to model the RV dynamics: the volatility

specification of the so-called Markov-switching Multifractal (MSM) models introduced by Calvet

and Fisher (2001). The proposed Realized Volatility MSM (RV-MSM) model is estimated

via Generalized Method of Moments (GMM) using an adaptation of the moment conditions

proposed for the baseline MSM in Lux (2008). We generate best linear forecasts of the RV-MSM

volatility by means of the Levinson-Durbin algorithm. The performance of the RV-MSM model

is compared against other specifications usually applied for the dynamics of RV (Bandorff-

Nielsen and Shephard, 2002a; Andersen et al., 2003, 2006). Moreover, we also investigate

the performance of the RV models in comparison to other standard volatility models such as

(FI)GARCH, MSM and SV models.

There are three main reasons usually provided in the literature to motivate RV modeling

(Andersen et al., 2006). First, RV measures the realization of volatility by exploiting information

in intra-day data without assuming a specific data generating process (Taylor and Xu, 1997). As

a result, RV estimates can be used as a natural benchmark when evaluating volatility forecasts

and should provide a more accurate assessment of forecasting accuracy than other, noisier
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benchmarks such as squared returns (Andersen and Bollerslev, 1998; Andersen et al., 2005;

Rossi and Gallo, 2006). Second, RV allows analysts to model volatility dynamics with standard

time series techniques while still exploiting the intra-day information (Andersen et al., 2003).

Third, given its non-parametric nature, RV reduces the ‘curse of dimensionality’ problem usually

encountered in multivariate volatility settings (Bandorff-Nielsen and Shephard, 2004). Thus,

with the increasing availability of high frequency data, RV has become an attractive candidate

for modeling volatility at the daily frequency due to its promising capabilities for more accurate

volatility measurement and forecasting (Andersen et al., 2000, 2001a, 2003; Bandorff-Nielsen

and Shephard, 2002a,b).

The MSM models considered here are appropriately adapted versions of the Multifractal

Model of Asset Returns (MMAR) due originally to Mandelbrot et al. (1997). The notion of

multifractality refers to the variations in the scaling behavior of various moments or to different

degrees of long-term dependence of various moments. Pertinent empirical findings on multifrac-

tality have been reported in numerous studies by economists and physicists so that this feature

now counts as a well-established stylized fact of financial markets (see for example Cont (2001);

Ding et al. (1993); Lux (1996); Mills (1997); Lobato and Savin (1998); Schmitt et al. (1999);

Vassilicos et al. (1993)). The MSM models considered in this article account for multifractal

volatility via their built-in hierarchical, multiplicative structure with heterogeneous components

(Calvet and Fisher, 2004). The forecasting capabilities of MSM models have been studied in a

handful of studies by means of Monte Carlo simulations and empirical applications (Calvet and

Fisher, 2004; Lux and Kaizoji, 2007; Lux, 2008; Lux and Morales-Arias, 2010a,b). MSM models

have shown very promising forecasting performance often leading to forecast gains against other

popular models (e.g. GARCH, Fractionally Integrated GARCH (FIGARCH), Markov Switch-

ing GARCH, SV) which motivates us to investigate the capabilities of the MSM mechanism for

forecasting RV.

A priori, there are two main reasons why RV coupled to the volatility dynamics of the

MSM should provide new insights with respect to volatility forecasting. First, the volatility

mechanism of MSM models has a built-in intermediate nature between ‘true’ long-memory and

regime-switching processes. Indeed, as demonstrated by Granger and Terasvirta (1999) it is hard
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to distinguish empirically between ‘true’ long-memory and regime-switching and even regime-

switching models with as few as two different regimes could easily give rise to apparent long

memory. MSM models generate what has been called ‘long-memory over a finite interval’ and

in certain limits converge to a process with ‘true’ long-term dependence. That is, depending on

the number of volatility components, a pre-asymptotic hyperbolic decay of the autocorrelation

function in the MSM model might be so pronounced as to be practically indistinguishable from

‘true’ long memory (Liu et al., 2007). Second, the flexible regime-switching nature of the MSM

model should also allow to integrate highly volatile periods without resorting to specifically

designed regimes (Lux and Kaizoji, 2007).

We use an interesting high frequency data set on 5 major international stock market indices.

The latter data set allows us to compute RVs for each market and use them for forecasting future

volatility. We evaluate forecasts of the alternative volatility models by means of mean squared

errors (MSE) and mean absolute errors (MAE) in three different sub-samples (the turbulent pe-

riod of mid 2007 to 2009, the rather tranquil period from mid 2005 to mid 2007, and the longer

series that combines both of these subsets), using both RV and squared returns as indicators

for true volatility. This enables us to analyze to which extent using RV as opposed to squared

returns affects forecast errors at alternative volatility regimes. Forecast complementarities be-

tween the various models considered are examined via forecast combinations.

To preview some of our results: We find that the RV-MSM seems to improve upon forecasts

of its MSM counterparts and other volatility models in terms of mean squared errors (MSE).

Counting the number of winning cases across all time horizons and evaluation criteria, the more

traditional RV-ARFIMA approach is found to provide the best performance. Nevertheless,

RV-LMSM is typically very close to RV-ARFIMA and also has a non-negligible number of

cases where it turns out as the winner of the competition of nine different models. We found

it particularly valuable in the more turbulent period (2007 to 2009) and for the longer series

combining the tranquil pre-2007 period together with the subsequent financial turmoil (2005 to

2009). RV-ARFIMA, in contrast, was an almost uniform winner particularly during the tranquil

times before the onset of the financial crisis.

The paper is organized as follows. The next section introduces the basic concepts of volatility
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modeling and shortly describes the volatility models considered. Section 3 and 4 discuss the data

used for our analysis and the forecasting design of our study, respectively. Section 5 presents

selected estimation results. Section 6 reports our main findings for the forecast performance of

the various single and combined models, and section 7 concludes.

2 Volatility models

In the following section we briefly discuss the general notion of volatility which will provide the

background for the subsequent sections on the various dynamic volatility specifications analyzed

in this study. Since the MSM volatility specifications are our main concern, we devote most of

this section to describing them.

2.1 General notion of volatility

The discussion on the general concept of volatility modeling is based on the exposition by An-

dersen et al. (2006). Univariate models of volatility usually consider the following specification

of financial returns measured over equally spaced discrete points in time t = 1, ..., T :

yt = µt + σtut, (1)

where yt = pt − pt−1 with pt = lnPt the logarithmic asset price, µt = E[yt|Ft−1] and σ2
t =

Var[yt|Ft−1] the conditional mean and the conditional variance (volatility), respectively. The

information set Ft−1 contains all relevant information up to period t − 1. Moreover, ut is

an independently and identically distributed disturbance with mean zero and variance one.

Although ut can be drawn from various stationary distributions (Chuang et al., 2007), in this

study we let ut ∼ N(0, 1). The return components µt and σt can be specified according to the

assumed data generating process. For the purpose of this study we use µt = µ + ρyt−1. Some

conventional specifications for σt are, for instance, GARCH and SV. Defining rt = yt − µt, the
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latter ‘centered’ returns can be modeled as

rt = σtut. (2)

It is important to note that the assumption that all relevant information is contained in

Ft−1 is strong. In practice, analysts would most likely only be able to observe a subset of the

information in Ft−1. Thus, the ‘true’ volatility σ2
t is unobservable, i.e. it is a genuinely latent

process.

Andersen and Bollerslev (1998) and Andersen et al. (2005) show that RV obtained from

intra-day data is an appropriate estimator for the actual volatility at period t. To concretize

the RV notion it is useful to consider a continuous time version of (1):

y(t) = µ(t) + σ(t)u(t), (3)

where y(t) = dp(t) is the change in the log price, µ(t) = q(t)dt with q(t) the drift component,

σ(t) is the ‘spot’ volatility and u(t) = dw(t) with w(t) a standard Brownian motion. Consider

now a time interval [t− 1, t], then the expression for one-period returns y(t, 1) is:

y(t, 1) = p(t)− p(t− 1) =

∫ t

t−1
q(s)ds+

∫ t

t−1
σ(s)dw(s). (4)

Assuming that the variation of the drift is an order of magnitude less than the variation of

volatility over the interval [t−1, t] (which is consistent with no arbitrage conditions and usually

holds empirically), it can be shown that for an arbitrary observation at time t:

E[σ2
I(t) |Ft−1] ≈ Var[y(t, 1) |Ft−1], (5)

with

σ2
I(t) ≡

∫ t

t−1
σ2(s)ds, (6)

the so-called integrated variance (volatility). It follows that the integrated volatility σ2
I(t)
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provides (theoretically) an accurate ex-post measure of actual volatility in the interval [t− 1, t].

Andersen and Bollerslev (1998), Andersen et al. (2001b) and Bandorff-Nielsen and Shephard

(2001) show that in practice the empirical counterpart of (6) can be efficiently obtained via RV:

σ2
R(t,∆) =

1/∆∑
j=1

y2(t− 1 + j ·∆,∆), (7)

with 0 < ∆ < 1 and 1/∆ integer. The authors show that RV is a consistent estimator of

integrated volatility in the limit, that is:

plim
∆→0

σ2
R(t,∆) = σ2

I(t). (8)

Andersen et al. (2001b) and Bandorff-Nielsen and Shephard (2001, 2002a) show that returns

standardized to the square root of the integrated volatility should (theoretically) follow a Normal

distribution. This result was generalized by Andersen et al. (2003) for the multivariate case.

Empirical evidence has confirmed these theoretical findings: returns standardized to realized

standard deviations are approximately Normally distributed (Andersen et al., 2001b,a).

In what follows we consider the discrete time model in (2) for t = 1, ..., T daily time periods.

To save on notation, let σ2
R,t denote daily RV. A discussion on the computation of RV for this

study is given in Section 3. In order to distinguish between RV models and non-RV models

(i.e. MSM, SV, (FI)GARCH) we use σ2
L,t to denote the latter. Thus, σt in (2) is taken from

σt = {σL,t, σR,t}.

2.2 Markov-switching Multifractal models

We now turn to a description of the MSM model. An in-depth analysis of this model can be

found in Calvet and Fisher (2004) and Lux (2008). In the MSM model, instantaneous volatility

is determined by the product of k volatility components or multipliers M
(1)
t ,M

(2)
t , . . . ,M

(k)
t and

a scale factor σ2
L:

σ2
L,t = σ2

L

k∏
i=1

M
(i)
t . (9)
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Following the basic hierarchical principle of the multifractal approach, each volatility component

M
(i)
t will be renewed at time t with a probability γi depending on its rank within the hierarchy

of multipliers, and will remain unchanged with probability 1− γi. Convergence of the discrete-

time MSM to a Poisson process in the continuous-time limit requires to formalize transition

probabilities according to:

γi = 1− (1− γk)(bi−k), (10)

with γk and b parameters to be estimated (cf. Calvet and Fisher (2001)). Since we are not

interested in the continuous-time limit in this article, we follow Lux (2008) and use pre-specified

parameters γk = 0.5 and b = 2 in equation (10) and set the number of multipliers M
(i)
t to

k = 15. The choice of parameters for γk and b can be motivated by the fact that the in-

sample fit and out-of-sample forecasting performance have been found to be almost invariant

compared to other (estimated) values (cf. Calvet and Fisher (2004); Lux (2008)). The number

of multipliers k can be motivated by previous findings that show that levels beyond k > 10

may improve the forecasting capabilities of the MSM for some series and proximity to temporal

scaling of empirical data might be closer (Liu et al., 2007; Lux, 2008). Indeed, having ‘too many’

multipliers is harmless as the other parameter estimates would remain unchanged beyond some

threshold and ‘superfluous’ multipliers would just absorb part of the scale parameters.

The MSM model is a Markov-switching process with 2k states. The model is fully specified

once we have determined the distribution of the volatility components. It is usually assumed

that the multipliers M
(i)
t follow either a Binomial or a Lognormal distribution. In the MSM

framework, only one parameter has to be estimated for the distribution of volatility components,

since one would normalize the distribution so that E[M
(i)
t ] = 1.

In the Binomial MSM (BMSM) multipliers M
(i)
t are drawn from a Binomial distribution

with values m0 and 2−m0 (1 ≤ m0 < 2) with equal probability (Calvet and Fisher, 2004). This

configuration guarantees an expectation of unity for all M
(i)
t . With pre-specified parameters γk

and b, the BMSM parameters to be estimated boil down to only two, m0 and σ2
L, although the

number of states could be arbitrarily large (for large k).

In the Lognormal MSM (LMSM) model, multipliers are determined by random draws from
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a Lognormal distribution with parameters λ and ν, i.e.

M
(i)
t ∼ LN(−λ, ν2). (11)

Normalization via E[M
(i)
t ] = 1 leads to

exp(−λ+ 0.5ν2) = 1, (12)

from which a restriction on the shape parameter ν can be inferred: ν =
√

2λ. Hence, the

distribution of volatility components corresponds to a one-parameter family of Lognormals with

the normalization restricting the choice of the shape parameter. Thus, the LMSM parameters

to be estimated are λ and σ2
L.

Lux (2008) introduced a GMM estimator that is universally applicable to all possible specifi-

cations of MSM processes. In the GMM framework the unknown parameter vector ϕ is obtained

by minimizing the distance of empirical moments from their theoretical counterparts, i.e.

ϕ̂T = arg min
ϕ∈Φ

fT (ϕ)′AT fT (ϕ), (13)

with Φ the parameter space, fT (ϕ) the vector of differences between sample moments and an-

alytical moments, and AT a positive definite and possibly random weighting matrix. Under

standard regularity conditions that are routinely satisfied by the MSM models, the GMM es-

timator ϕ̂T is consistent and asymptotically normal (cf. Harris and Matyas (1999)).1 The

parameter vector is given by ϕ = (m0, σ
2
L)′ in the case of the BMSM model and ϕ = (λ, σ2

L)′

for the LMSM model, respectively.

In order to account for the proximity to long memory characterizing MSM models, Lux

(2008) proposed to use logarithmic differences of absolute returns together with the pertinent

analytical moment conditions, i.e.

ξt,T = ln |rt| − ln |rt−T |. (14)

1The standard regularity conditions are problematic for the ‘first generation’ MMAR model of Mandelbrot
et al. (1997) because of its restrictions to a bounded interval. This is not an issue for the ‘second generation’
MSM of Calvet and Fisher (2001) which is a variant of a Markov-switching model.
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Using (2) and (9) in (14) we get the expression

ξt,T = 0.5
k∑
i=1

(
m

(i)
t −m

(i)
t−T

)
+ ln |ut| − ln |ut−T | , (15)

where m
(i)
t = lnM

(i)
t . The variable ξt,T only has nonzero autocovariances over a limited number

of lags. To exploit the temporal scaling properties of the MSM model, covariances of various

orders q over different time horizons are chosen as moment conditions, i.e.

Mom (T, q) = E
[
ξqt+T,T · ξ

q
t,T

]
, (16)

for q = 1, 2 and T = 1, 5, 10, 20, together with E
[
r2
t

]
= σ2

L for identification of σ2
L.

Out-of-sample forecasting of the MSM model estimated via GMM is performed for the zero-

mean time series YL,t = r2
t − σ̂2

L for l-step ahead horizons, by means of best linear forecasts (cf.

Brockwell and Davis (1991), c.5) computed with the generalized Levinson-Durbin algorithm

developed by Brockwell and Dahlhaus (2004) (see Lux (2008) for further details).

In order to apply the MSM mechanism for RV, we only consider the volatility specification

in (9):

σ2
R,t = σ2

R

k∏
i=1

M
(i)
t . (17)

Using E[M
(i)
t ] = 1 results in E[σ2

R,t] = σ2
R. Therefore, we may obtain an estimate of the scaling

factor σ2
R as

σ̂2
R = T−1

T∑
t=1

σ2
R,t. (18)

According to the empirical evidence by Andersen et al. (2001a,b, 2003) realized volatility σ2
R,t is

well approximated by a Lognormal distribution. To be consistent with this property we restrict

ourselves to the LMSM specification to model RV. We call this model a Realized Volatility

LMSM model (RV-LMSM henceforth).2

2Nevertheless, we have also experimented with the Binomial MSM structure to forecast RV. Forecasting results
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For the estimation of the Lognormal parameter of the RV-LMSM, we consider in analogy

to (14), the logarithmic differences of realized standard deviations, i.e.

ζt,T = lnσR,t − lnσR,t−T . (19)

Using (17) we get

ζt,T = 0.5
k∑
i=1

(
m

(i)
t −m

(i)
t−T

)
. (20)

Estimation of λ is done via GMM using the pertinent moment conditions for ζt,T at various

horizons:

Mom (T, q) = E
[
ζqt+T,T · ζ

q
t,T

]
, (21)

with q = 1, 2 and T = 1, 5, 10, 20. Based on the estimated model parameters we construct

best linear forecasts of the zero mean quantity YR,t = σ2
R,t − σ̂2

R for l-step ahead horizons (see

Appendix A for further details).

2.3 Stochastic Volatility model

In this section we briefly describe the stationary SV model which we also employ in our fore-

casting analysis. The SV model accounts for autoregressive volatility and a stochastic shock in

the volatility process. More precisely:

σ2
L,t = exp[ht], (22)

where

ht = κ+ ψht−1 + ηεt (23)

are almost identical to the RV-LMSM and can be provided upon request. This is in line with previous findings
which show that Lognormal and Binomial specifications of MSM models yield virtually undistinguishable results
in most cases (Liu et al., 2007; Lux, 2008).
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with |ψ| < 1 and η > 0. The shock in the volatility process εt is normally distributed with

mean zero and unit variance and is generated independently of the shock ut in the returns (2).

Several estimation approaches have been proposed for the SV model, such as GMM, Efficient

Method of Moments (EMM), Quasi-Maximum Likelihood (QML), Bayesian inference or Markov

Chain Monte Carlo (MCMC) methods (Melino and Turnbull, 1990; Harvey et al., 1994; Kim

et al., 1997; Gallant et al., 1997; Liesenfeld and Richard, 2003). We consider the relatively

simple and robust QML approach proposed by Ruiz (1994). This requires transforming rt in

(2) by taking logarithms of the squares to obtain the linear model:

ln r2
t = E[lnu2

t ] + ht + χt, (24)

where χt ≡ lnu2
t − E[lnu2

t ] is a non-Gaussian, zero mean, white noise disturbance term whose

statistical properties depend on the distribution of ut. In the case that ut is normally distributed

with mean zero and unit variance the mean and variance of lnu2
t are ψ(0.5)− ln(0.5) ≈ −1.27

and π2/2, respectively, where ψ(•) is the Digamma function. Equation (24) coupled with (23)

form a linear state space model. Parameters can be estimated by means of QML together with

the Kalman filter by treating χt as though it were N(0, π2/2). Estimates ĥt can be obtained via

the Kalman filter. The l-step ahead forecast ĥt+l in the SV model can be obtained recursively

from the one-step ahead forecasts ĥt+1.

2.4 Generalized Autoregressive Conditional Heteroskedasticity models

The GARCH(1,1) model of Bollerslev (1986) assumes that the volatility dynamics is governed

by

σ2
L,t = ω + αr2

t−1 + βσ2
L,t−1, (25)

where the restrictions on the parameters are ω > 0, α, β ≥ 0 and α + β < 1. A well-known

stylized fact of financial time series is the so-called leverage effect, which is based on the em-

pirical finding that fluctuations of returns intensify after negative financial news and are less

pronounced after positive financial news. To account for this stylized fact we also use the
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Threshold GARCH (TGARCH) model of Rabemananjara and Zakoian (1993), i.e.

σ2
L,t = ω + αr2

t−1 + α−r2
t−1I(rt−1 < 0) + βσ2

L,t−1, (26)

where I(•) is an indicator function taking the value of 1 if (rt−1 < 0) and 0 otherwise.3

The FIGARCH model introduced by Baillie et al. (1996) expands the GARCH variance

equation by considering fractional differences. As in the case of (25) we restrict our attention to

one lag in both the autoregressive term and in the moving average term. The FIGARCH(1,d,1)

model is given by

σ2
L,t = ω +

[
1− βL− (1− δL)(1− L)d

]
r2
t + βσ2

L,t−1, (27)

where L is the lag operator, d is the parameter of fractional differentiation and the restrictions

on the parameters are β − d ≤ δ ≤ (2− d)/3 and d(δ − 2−1(1− d)) ≤ β(d− β + δ). In the case

of d = 0, the FIGARCH model reduces to the standard GARCH(1,1) model. For 0 < d < 1 the

binomial expansion of the fractional difference operator introduces an infinite number of past

lags with hyperbolically decaying coefficients. Note that in practice, the infinite number of lags

in the FIGARCH model with 0 < d < 1 must be truncated. We employ a lag truncation of

1000 steps.

Estimation of GARCH, TGARCH and FIGARCH models can be done via QML. The l-

period ahead forecasts σ̂2
L,t+l for these models can be obtained most easily by recursive substi-

tution of one-step ahead forecasts σ̂2
L,t+1.

2.5 Earlier Realized Volatility models

The earlier RV literature has considered ARMA(1,1) specifications to model RV dynamics (An-

dersen et al., 2000; Bandorff-Nielsen and Shephard, 2002a). In this study we use the model

proposed by Bandorff-Nielsen and Shephard (2002a) (denoted RV-BNS) which assumes that

RV can be decomposed into a latent integrated volatility component and a zero-mean error

3Note that introducing the TGARCH model to account for asymmetry of volatility might put the other
symmetric families of volatility models at a ‘disadvantage’. While elaborating on similar asymmetric variants of
those model families would be beyond the scope of this paper, our somewhat ‘unfair’ comparison allows a certain
assessment of the importance of this otherwise neglected fact.
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component at with variance ς2:

σ2
R,t = σ2

I,t + ςat. (28)

Bandorff-Nielsen and Shephard (2002a) show that under the assumption of a constant elasticity

of variance (CEV) process or an Ornstein-Uhlenbeck (OU) process for the spot volatility σ2(t),

the latent integrated volatility has an ARMA(1,1) representation

σ2
I,t = V + ϑt, (29)

with

ϑt = ψϑt−1 + φzt−1 + nzt, (30)

where zt is a mean zero white noise error term with variance n2 and is generated independently

of at. The parameters of the RV-BNS can be estimated unbiasedly and efficiently (in a linear

sense) by means of Maximum Likelihood together with the Kalman filter. For specific details

we refer the reader to Bandorff-Nielsen and Shephard (2002a). Estimates ϑ̂t can be obtained via

the Kalman filter. The l-step ahead forecast ϑ̂t+l in the BNS model can be obtained recursively

from the one-step ahead forecasts ϑ̂t+1 to obtain σ̂2
R,t+l.

Subsequent studies have reported empirical evidence on fractional integration of logarithmic

RV and suggest modeling the latter by means of fractionally integrated autoregressive mod-

els (Andersen et al., 2003, 2005). Along these lines, we employ the so-called Autoregressive

Fractionally Integrated Moving Average (ARFIMA) specification to model the dynamics of the

logarithmic RV which is given by

Φ(L)(1− L)dυt = Θ(L)xt, (31)

where υt = lnσ2
R,t− ῡ represents the centered logarithmic RV, with ῡ the mean logarithmic RV.

Moreover, Φ(L) and Θ(L) are the AR and MA polynomials of order p and q respectively, d is

the parameter of (fractional) differentiation and xt is a white noise process. Here we consider

both the degenerate case d = 0 and the more general case 0 < d < 1, denoted RV-ARMA(p, 0, q)

and RV-ARFIMA(p, d, q), respectively.
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The AR(FI)MA models can be estimated via Maximum Likelihood. The orders p and q of

the RV-ARMA(p, 0, q) are chosen by estimating the model with different orders and selecting the

best specification via the Akaike Information Criterion (AIC). In the case of the RV-ARFIMA

model we restrict the (p, q) order to a maximum of p = 1 and q = 1 to save on computation

time, i.e. we considered only the combinations (p, q) given by (0, 0),(1, 0),(0, 1) and (1, 1), and

chose the order of the model via AIC. Following Lux and Kaizoji (2007), the RV-ARFIMA is

estimated in two steps. The fractional differentiation parameter d is first estimated via the

Geweke and Porter-Hudak (GPH) periodogram regression and then the remaining AR and MA

parameters are estimated by means of the Fox and Taqqu method assuming lag polynomials

with roots strictly greater than 1 in modulus. Best linear forecasts can again be obtained from

the analytical covariances of the processes and the generalized Levinson-Durbin algorithm of

Brockwell and Dahlhaus (2004).

3 The data

Our dataset comprises 3 European stock market indices and 2 North-American indices, whose

characteristics are summarized in Table 1. The French index CAC 40 measures the performance

of the 40 largest companies listed in Euronext Paris in terms of order book volume and market

capitalization. The DAX and FTSE 100 are the main benchmarks for the German and the

British stock markets, respectively. These indices include the most highly capitalized blue chip

companies in these countries. The US index NYSE Composite tracks all stocks listed on the

New York Stock Exchange. Our second American index is the S&P 500 which includes the

500 stocks with the largest market capitalization actively traded on either of the two largest

stock markets in the US, NYSE and NASDAQ. Detailed information on the timespan, trad-

ing hours, sampling intervals and number of observations per index can be found in Table 1.

The DAX dataset was provided by courtesy of Deutsche Börse AG. The other datasets were

purchased from Tickdatamarket (www.tickdatamarket.com). Intraday data are typically error-

prone (Müller et al., 1990). Therefore we had to ‘clean’ the data before we were able to use it.

To save on space, more details on the cleaning procedure can be found in the Appendix.
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We employ a time scale t ∈ R+ in days, which incorporates only the official trading hours

for each index respectively, also called business time (Dacorogna et al., 2001). Daily returns

and realized volatilities are computed using 30-minute intervals as proposed by Andersen et al.

(2003). Formally, daily returns are given by

yt =

1/∆∑
j=1

yt−1+j·∆,∆, (32)

and realized volatilities by

σ2
R,t =

1/∆∑
j=1

y2
t−1+j·∆,∆, (33)

with ∆ = 30 minutes. Standardized returns are given by

ỹt =
yt√
σ2
R,t

.

Figures 1 to 4 about here

Some descriptive statistics for these quantities are provided in Table 2.

As is usually the case, returns show considerable deviations from the Normal distribution

in terms of high excess kurtosis (see Figures 2 and 3). Some index returns are also left skewed,

particularly in the case of the S&P 500.4 By contrast, standardized returns are symmetrically

distributed and exhibit kurtosis close to 3: the kurtosis of a Normal distribution. Distributions

of standardized returns are approximately Gaussian as confirmed by the kernel density esti-

mates in Figure 3. As displayed in Figure 2, the standardization of returns to realized standard

deviations reduces the deviations from the Normal distribution considerably for all indices. RV

estimates are rightly skewed and highly leptokurtic, whereas the distribution of logarithmic RV

4The S&P 500 data comprises the stock market crash of 1987 when the index dropped 20.4% on a single day,
the so called Black Monday. The NYSE Composite data omits the peak of this crash.
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estimates can be well approximated by a Normal distribution (see Table 2 and Figure 4). These

empirical findings corroborate previous evidence by Andersen et al. (2000, 2001a,b, 2003) and

Bandorff-Nielsen and Shephard (2002a) and also support the hypothesis of a Normal mixture

distribution of returns as outlined in Section 2.1.

Tables 1 and 2 about here

4 The forecasting design

We employ a forecasting scheme where we estimate a particular model in sample with data up

to time t = S and use the estimated parameter space Γ of the model to obtain forecasts S + l

recursively for horizons l = 1, 20, 50, 100.5 We have broken down the analysis to three different

sample periods for out-of-sample evaluation. The first sample runs from July 2007 to April 2009

denoted the ‘turbulent’ sample, which includes the period of the 2008-2009 financial crisis. The

second sample runs from July 2005 to July 2007 denoted the ‘tranquil’ sample which excludes

the period of the financial crisis. Lastly, the third sample runs from July 2005 to April 2009

denoted the ‘tranquil-turbulent’ sample as it includes both the period pre- and post-financial

crisis.

In what follows, let τ = 1, ..., T be an out-of-sample observation with T the total number

of observations. We evaluate volatility forecasts by means of relative MSEs and MAEs based

upon two different estimates of the ‘true’ volatility, namely, squared returns r2
τ and RV σ2

R,τ .6

Squared returns r2
τ are a popular proxy of ‘true’ volatility used in the asset volatility literature to

evaluate forecast errors. This stems from the fact that, assuming that we have a full information

5We have also experimented with rolling window and recursive schemes for estimation of parameters and
subsequent forecasting. However, rolling and recursive estimations of some of the models (FIGARCH and RV-
ARFIMA) were very time consuming and the results were qualitatively similar when comparing models against
each other. We have also computed so-called Mincer-Zarnowitz regressions of volatility estimates on their fore-
casts. However, results from this criterion turned out to be very inconclusive. This is certainly at least partially
due to the violation of the standard assumption for a regression framework by volatility measurements, and hence
we put less weight on these findings.

6Note that r2τ are the squared residuals obtained after linear filtering of returns yτ using the in-sample mean
and the first-order autocorrelation (see Section 2.1).
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set and correctly specified models for volatility, the squared returns should provide an unbiased

estimator of volatility. To see this, let rτ be an arbitrary out-of-sample observation. Forecast

evaluation of volatility can be done by comparing volatility forecasts σ̂2
τ conditional on τ − 1 to

the squared returns r2
τ since

E
[
r2
τ |Fτ−1

]
= E

[
σ2
τu

2
τ |Fτ−1

]
= σ2

τ . (34)

However, in practice, r2
τ can be a poor ex-post indicator of actual volatility due to its large noise

component. In contrast, as discussed in Section 2.1, RV σ2
R,τ should (theoretically) provide a

more accurate ex-post measure of actual volatility at period τ . In a nutshell, this occurs as the

finer sampling of intra-day returns will eventually annihilate the measurement error.

In what follows, let ‘0’ indicate a benchmark (historical volatility) and ‘•’ a particular

competing volatility model (BMSM, LMSM, SV, GARCH, TGARCH, FIGARCH, RV-LMSM,

RV-BNS, RV-AR(FI)MA). Forecast errors denoted êτ (0) and êτ (•) computed against squared

returns are given by

êτ (0) = r2
τ − σ̂2, êτ (•) = r2

τ − σ̂2
τ , (35)

where σ̂2
τ =

{
σ̂2
L,τ , σ̂

2
R,τ

}
denotes the volatility forecast of the competing model. Alternatively,

we consider RV as an indicator for actual volatility along the lines proposed by Andersen and

Bollerslev (1998), i.e.

êτ (0) = σ2
R,τ − σ̂2, êτ (•) = σ2

R,τ − σ̂2
τ . (36)

The MSE and MAE of the benchmark specification are:

d̄(0) = T −1
T∑
τ=1

dτ (0), (37)

with dτ (0) = êτ (0)2 for MSE and dτ (0) = |êτ (0)| for MAE. The average performance of a
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competing model specification is given in relation to d̄(0) yielding relative MSE or MAE:

dr(•) =
d̄(•)
d̄(0)

, (38)

with d̄(•) denoting the MSE or the MAE of a particular model ‘•’ defined as in (37).

Table 3 about here

5 Parameter estimates

A detailed account of our empirical estimates in the various standard volatility and RV models

is available upon request. Table 4 exhibits estimated parameters of the relatively recent BMSM

and LMSM models as well as in our new proposal of a multifractal model for realized volatility,

RV-LMSM. Compared with previous studies (Calvet and Fisher, 2004; Lux, 2008) multifractal

parameters m0 and λ are found to be of similar magnitude. Comparison of LMSM and RV-

LMSM also shows quite the same range of the estimated parameters between about 0.02 and

0.07 which indicates that the degree of heterogeneity of volatility fluctuations is about the same

in both the squared returns and realized volatility series. Parameter estimates for the more

standard models appear perfectly in line with previous literature.

Table 4 about here

6 Forecasting results

In what follows we discuss the results of our forecasting analysis. Tables 5 to 9 display the main

out-of-sample results for the 5 different stock market indices considered: CAC 40, DAX, FTSE

100, NYSE Composite and S&P 500. Each table displays the results of the relative MSE or

MAE for each of the forecasting horizons l = 1, 20, 50, 100 measured against squared returns

(upper entry) and realized volatility (lower entry). Results for the three sub-samples analyzed
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are also presented in each table. In the following discussion we first consider results for single

models M1 to M10 and subsequently consider the results for some combined forecasts.

6.1 Single models

Starting with the French index CAC 40 (Table 5), we find quite supportive results for the

forecast capabilities of various versions of multifractal models. For the complete sample (2005

to 2009), BMSM and LMSM mostly dominate over the other standard volatility models, both

when evaluated by realized volatility and by squared returns. However, for both criteria, the

RV-ARFIMA and RV-LMSM models typically provide even better forecasts. While dominance

shifts between RV-ARFIMA and RV-LMSM under an MSE evaluation, the ARFIMA variant is

more clearly the winner under the MAE evaluation albeit with RV-LMSM a close second.

Looking at the tranquil subperiod, we see that RV-ARFIMA dominates for both the MSE

and MAE criterion with both volatility measurements and over all forecast horizons, while the

FIGARCH model is a similarly clear second winner. However, a glance through the rows and

columns of this panel shows that the performance of all models is pretty close (except perhaps

for the RV-BNS) so that the gain from the best performing approach is not too important at

least for lower lags.

For the volatile period, results are much less clear-cut. While there is some variation across

criteria and time horizons, the baseline MSM models most often come first among the standard

volatility models while RV-LMSM comes first for a number of cases among the RV models and

mostly also dominates BMSM and LMSM.

Note also that both MSEs and MAEs are way higher throughout for the volatile period

compared to the tranquil period indicating lower predictability of asset price fluctuations in the

former.

For the German DAX (Table 6) overall patterns are not too different from those in the

French index. Some differences are that relative performance in the volatile period is even less

systematic than for the previous series, and that stochastic volatility shows a better performance

than before.

For the tranquil period, again FIGARCH and RV-ARFIMA are the uniformly best models.
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Over the complete sample, RV-LMSM performs mostly best under the MSE criterion, while

RV-ARFIMA is somewhat better under the MAE criterion.

In the case of the FTSE 100 (Table 7) both the volatile and tranquil subperiods show very

diffuse results across models and time horizons. For the complete sample, however, the emerging

patterns are close to those of the previous series. One particular feature is that BMSM and

LMSM perform mostly better than the other time series models and often even dominate models

based on RV.

Broadly similar results are obtained for the NYSE Composite (Table 8) and the S&P 500

(Table 9). Here TGARCH (model M3) appears as the best time series model in the volatile

period, while stochastic volatility dominates mostly for the tranquil period. In the volatile pe-

riod, there is no clear dominance of RV-based models over standard models, while the tranquil

period sees RV-ARFIMA followed closely by RV-LMSM dominating all standard models. For

the complete sample, RV-LMSM dominates over RV-ARFIMA under the MSE criterion and

vice versa for the MAE criterion. Note, however, that in contrast to the other markets, the

advantage of RV-based forecasts over standard models is less pronounced.

Tables 5 to 9 about here

6.2 Combined forecasts

A particular insight from the methodological literature on forecasting is that it is often preferable

to combine alternative forecasts in a linear fashion (cf. Granger (1989), Aiolfi and Timmermann

(2006)). In fact, a recent study by Patton and Sheppard (2009) shows that combining realized

volatility estimators could improve forecasting accuracy. In this study we address the issue of

forecast complementarities via combined forecasts. The forecast combinations are computed by

simple averaging which have been found to work well in relation to other more sophisticated

weighting methods (Newbold and Harvey, 2002).

The first forecast combination strategy considered is that of GARCH, TGARCH, LMSM and

SV models (C1). This combination strategy might allow us to analyze the complementarities
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that arise when combining forecasts of models that account for leverage effects, autoregressive

volatility, regime-switching, multifractality and ‘apparent’ long memory.

Forecast combination C2 considers complementarities of the models used for modeling RV

dynamics. The combination strategy C2 (RV-ARMA, RV-ARFIMA, RV-LMSM, RV-BNS)

could provide an indication of the complementarities that arise when combining models that

account for features such as autoregressive volatility, regime switching, multifractality and gen-

uine long memory.

The last set of forecast combinations considered is C3 which is designed to exploit comple-

mentarities between standard and realized volatility models. More precisely, the combination

strategy C3 (GARCH, BMSM, RV-LMSM, RV-BNS) considers complementarities between RV

and non-RV models that account for various features: long memory, autoregressive volatility,

regime-switching and multifractality.

As in the case of single models, we generally find lower MSEs and MAEs at short to medium

horizons, when they are computed with realized volatility as benchmark as opposed to squared

returns. Overall, however, we see very little improvement compared to single models, be it

standard time series models or RV-based models. Apparently, there is little gain in averaging

the forecasts from different volatility models for our samples. If anything can be said, it is that

the combination of RV-based models (C2) often provides better forecasts than combinations C1

and C3. Hence it seems that averaging the standard and RV-based models provides hardly any

gain, while RV models (single models or their averages) perform better than standard models

in most cases.

7 Conclusion

RV has been recently introduced in the volatility literature as an alternative way to measure and

model volatility. The RV-AR(FI)MA and RV-BNS models are some of the most popular models

used in the RV literature to model the dynamics of RV and to forecast future (realized) volatility.

In this article we propose the RV-LMSM model as a new alternative for modeling and forecasting

RV. The RV-LMSM model accounts for two important stylized facts of asset markets which the
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RV-BNS and RV-AR(FI)MA ignore: regime-switching and multifractality. We employ the RV-

LMSM model to forecast RV for 2 North American stock indices and 3 European stock indices.

We compare the forecasting capabilities of the RV-LMSM model against standard volatility

models. We also analyze complementarities between all models considered by means of forecast

combinations.

In most cases, we find that the RV-LMSM model performs better than non-RV models

((FI/T)GARCH, SV and MSM) in terms of MSEs for most stock indices and at most forecasting

horizons in the turbulent or the tranquil-turbulent periods. While RV-ARFIMA has the largest

number of cases in which it dominates, there is a certain number of instances in which the

RV-LMSM model seems to outperform the popular RV-ARFIMA model in terms of MSEs at

various forecasting horizons and for various stock markets in the turbulent and particularly over

the complete sample mixing turbulent and tranquil subperiods.

Our results also confirm that using RV as opposed to squared returns as indicators of true

volatility when evaluating forecasts errors usually leads to lower MSEs and MAEs particularly

at lower to medium horizons. This result sheds light on the importance of using RV estimates

when evaluating the forecasting capabilities of models as proposed in previous studies (Ander-

sen et al., 2005; Rossi and Gallo, 2006). Somewhat in contrast to other recent findings we

found that forecast combinations of alternative models (non-RV and RV) could hardly improve

upon forecasts of various single models. An interesting extension to this study would be to

consider multivariate volatility models (non-RV and RV) and apply them to our dataset for

performance comparisons. It would certainly also be worthwhile to explore other methods of

forecast combinations than simple model averaging. We leave these issues for future research.
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A Moments of the RV-LMSM model for GMM estimation and

best linear forecasting

In this section we summarize the closed-form solutions for selected moments for the estimation

of the LMSM model via GMM as provided in Lux (2008). Specifics about the derivation of these

moments not detailed here may be looked up in the latter paper. We employ these moments in

the derivation of the moment conditions for the RV-LMSM.

Consider the product of volatility components

θt =

k∏
i=1

M
(i)
t , (39)

and its logarithmic increments:

$t,T = ln(θt)− ln(θt−T ) =
k∑
i=1

(
m

(i)
t −m

(i)
t−T

)
, (40)

where m
(i)
t = lnM

(i)
t . The LMSM moments are:

E [$t+T,T$t,T ] = −
k∑
i=1

(
1− (1− γi)T

)2
ν2, (41)

E
[
$2
t+T,T$

2
t,T

]
=

k∑
i=1

(
1− (1− γi)T

)2
· 6ν4

+


k∑
i=1

(1− (1− γi)T
) k∑
j=1,j 6=i

(
1− (1− γj)T

) · 4ν4

+


k∑
i=1

(1− (1− γi)T
)2

k∑
j=1,j 6=i

(
1− (1− γj)T

)2

 2ν4, (42)

and

E
[
$2
t+T,T

]
=

k∑
j=1

(
1− (1− γi)T

)
· 2ν2, (43)
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with ν the estimated parameter of the normalized Lognormal distribution (cf. eq. 12).

Now recalling:

ζt,T = lnσR,t − lnσR,t−T = 0.5
k∑
i=1

(
m

(i)
t −m

(i)
t−T

)
,

we have:

ζt,T = 0.5$t,T .

It follows that

E [ζt+T,T ζt,T ] = 0.25 · E [$t+T,T$t,T ] , (44)

and

E
[
ζ2
t+T,T ζ

2
t,T

]
= 0.252 · E

[
$2
t+T,T$

2
t,T

]
. (45)

Inserting (41)-(43) in (44) and (45), we obtain the analytical expressions for the moment con-

ditions in (21) employed in the GMM estimation of the RV-LMSM model.

Best linear l-step forecasts of the quantity YR,t = σ2
R,t − σ̂2

R are constructed as

ŶR,n+l =
n∑
i=1

φ
(l)
niYR,n+1−i = φ(l)

n YR,n, (46)

where the vectors of weights φ
(l)
n = (φ

(l)
n1, φ

(l)
n2, ..., φ

(l)
nn)′ can be obtained from the analytical auto-

covariances of YR,t at lags l and beyond. More precisely, φ
(l)
n is any solution of Ψnφ

(l)
n = κ

(l)
n

where κ
(l)
n = (κ(l), κ(l + 1), ..., κ(l + n − 1))′ denotes the autocovariances of YR,t at lags l and

beyond and Ψn = [κ(i − j)]i,j=1,...,n is the variance-covariance matrix. The autocovariances of

YR,t are based on the LMSM moments:

E
[
θ2
t

]
= exp(2λ · k), (47)
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and

E [θt+T θt] =
k∏
i=1

{(
1− (1− γi)T

)
+ (1− γi)T exp (2 · λ)

}
. (48)

B Data issues

The dataset displays time gaps overnight, during weekends and holidays. The overnight gaps

hide a great amount of asset pricing information primarily originating from the East Asian

stock markets, which enters the American and the European markets at once starting with the

opening auctions. Visual inspection of the returns computed with the sample intervals of Table

1, indicates that the indices adjust similarly fast within at most 5 minutes after an overnight

gap, weekends or holidays. Therefore, we cleaned the effects of time gaps from the data by

removing returns of the first 5 minutes on every trading day.7

The estimation of RV models requires the use of equally long trading days. Thus, we re-

moved all trading days with missing observations over a period greater or equal to 1.5 hours.

Additionally, we deleted short trading days prior to holidays (Christmas, New Year, Thanksgiv-

ing Day and Independence Day). Some other data errors (simultaneous quotes, irregular quotes

and erroneous timestamps) were fixed at this stage.

Missing observations during less than 1.5 hours were treated for the 30 minutes price series by

means of interpolation (Dacorogna et al., 2001). This is the case when one or two consecutive

30-minute prices are missing. We employed three interpolation techniques in the following

order of priority: previous-tick interpolation, next-tick interpolation and linear interpolation.

Technical details can be provided upon request. Based on the clean 30 minutes price data, we

constructed the 30 minutes returns, the daily returns yt and daily realized volatility σ2
R,t to be

employed in our study.

7The second by second quotation of DAX starting in 2006 allows for a more accurate evaluation of time gap
effects. In this case we removed only the first 20 ticks on every trading day.
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index mean std skewness kurtosis

returns

CAC 40 -0.0006 0.0125 -0.0618 7.6014

DAX -0.0007 0.0137 -0.1220 8.6528

FTSE 100 -0.0004 0.0103 0.0737 14.0491

NYSE Composite 0.00002 0.0092 -0.4021 13.3989

S&P 500 -0.00006 0.0100 -1.8300 46.5143

standardized returns

CAC 40 -0.0094 0.9955 0.0532 2.5297

DAX 0.0124 0.9897 0.0449 2.4545

FTSE 100 -0.0103 1.0002 0.0203 2.5032

NYSE Composite 0.0894 1.1111 0.0388 2.3315

S&P 500 0.0479 1.0682 0.0378 2.3895

RV

CAC 40 0.0104 0.0067 2.4069 13.1623

DAX 0.0115 0.0074 2.4133 13.3184

FTSE 100 0.0080 0.0063 3.8197 28.9645

NYSE Composite 0.0066 0.0049 4.0298 30.5654

S&P 500 0.0074 0.0053 5.0396 57.0249

logarithmic RV

CAC 40 -4.7238 0.5536 0.2497 2.9202

DAX -4.6311 0.5638 0.1670 3.0483

FTSE 100 -5.0162 0.5826 0.6241 3.4441

NYSE Composite -5.1953 0.5546 0.5298 3.8464

S&P 500 -5.0577 0.5247 0.4851 3.8981

Table 2: Descriptive statistics for the index data
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Acronym Model

Standard

M1 FIGARCH(1,d,1)
M2 GARCH(1,1)
M3 TGARCH(1,1)
M4 BMSM
M5 LMSM
M6 SV

Realized

M7 RV-ARMA(p,0,q)
M8 RV-ARFIMA(1,d,1)
M9 RV-LMSM
M10 RV-BNS

Combinations

C1 M2, M3, M5, M6
C2 M7, M8, M9, M10
C3 M2, M4, M9, M10

Table 3: Alternative models
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BMSM LMSM RV-LMSM

Estimation Sample until July 2005

Market m̂0 σ̂L λ̂ σ̂L λ̂ σ̂R

DAX 1.192 1.193 0.021 1.194 0.050 1.632
(0.137) (0.079) (0.003) (0.079) (0.002) (—)

FTSE 100 1.200 0.529 0.050 0.529 0.054 0.307
(0.053) (0.014) (0.004) (0.029) (0.003) (—)

S&P 500 1.344 0.924 0.065 0.924 0.067 0.661
(0.048) (0.066) (0.002) (0.066) (0.003) (—)

CAC 40 1.286 1.189 0.042 1.189 0.049 1.238
(0.122) (0.079) (0.004) (0.079) (0.002) (—)

NYSE 1.219 0.784 0.028 0.784 0.074 0.473
Composite (0.087) (0.035) (0.002) (0.035) (0.003) (—)

Estimation Sample until July 2007

Market m̂0 σ̂L λ̂ σ̂L λ̂ σ̂R

DAX 1.200 1.307 0.050 1.320 0.043 1.962
(0.315) (0.090) (0.003) (0.089) (0.003) (—)

FTSE 100 1.204 0.513 0.021 0.513 0.038 0.287
(0.241) (0.019) (0.005) (0.019) (0.003) (—)

S&P 500 1.323 0.952 0.058 0.952 0.068 0.693
(0.054) (0.069) (0.002) (0.069) (0.002) (—)

CAC 40 1.368 1.232 0.075 1.232 0.044 1.543
(0.116) (0.100) (0.005) (0.100) (0.002) (—)

NYSE 1.162 0.809 0.020 0.809 0.070 0.496
Composite (0.122) (0.037) (0.002) (0.037) (0.002) (—)

Table 4: In-sample parameter estimates and standard deviations (in brackets) for the three
multifractal models employed in this study
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Standard Realized Combinations

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 C1 C2 C3

l Sample: July 2007 - April 2009

MSE

1 0.851 0.847 0.838 0.860 0.860 0.905 1.012 0.863 0.837 0.868 0.831* 0.840 0.832

0.691 0.670 0.607 0.694 0.691 0.787 1.013 0.613 0.636 0.582* 0.666 0.632 0.613

20 0.961 0.964 0.949 0.945 0.945 0.945 1.033 0.891* 0.913 0.923 0.939 0.919 0.925

0.902 0.911 0.909 0.903 0.903 0.905 1.052 0.877* 0.889 0.895 0.888 0.893 0.884

50 1.013 1.038 1.027 0.991 0.991 0.986* 1.042 0.995 0.989 0.995 0.998 0.994 0.988

0.989 1.016 1.012 0.975 0.975 0.961* 1.066 1.000 0.973 0.990 0.976 0.986 0.971

100 1.005 1.016 0.997 0.999 0.999 1.002 1.047 1.012 0.994* 1.004 0.999 1.010 0.995

1.004 1.024 1.001 1.003 1.002 1.012 1.076 1.059 1.002 1.007 1.002 1.026 0.998*

MAE

1 1.094 1.096 1.135 1.056 1.056 1.166 0.954* 1.094 1.061 1.101 1.094 1.018 1.069

0.794 0.795 0.788 0.750 0.749 0.904 0.999 0.734 0.721 0.758 0.772 0.693* 0.711

20 1.127 1.153 1.177 1.067 1.067 1.151 0.964* 1.078 1.065 1.043 1.122 1.019 1.067

0.937 0.963 0.992 0.890 0.890 0.974 1.042 0.888 0.870 0.874 0.923 0.845* 0.872

50 1.118 1.170 1.174 1.043 1.043 1.099 0.970* 1.073 1.056 1.012 1.104 1.011 1.046

1.015 1.077 1.078 0.950 0.950 0.997 1.057 0.995 0.951 0.968 0.998 0.931* 0.943

100 1.040 1.074 1.051 0.999 0.999 1.014 0.986* 1.021 1.005 0.996 1.023 0.988 1.001

1.003 1.042 1.011 0.985 0.985 0.993 1.096 1.070 0.995 1.005 0.993 1.008 0.981*

l Sample: July 2005 - July 2007

MSE

1 0.347 0.349 0.347 0.350 0.351 0.361 0.393 0.335* 0.343 0.348 0.340 0.344 0.341

0.104 0.103 0.104 0.102* 0.102* 0.138 0.183 0.108 0.119 0.109 0.102* 0.115 0.102*

20 0.371 0.389 0.393 0.381 0.385 0.383 0.412 0.356* 0.394 0.590 0.375 0.404 0.400

0.152 0.176 0.197 0.175 0.180 0.174 0.212 0.148* 0.193 0.456 0.164 0.205 0.202

50 0.400 0.455 0.469 0.427 0.433 0.409 0.436 0.386* 0.454 0.829 0.416 0.459 0.468

0.170* 0.245 0.277 0.219 0.226 0.196 0.231 0.172 0.254 0.766 0.202 0.263 0.274

100 0.442 0.593 0.582 0.486 0.493 0.453 0.472 0.431* 0.530 0.907 0.475 0.506 0.528

0.192* 0.400 0.400 0.274 0.285 0.225 0.253 0.201 0.336 0.868 0.250 0.301 0.334

MAE

1 0.341 0.356 0.363 0.385 0.387 0.409 0.478 0.334* 0.393 0.388 0.371 0.392 0.375

0.179 0.191 0.198 0.219 0.221 0.258 0.365 0.173* 0.242 0.228 0.202 0.239 0.208

20 0.357 0.402 0.425 0.439 0.446 0.420 0.495 0.341* 0.466 0.696 0.409 0.484 0.477

0.229 0.281 0.307 0.324 0.334 0.296 0.392 0.214* 0.359 0.647 0.283 0.379 0.372

50 0.382 0.487 0.520 0.495 0.505 0.447 0.515 0.347* 0.536 0.887 0.459 0.547 0.556

0.263 0.376 0.416 0.388 0.400 0.329 0.406 0.241* 0.438 0.864 0.343 0.449 0.462

100 0.406 0.632 0.641 0.555 0.566 0.481 0.536 0.352* 0.612 0.939 0.518 0.582 0.610

0.289 0.544 0.558 0.455 0.469 0.367 0.430 0.255* 0.525 0.925 0.410 0.488 0.522
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l Sample: July 2005 - April 2009

MSE

1 0.833 0.832 0.826 0.845 0.845 0.899 0.979 0.849 0.824 0.851 0.813* 0.826 0.818

0.671 0.649 0.593 0.667 0.664 0.754 0.966 0.607 0.625 0.568* 0.639 0.619 0.596

20 0.950 0.968 0.954 0.932 0.932 0.936 0.998 0.881* 0.899 0.917 0.927 0.903 0.912

0.890 0.913 0.916 0.886 0.887 0.890 1.001 0.861* 0.869 0.885 0.872 0.870 0.868

50 1.011 1.074 1.051 0.979 0.978 0.973* 1.014 0.988 0.975 0.991 0.992 0.976 0.976

0.989 1.060 1.046 0.961 0.961 0.940* 1.027 0.989 0.955 0.984 0.967 0.962 0.956

100 1.015 1.045 1.005 0.991 0.991 0.984 1.024 1.008 0.981* 1.000 0.992 0.992 0.986

1.023 1.071 1.018 0.993 0.993 0.991 1.045 1.051 0.983* 1.001 0.996 1.001 0.988

MAE

1 0.798 0.819 0.842 0.795 0.797 0.909 0.765* 0.795 0.803 0.824 0.820 0.775 0.799

0.553 0.568 0.567 0.543 0.543 0.686 0.734 0.514* 0.537 0.552 0.557 0.518 0.515

20 0.827 0.893 0.910 0.819 0.819 0.896 0.780* 0.795 0.837 0.907 0.855 0.813 0.837

0.664 0.732 0.760 0.670 0.673 0.735 0.766 0.629* 0.677 0.791 0.685 0.665 0.680

50 0.833 0.970 0.964 0.827 0.828 0.868 0.794* 0.803 0.860 0.961 0.867 0.835 0.856

0.744 0.885 0.883 0.738 0.741 0.764 0.791 0.724* 0.763 0.931 0.768 0.749 0.764

100 0.792 0.978 0.922 0.823 0.827 0.816 0.810 0.772* 0.855 0.973 0.833 0.833 0.848

0.764 0.935 0.881 0.786 0.791 0.761* 0.826 0.778 0.815 0.971 0.783 0.804 0.809

Table 5: MSE and MAE for CAC 40. The table displays the results of the rel-

ative MSE and MAE for each of the forecasting horizons l = 1, 20, 50, 100 mea-

sured against squared returns (above) and realized volatility (below). Models

- M1: FIGARCH - M2: GARCH - M3: TGARCH - M4: BMSM - M5: LMSM

- M6: SV - M7: RV-ARMA - M8: RV-ARFIMA - M9: RV-LMSM - M10:

RV-BNS. Combinations - C1: M2, M3, M5, M6 - C2: M7, M8, M9, M10 - C3:

M2, M4, M9, M10. Bold italics indicate the best models from groups M1 to

M6 and M7 to M10, respectively, for each time horizon and criterion. Bold

italics in the categories of combined models (C1 to C3) stand for improvements

against all single models. The best forecast for each time horizon and criterion

is also indicated by an asterisk.
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Standard Realized Combinations

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 C1 C2 C3

l Sample: July 2007 - April 2009

MSE

1 0.848 0.847 0.825 0.876 0.874 0.910 0.992 0.802 0.807 0.769* 0.848 0.810 0.810

0.735 0.701 0.627 0.719 0.712 0.800 0.979 0.590 0.622 0.548* 0.692 0.610 0.616

20 0.967 0.980 0.955 0.967 0.967 0.958 1.012 0.941* 0.942 0.948 0.955 0.949 0.950

0.972 1.013 0.949 0.943 0.942 0.925 1.027 0.916 0.911* 0.914 0.934 0.917 0.917

50 1.018 1.044 1.015 1.004 1.005 0.995* 1.020 1.014 0.995* 0.996 1.003 0.999 0.997

1.055 1.111 1.037 1.010 1.011 0.984* 1.041 1.024 0.992 0.992 1.014 0.998 0.995

100 1.015 1.025 1.017 1.013 1.014 1.011 1.025 1.045 1.004 1.000* 1.011 1.015 1.006

1.055 1.085 1.047 1.034 1.035 1.029 1.052 1.097 1.016 1.000* 1.037 1.034 1.018

MAE

1 1.069 1.073 1.050 1.023 1.024 1.059 0.938* 1.000 0.993 0.979 1.044 0.956 1.009

0.794 0.794 0.718 0.726 0.723 0.818 0.929 0.676 0.686 0.682 0.735 0.656* 0.685

20 1.111 1.145 1.082 1.042 1.045 1.025 0.946* 0.999 1.032 1.014 1.062 0.982 1.040

0.955 1.011 0.930 0.893 0.893 0.879 0.971 0.836 0.855 0.876 0.901 0.829* 0.867

50 1.101 1.159 1.052 1.018 1.020 0.999 0.957* 0.977 1.022 0.999 1.038 0.972 1.020

1.081 1.169 1.021 0.973 0.976 0.941 0.997 0.963 0.961 0.977 0.995 0.923* 0.963

100 1.056 1.105 1.005 0.994 0.995 0.983 0.975* 0.985 1.006 1.000 1.008 0.981 1.002

1.077 1.134 1.034 1.017 1.019 0.995* 1.035 1.083 1.005 0.999 1.026 0.999 1.007

l Sample: July 2005 - July 2007

MSE

1 0.409 0.415 0.406 0.412 0.411 0.440 0.487 0.405* 0.408 0.407 0.443 0.408 0.438

0.100 0.100 0.100 0.160 0.170 0.145 0.240 0.084* 0.111 0.099 0.164 0.107 0.167

20 0.444 0.463 0.452 0.476 0.478 0.480 0.512 0.442* 0.473 0.728 0.483 0.478 0.548

0.126 0.159 0.156 0.241 0.250 0.193 0.277 0.119* 0.210 0.605 0.210 0.221 0.331

50 0.451* 0.495 0.475 0.555 0.557 0.492 0.528 0.456 0.545 0.962 0.506 0.523 0.616

0.139 0.216 0.198 0.341 0.344 0.221 0.302 0.138* 0.321 0.945 0.245 0.289 0.431

100 0.503* 0.612 0.558 0.676 0.675 0.544 0.580 0.519 0.664 1.007 0.564 0.575 0.676

0.162* 0.345 0.277 0.482 0.481 0.253 0.341 0.168 0.478 1.010 0.291 0.335 0.497

MAE

1 0.403 0.418 0.411 0.457 0.456 0.465 0.586 0.377* 0.452 0.439 0.515 0.452 0.520

0.210 0.220 0.214 0.231 0.230 0.287 0.457 0.183* 0.276 0.250 0.357 0.273 0.366

20 0.419 0.457 0.453 0.554 0.557 0.485 0.602 0.373* 0.547 0.810 0.540 0.557 0.646

0.255 0.305 0.301 0.421 0.423 0.338 0.486 0.211* 0.416 0.762 0.405 0.428 0.545

50 0.434 0.519 0.510 0.640 0.641 0.504 0.619 0.364* 0.635 0.976 0.568 0.611 0.710

0.281 0.378 0.369 0.541 0.543 0.371 0.511 0.233* 0.532 0.970 0.441 0.502 0.629

100 0.465 0.631 0.593 0.754 0.756 0.545 0.652 0.384* 0.743 1.004 0.611 0.651 0.755

0.308 0.510 0.466 0.701 0.705 0.419 0.546 0.252* 0.662 1.006 0.489 0.543 0.677
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l Sample: July 2005 - April 2009

MSE

1 0.841 0.840 0.819 0.866 0.863 0.910 0.970 0.806 0.801 0.762* 0.841 0.806 0.803

0.720 0.689 0.620 0.691 0.657 0.785 0.924 0.593 0.604 0.527* 0.668 0.597 0.596

20 0.958 0.986 0.953 0.957 0.957 0.953 0.988 0.953 0.932* 0.947 0.948 0.944 0.941

0.938 1.018 0.939 0.910 0.908 0.900 0.969 0.909 0.881* 0.906 0.907 0.893 0.888

50 1.011 1.071 1.018 0.994 0.994 0.983* 1.001 1.017 0.985 0.996 0.996 0.989 0.988

1.026 1.163 1.037 0.979 0.979 0.951* 0.994 1.019 0.963 0.992 0.989 0.969 0.968

100 1.017 1.057 1.011 1.003 1.003 1.000 1.009 1.053 0.994* 1.000 1.004 1.004 0.998

1.047 1.157 1.030 1.005 1.004 0.995 1.011 1.098 0.990* 1.000 1.014 1.003 0.995

MAE

1 0.816 0.837 0.819 0.808 0.813 0.845 0.804 0.754* 0.793 0.777 0.817 0.766 0.793

0.561 0.578 0.531 0.538 0.526 0.617 0.726 0.473* 0.526 0.509 0.536 0.504 0.508

20 0.844 0.915 0.874 0.836 0.841 0.832 0.816 0.741* 0.855 0.940 0.845 0.819 0.856

0.667 0.763 0.703 0.670 0.673 0.673 0.758 0.588* 0.683 0.839 0.668 0.671 0.689

50 0.838 0.973 0.892 0.832 0.838 0.822 0.829 0.730* 0.880 0.991 0.843 0.833 0.867

0.753 0.926 0.811 0.739 0.746 0.721 0.787 0.678* 0.793 0.979 0.749 0.752 0.780

100 0.816 0.974 0.876 0.830 0.838 0.812 0.851 0.754* 0.902 1.002 0.833 0.850 0.870

0.771 0.954 0.829 0.781 0.790 0.748* 0.821 0.781 0.860 1.002 0.778 0.807 0.826

Table 6: MSE, MAE for DAX. For further notes see Table 5. Models - M1:

FIGARCH - M2: GARCH - M3: TGARCH - M4: BMSM - M5: LMSM - M6:

SV - M7: RV-ARMA - M8: RV-ARFIMA - M9: RV-LMSM - M10: RV-BNS.

Combinations - C1: M2, M3, M5, M6 - C2: M7, M8, M9, M10 - C3: M2, M4,

M9, M10.
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Standard Realized Combinations

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 C1 C2 C3

l Sample: July 2007 - April 2009

MSE

1 0.805 0.813 0.807 0.798 0.791 0.980 0.982 0.770 0.753 0.734* 0.823 0.778 0.761

0.672 0.664 0.662 0.649 0.623 0.966 0.970 0.625 0.598 0.566* 0.691 0.641 0.606

20 0.898 0.908 0.911 0.891 0.892 0.999 0.997 0.877* 0.888 0.972 0.912 0.929 0.901

0.841 0.859 0.871 0.831 0.830* 0.998 0.995 0.867 0.833 0.955 0.864 0.891 0.847

50 0.943 0.969 0.972 0.938 0.939 0.999 1.001 0.922* 0.941 0.999 0.956 0.966 0.947

0.908 0.949 0.953 0.899* 0.901 0.999 1.002 0.930 0.903 0.999 0.928 0.945 0.913

100 0.963 0.993 0.993 0.953 0.954 0.999 1.002 0.948* 0.955 1.000 0.974 0.981 0.964

0.944 0.990 0.989 0.929* 0.931 0.999 1.003 0.971 0.933 1.000 0.960 0.971 0.946

MAE

1 1.023 0.996 0.965 1.035 1.039 0.981 0.983 0.987 1.015 0.964 0.964 0.944* 0.999

0.625 0.601 0.571* 0.602 0.601 0.944 0.955 0.578 0.594 0.596 0.600 0.594 0.586

20 1.023 0.996 0.995 1.060 1.059 0.999 0.997 0.974* 1.063 0.984 0.992 0.977 1.013

0.721 0.747 0.746 0.734 0.734 0.996 0.990 0.742 0.732 0.917 0.737 0.780 0.719*

50 1.020 0.997 0.992 1.061 1.060 0.999 1.001 0.974* 1.056 0.999 1.000 0.985 1.015

0.802* 0.874 0.880 0.818 0.818 0.998 1.005 0.834 0.820 0.997 0.824 0.860 0.805

100 0.984 0.993 0.993 1.000 1.000 0.999 1.002 0.980* 0.997 1.000 0.983 0.983 0.986

0.866 0.968 0.966 0.844* 0.845 0.998 1.008 0.926 0.854 1.000 0.895 0.923 0.868

l Sample: July 2005 - July 2007

MSE

1 0.956 1.005 0.994 0.926 0.922 1.001 0.986 0.916 0.913 0.908* 0.952 0.923 0.918

0.949 0.955 0.945 0.728 0.664* 1.000 0.948 0.789 0.748 0.758 0.821 0.785 0.780

20 1.012 1.041 1.055 0.997 0.994 1.007 0.995 0.953* 1.010 0.994 1.005 1.003 1.000

1.036 1.091 1.187 1.036 1.042 1.020 0.989* 1.086 1.034 1.002 1.021 1.013 1.019

50 1.037 1.075 1.122 1.021 1.018 1.009 0.998 0.993* 1.029 0.999 1.031 1.019 1.017

1.075 1.156 1.332 1.050 1.048 1.026 0.992* 1.204 1.064 0.996 1.056 1.044 1.036

100 1.045 1.086 1.200 1.025 1.023 1.009 0.998* 1.014 1.034 0.998* 1.042 1.025 1.021

1.098 1.176 1.506 1.046 1.047 1.027 0.997 1.321 1.077 0.994* 1.070 1.068 1.043

MAE

1 1.001 0.999 1.128 1.030 1.030 0.980* 1.005 0.982 0.997 1.004 1.019 0.993 1.002

0.920 0.982 1.114 0.888 0.876 0.971 0.976 0.845 0.840* 0.863 0.904 0.858 0.863

20 0.990 1.024 1.174 1.050 1.048 0.981 1.007 0.964* 1.018 1.023 1.032 0.999 1.016

0.977* 1.078 1.301 1.055 1.058 0.985 0.998 0.990 1.001 1.007 1.025 0.977* 0.998

50 0.989 1.040 1.252 1.066 1.065 0.983 1.010 0.950* 1.017 1.013 1.051 0.990 1.017

1.023 1.174 1.471 1.117 1.114 0.995* 1.002 1.117 1.044 1.010 1.100 1.006 1.033

100 0.982 1.041 1.353 1.058 1.055 0.984 1.007 0.951* 1.003 1.008 1.063 0.979 1.005

1.037 1.207 1.628 1.110 1.107 0.999* 1.005 1.255 1.055 1.007 1.132 1.018 1.035
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l Sample: July 2005 - April 2009

MSE

1 0.863 0.854 0.852 0.797 0.796 0.997 0.991 0.780 0.758* 0.773 0.838 0.799 0.786

0.795 0.764 0.760 0.645 0.643 0.995 0.986 0.637 0.607* 0.624 0.735 0.671 0.649

20 0.901 0.902 0.931 0.890 0.890 1.001 0.994 0.863* 0.887 0.908 0.895 0.909 0.888

0.853 0.848 0.906 0.828* 0.828* 1.001 0.991 0.845 0.830 0.863 0.839 0.863 0.830

50 0.955 0.938 1.001 0.937 0.937 1.002 0.996 0.923* 0.940 0.974 0.938 0.960 0.940

0.925 0.899 1.003 0.897* 0.897* 1.003 0.994 0.930 0.900 0.957 0.898 0.934 0.901

100 0.954 0.951 0.983 0.952 0.952 1.002 0.998 0.958 0.953 0.994 0.946* 0.980 0.955

0.932 0.923 0.984 0.926 0.927 1.004 0.996 0.987 0.929 0.992 0.917* 0.970 0.931

MAE

1 1.127 1.035 1.195 1.031 1.032 0.995 0.992 1.000 1.012 0.977 1.028 0.957* 1.026

0.793 0.707 0.838 0.616 0.616 0.992 0.975 0.600* 0.608 0.607 0.672 0.612 0.628

20 1.152 1.062 1.279 1.055 1.056 0.999 0.995 0.985* 1.058 0.998 1.067 0.991 1.053

0.846 0.780 0.997 0.751 0.751 1.003 0.981 0.736* 0.746 0.764 0.767 0.752 0.745

50 1.164 1.060 1.328 1.056 1.056 1.001 0.997 0.979* 1.050 0.996 1.086 0.992 1.049

0.950 0.853 1.123 0.835 0.836 1.008 0.986 0.858 0.834 0.907 0.863 0.853 0.833*

100 1.078 1.005 1.247 1.003 1.003 1.001 0.998 0.987 0.997 0.995 1.036 0.984* 1.001

0.913 0.873 1.035 0.860* 0.860* 1.009 0.991 0.982 0.865 0.978 0.872 0.928 0.867

Table 7: MSE and MAE for FTSE 100. For further notes see Table 5. Models

- M1: FIGARCH - M2: GARCH - M3: TGARCH - M4: BMSM - M5: LMSM

- M6: SV - M7: RV-ARMA - M8: RV-ARFIMA - M9: RV-LMSM - M10:

RV-BNS. Combinations - C1: M2, M3, M5, M6 - C2: M7, M8, M9, M10 - C3:

M2, M4, M9, M10.
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Standard Realized Combinations

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 C1 C2 C3

l Sample: July 2007 - April 2009

MSE

1 0.692 0.686 0.650* 0.707 0.702 0.793 1.003 0.690 0.686 0.676 0.695 0.732 0.681

0.438 0.458 0.389* 0.472 0.461 0.651 1.005 0.489 0.499 0.503 0.461 0.557 0.455

20 0.858 0.830 0.823* 0.851 0.849 0.889 1.016 0.904 0.868 1.010 0.849 0.936 0.877

0.773 0.740 0.727* 0.775 0.772 0.825 1.028 0.842 0.788 1.017 0.764 0.889 0.798

50 0.952* 0.960 0.962 0.954 0.954 0.956 1.020 0.975 0.964 1.012 0.953 0.986 0.959

0.928* 0.947 0.944 0.945 0.945 0.934 1.035 0.961 0.951 1.020 0.932 0.976 0.938

100 0.976* 0.984 0.992 0.978 0.978 0.992 1.022 1.003 0.992 1.012 0.982 1.005 0.985

0.964* 0.979 0.990 0.978 0.979 0.990 1.037 1.009 0.993 1.020 0.976 1.009 0.980

MAE

1 0.975 0.987 0.961 0.979 0.978 1.028 0.996 0.929 0.932 0.900* 0.978 0.913 0.937

0.692 0.724 0.666 0.717 0.711 0.821 1.014 0.628 0.641 0.628 0.703 0.633 0.626*

20 1.028 1.040 1.012 1.045 1.045 1.044 1.008 0.998 1.010 1.004 1.028 0.978* 0.999

0.872 0.865 0.835* 0.899 0.898 0.912 1.041 0.855 0.854 1.022 0.865 0.873 0.838

50 1.034 1.052 1.021 1.067 1.068 1.021 1.011 1.000 1.025 1.006 1.031 0.994* 1.011

0.945 0.956 0.926 1.000 1.001 0.928 1.046 0.903* 0.935 1.024 0.937 0.922 0.913

100 1.023 1.021 1.006* 1.042 1.042 1.015 1.017 1.012 1.029 1.008 1.019 1.008 1.018

0.966 0.965 0.961* 1.002 1.002 0.967 1.053 0.991 0.989 1.026 0.965 0.990 0.967

l Sample: July 2005 - July 2007

MSE

1 0.832 0.823 0.810 0.817 0.816 0.831 0.816 0.803* 0.806 0.821 0.810 0.803* 0.819

0.431 0.429 0.429 0.415 0.414 0.421 0.400 0.345* 0.345* 0.399 0.403 0.353 0.449

20 0.878 0.881 0.867 0.855 0.854 0.858 0.834* 0.862 0.847 0.876 0.853 0.836 0.869

0.595 0.604 0.602 0.516 0.515 0.475 0.434 0.426 0.424* 0.623 0.527 0.434 0.597

50 0.918 0.945 0.912 0.877 0.876 0.872 0.843* 0.883 0.855 0.880 0.882 0.847 0.886

0.700 0.775 0.708 0.571 0.570 0.507 0.451 0.457 0.450* 0.633 0.599 0.457 0.640

100 0.943 0.987 0.924 0.883 0.882 0.870 0.848* 0.883 0.855 0.885 0.892 0.851 0.896

0.790 0.919 0.764 0.607 0.606 0.530 0.471 0.465* 0.465* 0.645 0.650 0.473 0.675

MAE

1 0.704 0.690 0.695 0.687 0.686 0.652 0.654 0.586* 0.597 0.655 0.682 0.617 0.719

0.488 0.470 0.477 0.473 0.472 0.431 0.439 0.327* 0.337 0.423 0.456 0.367 0.535

20 0.793 0.780 0.776 0.731 0.730 0.673 0.671 0.602* 0.637 0.822 0.737 0.670 0.802

0.665 0.641 0.646 0.570 0.569 0.481 0.473 0.378* 0.420 0.713 0.583 0.469 0.683

50 0.856 0.884 0.847 0.765 0.764 0.692 0.679 0.607* 0.652 0.823 0.783 0.678 0.824

0.762 0.803 0.758 0.625 0.624 0.515 0.486 0.398* 0.451 0.716 0.656 0.487 0.718

100 0.907 0.965 0.886 0.794 0.793 0.718 0.677 0.593* 0.657 0.824 0.822 0.677 0.841

0.841 0.934 0.820 0.669 0.668 0.556 0.497 0.389* 0.470 0.721 0.713 0.497 0.746

45



l Sample: July 2005 - April 2009

MSE

1 0.689 0.685 0.650* 0.733 0.728 0.797 1.003 0.687 0.688 0.680 0.700 0.732 0.688

0.433 0.459 0.391* 0.522 0.511 0.657 1.003 0.484 0.499 0.507 0.471 0.555 0.466

20 0.860 0.830 0.821* 0.863 0.861 0.891 1.016 0.896 0.870 1.010 0.852 0.933 0.883

0.774 0.744 0.728* 0.788 0.785 0.828 1.026 0.828 0.789 1.015 0.767 0.883 0.804

50 0.954* 0.964 0.962 0.955 0.956 0.957 1.020 0.974 0.966 1.011 0.954* 0.986 0.961

0.930* 0.957 0.946 0.942 0.943 0.936 1.034 0.958 0.952 1.018 0.934 0.975 0.940

100 0.979* 0.983 0.990 0.979* 0.979* 0.992 1.022 1.004 0.994 1.011 0.983 1.006 0.986

0.967* 0.980 0.987 0.976 0.977 0.989 1.037 1.010 0.994 1.019 0.977 1.009 0.981

MAE

1 0.934 0.949 0.926 0.938 0.937 0.976 0.944 0.878 0.881 0.863* 0.936 0.868 0.894

0.659 0.696 0.647 0.696 0.693 0.770 0.924 0.583* 0.594 0.598 0.672 0.591 0.598

20 0.994 1.010 0.984 0.994 0.995 0.995 0.957 0.943 0.954 0.976 0.987 0.932* 0.960

0.843 0.845 0.818 0.851 0.851 0.859 0.954 0.784* 0.790 0.974 0.829 0.810 0.802

50 1.009 1.043 1.005 1.013 1.016 0.979 0.963 0.947* 0.972 0.979 0.998 0.950 0.976

0.925 0.960 0.915 0.939 0.942 0.885 0.967 0.840* 0.872 0.979 0.906 0.863 0.876

100 1.006 1.019 0.991 1.001 1.002 0.975 0.969 0.956* 0.976 0.981 0.992 0.963 0.985

0.953 0.973 0.942 0.952 0.954 0.919 0.980 0.918* 0.926 0.984 0.936 0.927 0.930

Table 8: MSE and MAE for NYSE Composite. For further notes see Table 5.

Models - M1: FIGARCH - M2: GARCH - M3: TGARCH - M4: BMSM - M5:

LMSM - M6: SV - M7: RV-ARMA - M8: RV-ARFIMA - M9: RV-LMSM -

M10: RV-BNS. Combinations - C1: M2, M3, M5, M6 - C2: M7, M8, M9, M10

- C3: M2, M4, M9, M10.

46



Standard Realized Combinations

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 C1 C2 C3

l Sample: July 2007 - April 2009

MSE

1 0.708 0.695 0.650* 0.695 0.693 0.835 1.010 0.886 0.682 0.679 0.703 0.766 0.670

0.448 0.480 0.405* 0.467 0.461 0.739 1.014 0.825 0.524 0.564 0.483 0.652 0.467

20 0.864 0.844 0.835* 0.862 0.863 0.916 1.028 0.950 0.878 1.015 0.862 0.947 0.884

0.799 0.771 0.754* 0.802 0.803 0.880 1.041 0.950 0.822 1.022 0.797 0.925 0.827

50 0.961* 0.980 0.970 0.965 0.965 0.963 1.029 0.991 0.976 1.015 0.962 0.990 0.968

0.951* 0.989 0.965 0.961 0.959 0.951* 1.044 0.963 0.976 1.021 0.952 0.980 0.959

100 0.982* 0.985 0.990 0.989 0.989 0.996 1.031 0.991 1.004 1.015 0.988 1.003 0.993

0.977 0.990 0.990 0.992 0.991 0.997 1.045 0.959* 1.009 1.021 0.986 0.997 0.993

MAE

1 1.011 1.030 0.979 0.998 0.996 1.030 0.990 0.953 0.972 0.940 0.999 0.936* 0.968

0.730 0.773 0.685 0.722 0.716 0.853 1.022 0.801 0.693 0.694 0.721 0.704 0.656*

20 1.057 1.095 1.045 1.053 1.050 1.055 1.003 1.034 1.033 1.001 1.046 0.980* 1.014

0.917 0.949 0.887 0.918 0.915 0.952 1.057 1.054 0.899 1.025 0.903 0.917 0.872*

50 1.068 1.124 1.052 1.070 1.066 1.034 1.005 1.076 1.048 1.001* 1.051 1.005 1.030

0.996 1.061 0.969 1.004 0.997 0.958 1.058 1.055 0.979 1.025 0.971 0.947 0.945*

100 1.042 1.062 1.017 1.046 1.043 1.025 1.013 1.044 1.045 1.005* 1.031 1.012 1.030

0.998 1.033 0.972* 1.014 1.010 0.990 1.065 1.038 1.021 1.027 0.987 0.987 0.991

l Sample: July 2005 - July 2007

MSE

1 0.528 0.517 0.519 0.509 0.511 0.506 0.530 0.487 0.485* 0.538 0.507 0.496 0.505

0.173 0.164 0.182 0.152 0.152 0.175 0.225 0.132* 0.136 0.215 0.159 0.157 0.156

20 0.595 0.601 0.623 0.540 0.542 0.535 0.549 0.518* 0.518* 0.725 0.559 0.540 0.569

0.324 0.335 0.387 0.238 0.241 0.214 0.257 0.173* 0.188 0.554 0.272 0.237 0.291

50 0.679 0.769 0.770 0.577 0.580 0.546 0.559 0.523* 0.532 0.729 0.617 0.553 0.608

0.460 0.611 0.627 0.296 0.301 0.230 0.263 0.178* 0.212 0.557 0.366 0.253 0.352

100 0.779 1.019 0.904 0.611 0.616 0.554 0.558 0.516* 0.542 0.729 0.676 0.557 0.644

0.626 1.013 0.844 0.361 0.370 0.250 0.270 0.179* 0.240 0.561 0.469 0.269 0.419

MAE

1 0.543 0.527 0.554 0.512 0.514 0.497 0.578 0.446* 0.465 0.561 0.525 0.506 0.517

0.349 0.330 0.360 0.316 0.317 0.319 0.416 0.255* 0.273 0.386 0.330 0.318 0.324

20 0.657 0.652 0.691 0.574 0.578 0.517 0.605 0.461* 0.516 0.805 0.606 0.586 0.632

0.529 0.524 0.581 0.422 0.427 0.357 0.460 0.290* 0.345 0.728 0.465 0.433 0.497

50 0.749 0.822 0.832 0.629 0.634 0.539 0.612 0.472* 0.548 0.805 0.682 0.599 0.678

0.650 0.753 0.771 0.496 0.503 0.388 0.466 0.303 * 0.388 0.730 0.567 0.453 0.559

100 0.842 1.007 0.937 0.680 0.687 0.567 0.611 0.472* 0.577 0.806 0.752 0.609 0.722

0.776 1.003 0.913 0.567 0.575 0.424 0.474 0.310* 0.434 0.733 0.658 0.473 0.620
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l Sample: July 2005 - April 2009

MSE

1 0.706 0.693 0.648* 0.697 0.695 0.833 1.006 0.696 0.682 0.680 0.701 0.721 0.671

0.441 0.474 0.400* 0.471 0.464 0.733 1.006 0.527 0.521 0.562 0.479 0.580 0.465

20 0.864 0.843 0.835* 0.861 0.862 0.914 1.024 0.918 0.877 1.012 0.861 0.941 0.883

0.797 0.767 0.752* 0.799 0.800 0.875 1.034 0.875 0.819 1.017 0.793 0.909 0.824

50 0.962 0.981 0.968 0.966 0.965 0.963 1.027 0.986 0.975 1.013 0.961* 0.991 0.967

0.951 0.989 0.961 0.960 0.959 0.948* 1.039 0.978 0.973 1.018 0.949 0.987 0.957

100 0.983* 0.985 0.988 0.989 0.989 0.995 1.029 1.016 1.003 1.013 0.986 1.012 0.992

0.978* 0.989 0.985 0.992 0.991 0.995 1.041 1.023 1.007 1.018 0.984 1.016 0.991

MAE

1 0.919 0.934 0.896 0.906 0.904 0.927 0.909 0.859 0.874 0.867 0.907 0.855* 0.881

0.650 0.682 0.618 0.643 0.639 0.743 0.895 0.586* 0.607 0.632 0.641 0.591 0.589

20 0.980 1.012 0.977 0.963 0.962 0.952 0.927 0.901* 0.934 0.963 0.962 0.908 0.942

0.841 0.865 0.827 0.822 0.821 0.833 0.934 0.771* 0.789 0.963 0.817 0.803 0.799

50 1.008 1.070 1.009 0.990 0.989 0.944 0.932 0.906* 0.955 0.965 0.983 0.925 0.965

0.933 1.007 0.932 0.914 0.911 0.856 0.943 0.819* 0.870 0.967 0.897 0.850 0.876

100 1.003 1.050 1.000 0.978 0.977 0.940 0.939 0.917* 0.958 0.968 0.978 0.939 0.972

0.959 1.027 0.960 0.937 0.936 0.893* 0.957 0.896 0.918 0.972 0.929 0.911 0.927

Table 9: MSE and MAE for S&P 500. For further notes see Table 5. Models -

M1: FIGARCH - M2: GARCH - M3: TGARCH - M4: BMSM - M5: LMSM

- M6: SV - M7: RV-ARMA - M8: RV-ARFIMA - M9: RV-LMSM - M10:

RV-BNS. Combinations - C1: M2, M3, M5, M6 - C2: M7, M8, M9, M10 - C3:

M2, M4, M9, M10.
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