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Contributing or Free-Riding? A Theory of Endogenous Lobby 
Formation 
 
Summary 
We consider a two-stage public goods provision game: In the first stage, players 
simultaneously decide if they will join a contribution group or not. In the second stage, 
players in the contribution group simultaneously offer contribution schemes in order to 
influence the government’s choice on the level of provision of public goods. Using 
perfectly coalition-proof Nash equilibrium (Bernheim, Peleg and Whinston, 1987 JET), 
we show that the set of equilibrium outcomes is equivalent to an "intuitive" hybrid 
solution concept, the free-riding-proof core, which is always nonempty but does not 
necessarily achieve global efficiency. It is not necessarily true that an equilibrium lobby 
group is formed by the players with highest willingness-to-pay, nor is it a consecutive 
group with respect to their willingnesses-to-pay. We also show that the equilibrium 
level of public goods provision shrinks to zero as the economy is replicated. 
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1 Introduction

This paper considers a public goods provision problem in two stages with a
menu auction. The menu auction game by Bernheim and Whinston (1986)
is now commonly employed in political economy models with lobbying, es-
pecially in the field of international trade (Grossman and Helpman 1994).
Lobbying for protection within an industry can be considered a public good
provision model by way of lobbying. Since the provision of public goods af-
fects all players positively, there are free-riding motives among players. This
makes the lobby formation problem interesting. Our game goes as follows: in
the first stage, players decide if they will join a contribution group (a lobby),
and in the second stage, the participants offer their contribution schemes
(menus) to the government, and the government decides how much to pro-
duce dependent on the offered contribution schemes and the costs of public
goods provision. With this game, the questions we ask are: “what does
an equilibrium lobby group look like?” and “how efficient is the equilibrium
outcome?”
The set of Nash equilibria of our second stage game (a “common agency

game” or “menu auction game”) by Bernheim and Whinston (1986) is very
large and contains many unreasonable equilibria. In order to refine it, Bern-
heim and Whinston (1986) define a communication-based equilibrium con-
cept, coalition-proof Nash equilibrium (CPNE), and provide a nice
characterization of CPNE. In fact, since public goods provision involves
a coordination problem among players, it clearly makes sense to employ
communication-based refinement of Nash equilibria. To analyze our two stage
game, we employ perfectly coalition-proof Nash equilibrium (PCPNE),
which is a natural extension of CPNE to dynamic games (Bernheim, Peleg,
and Whinston 1987).
We characterize the PCPNEs of our game with a new hybrid solution

concept by utilizing the core in cooperative game theory. It is not a surprise
that there are connections between menu auction outcomes and the core.
Laussel and Le Breton (2001) show that in the class of comonotonic games,1

the generated cooperative games are convex, and the equivalence between
CPNE and the core holds. We add a lobby formation stage to Laussel and Le
Breton (2001), and characterize PCPNE in order to analyze a participation

1Preferences are comonotonic if for all pair of players i and j, and all pair of actions
a and a0, if i prefers a to a0, then j also prefers a to a0.
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problem. A free-riding-proof core allocation for coalition S (FRP-
Core allocation for S) is a core allocation achieved by contributor group
S in which no member i of S has an incentive to deviate unilaterally in
expectation of the public goods provision level becoming the efficient level
for group S\{i}. A free-riding-proof core for S (FRP-Core for S) is
the collection of all FRP-Core allocations for S. That is, FRP-Core for S is
the collection of all internally stable allocations (no lobby member free-rides
given the surplus allocation scheme). Note that it is easily possible to have an
empty FRP-Core for S if S is a large coalition. The free-riding-proof core
(FRP-Core) is the Pareto-efficient frontier of the union of FRP-Cores for all
S ⊆ N . That is, the FRP-Core is a collection of internally stable allocations
that are not Pareto-dominated by any other internally stable allocations.
Theorem 1 proves that PCPNE and FRP-Core are equivalent by heavily
utilizing the properties of the core in convex games by Shapley (1971).
This equivalence theorem is useful in analyzing the PCPNE of our game.

We fully analyze the set of FRP-Core allocations of a simple example in
which players differ only in their willingnesses-to-pay for a public good, and
show that (i) there can be many different equilibrium lobbies, (ii) an equi-
librium lobby might not include the highest willingness-to-pay player, and
(iii) the members of an equilibrium lobby might not be consecutive in their
willingnesses-to-pay.
Then, we analyze how equilibrium public goods provision is affected as

the economy gets larger. By following Milleron’s (1972) notion of replicating
a public goods economy,2 we prove that the equilibrium public good provision
levels converge to zero as economy gets larger (Theorem 2).
This paper is organized as follows. In the next two subsections, some re-

lated literature is discussed briefly. In Section 2, we provide our public goods
provision problem, then our game and the equilibrium concept, PCPNE, are
introduced. In a subsection, we also describe how a version of "Protection
for Sale" model by Grossman and Helpman can be treated in our game. In
Section 3, we define an intuitive hybrid solution concept, the free-riding-proof
core, and prove the equivalence between PCPNE and the free-riding-proof
core (Theorem 1). In Section 4, we provide an example that describes what

2Muench (1972), Milleron (1972) and Conley (1994) discuss the difficulty of replicating
a public goods economy and offer various possible methods. Milleron’s notion of replication
is to split endowments with replicates and adjust preferences so that agents’ concerns for
the private good are relative to the size of their endowments. This notion is employed by
Healy (2007).
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the free-riding-proof core looks like. In Section 5, we consider a replica econ-
omy and show that the public goods provision level shrinks to zero as the
economy is replicated in a certain way (Theorem 2). Section 6 concludes.
Appendix A provides useful properties of the core of convex games and an
algorithm that finds a core allocation starting with an arbitrary utility vector,
and Appendix B provides involved proofs.

1.1 Related Literature on Public Goods Provision

It is well known that the public goods provision is subject to free-riding in-
centives. Although Samuelson’s (1954) view of this problem was pessimistic,
Groves and Ledyard (1977) showed that efficient public goods provision can
be achieved in Nash equilibrium. Although the Groves-Ledyard mechanism
does not satisfy individual rationality, Hurwicz (1979) and Walker (1981)
succeeded in showing that the Lindahl mechanism is implementable. Subse-
quently, numerous mechanisms have been proposed to improve the properties
of mechanisms. However, they all assume that players have no freedom to
make participation decisions about the mechanism: players’ participation in
the mechanism is assumed.
Introducing outside opportunity by a “reversion function” (each outcome

is mapped to another outcome in the case of no participation), Jackson and
Palfrey (2001) analyze the implementation problem including participation
of all players when players’ participation in a mechanism is voluntary. They
extend the Maskin monotonicity condition to accommodate voluntary par-
ticipation condition. Although their reversion function is very general, it
assigns the same outcome regardless of who deviates from the original out-
come. Thus, the method may not be suitable for a public goods provision
problem since different players’ deviations from participation may generate
different outcomes. Taking this consideration into account, Healy (2007) an-
alyzes the implementation problem in a public goods economy demanding all
players’ participation in equilibrium of the game (equilibrium participation).
He shows that as the economy is replicated in Milleron’s sense (1972), the
outcomes of any mechanism that satisfies the equilibrium participation condi-
tion converge to the endowment. Although we also show that the equilibrium
public goods provision level converges to zero as the economy is replicated,
we allow some players not to participate in the lobby in equilibrium (and ef-
ficiency of public goods provision within the lobby group is achieved, unlike
in Healy 2007). Thus, Healy’s and our results are quite different from each
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other.
The most closely related paper to the current work is Saijo and Yamato

(1999), which is the first to consider a voluntary participation game with two
stages in a public goods economy without requiring all players’ participation
in equilibrium. They show a negative result on efficiency of public goods
provision, and then characterize subgame perfect equilibria in a symmetric
Cobb-Douglas utility case. In contrast, our domain is a quasi-linear utility
space, and we fully characterize the PCPNE of a menu auction (common
agency) game with a participation decision allowing heterogeneous players.3

In a binary public goods provision game with voluntary participation,
assuming symmetric players, Palfrey and Rosenthal (1984) show that all
pure strategy Nash equilibria are efficient (if contributions are not refundable
in case of no provision). With asymmetric players, there are many Nash
equilibria with different levels of cooperation. Maruta and Okada (2005)
analyze the evolutionarily stable equilibria among them. Shinohara (2007)
introduce two levels (one unit or two units) of public goods provision with
decreasing marginal benefits, and show in a homogeneous player model that it
becomes harder to support efficient allocations as the number of participants
needed to provide the second unit, when two units of public goods achieve
the efficiency. Our Theorem 2 has some similarity to this result.4

Le Breton and Salaniè (2003) analyze a common agency problem with
asymmetric information on agents’ preferences. They show that equilibria
can be inefficient even in the case where there is only one player in each
interest group.5 If there are multiple players in each interest group, then the

3Shinohara (2003) considers coalition-proof Nash equilibrium in the voluntary partici-
pation game by Saijo and Yamato (1999) with the Lindahl mechanism in the second stage.
He shows that there can be multiple coalition-proof Nash equilibria with different sets of
players participating in the mechanism in the heterogenous player case. One of our results
exhibits the same result but with a common agency game in the second stage (thus, payoff
allocation within lobby is flexible unlike in Shinohara 2003).

4Although the model and mechanism are very different from ours, Nishimura and Shi-
nohara (2007) consider a multi-stage voluntary participation game in a discrete multi-unit
public goods problem. They show that Pareto-efficient allocations are achieved in sub-
game perfect Nash equilibrium through a mechanism that determines public goods provi-
sion unit-by-unit. Their efficiency result depends crucially on the following assumption: a
player who did not participate in the mechanism in early stages can participate in public
goods provision later on.

5Laussel and Le Breton (1998) analyze public good case when the agent must sign
a contract of participation when all contribution schemes are proposed before knowing
her cost type (then Nature plays and the agent chooses an agenda). They show that all
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failure in internalizing the benefits of contributions within the group lowers
contributions even more. In this sense, Le Breton and Salaniè (2003) generate
free-riding incentives under compulsory lobby participation. In contrast, we
generate “free-riding” in a more obvious way by introducing participation
decisions.

1.2 Related Literature on International Trade

In their seminar paper, Grossman and Helpman (1994) consider an endoge-
nous trade policy formation problem in which industries can influence the
government’s trade policy through lobbying activities by applying a menu
auction (common agency) game defined by Bernheim and Whinston (1986).
In Grossman and Helpman (1994), players/principals are lobbies who repre-
sent industries, and the agent is the government. The government cares about
social welfare, while it also cares about flexible contribution money provided
by lobby groups. Each lobby contributes money to the government in order
to influence the government’s trade policy in its favor. Each lobby represents
one industry, and it prefers a high price for a commodity that is produced by
the industry, while preferring low prices for all other commodities.6 One of
their main results is that in equilibrium lobby powers cancel each other out,
and that the government chooses a free trade (no tariff) policy, it can collect
a large amount of contributions from conflicting industries.
Mitra (1999) endogenizes lobby participation using the Grossman-Helpman

model. In his model, lobby participation is decided by each industry, and
there is no free-riding incentive within the same industry. He shows that
Grossman-Helpman’s free trade result still holds if the government cares
about social welfare strongly or cares about contributions heavily. In con-
trast, Bombardini (2007) and Paltseva (2006) consider a case of oligopolistic
import competing industries in which many firms decide lobbying or free-
riding. Unlike Grossman and Helpman (1994) and Mitra (1999), these same-
industry firms have no conflict of interests over government policies like in
pure public goods provision problem. Introducing firms that differ in amount
of specific capital, Bombardini (2007) empirically investigates how protec-
tion levels differ across industries depending the distribution of firm sizes,
which introduces an individual fixed cost of participating in the lobby. She

equilibria are efficient, and there is no free-riding incentive.
6This is because lobbies representing industries are ultimately consumers.
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finds that industries characterized by a higher firm-size dispersion obtain a
higher level of protection. Although her empirical result is very interesting,
she assumes that the most efficient lobby group is formed. She assumes that
firms enter the lobby in the order of amount of capital: the highest capital
firm enters contributing to maximize its benefit, then the second highest firm
enters adding contribution to achieve efficiency, and so on until the efficiency
benefit of adding a firm becomes lower than the firm’s individual cost of lobby
participation. Indeed, by an example, we show that in equilibrium, it is not
necessary that the equilibrium lobby includes the most efficient firm, nor is
it necessary that the equilibrium lobby is consecutive. In contrast, assuming
symmetric firms and focusing on symmetric outcomes among lobby partic-
ipants in a menu auction (common agency) game, Paltseva (2006) consider
the Nash equilibrium of a lobby participation game to analyze free-riding in-
centives. Our paper is closest to Paltseva’s, but we allow asymmetric players
and asymmetric contributions, and characterize all PCPNEs. Due to trans-
ferable utilities, we need to employ a more sophisticated equilibrium concept
than Nash equilibrium in the participation stage if the symmetry assumption
is dropped. This is why we use PCPNE as our solution concept.

2 The Model

In this section, we consider a case in which all players’ interests lie in the
same direction, while the intensity of their interests can be heterogeneous.
We first describe the problem, then propose a hybrid solution concept: the
free-riding-proof core.

2.1 Public Goods Provision Problem with Voluntary
Participation

A stylized public goods model is defined as follows: Public goods are one-
dimensional, and the public goods provision level is denoted by a ∈ A = R+.7
Public goods provision cost function C : A → R+ is continuous and strictly
increasing with C(0) = 0. The government provides public goods, and public
goods provision cost is regarded as the government’s disutility from providing

7For our equivalence result (Theorem 1), we need only comonotonic preferences over ab-
stract agenda set A. The extension is straightforward. We chose to use the one-dimensional
public goods economy for simplicity.
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public goods. That is, the government’s utility from providing a units of
public goods is written as vG(a) = −C(a). Player i’s utility function is
quasi-linear in private goods net consumption x and is written as vi(a)− x,
where vi : A→ R+ is an strictly increasing function with vi(0) = 0. In order
to guarantee the existence of a non-zero solution, we assume that (i) there
exists ã ∈ A such that vi(ã)−C(ã) > 0 for all i ∈ N , and (ii) there is â ∈ A
such that

P
i∈N vi(a) − C(a) < 0 for all a > â. The only new element is

that the consumer has a choice between participating in contributing to the
public goods provision and free-riding.

2.2 Lobby Formation Game

In this section, we analyze an equilibrium lobby group and its allocation.
Note that we are not only talking about coalition-proof Nash equilibrium
allocation in the menu auction stage. We also require that the lobby group
formation itself is coalition-proof. To do so, we first need to define the first-
stage lobby-formation game in an appropriate manner, assuming that the
outcome of each possible lobby S is a coalition-proof Nash equilibrium of a
common agency game played by S. As an extension of CPNE in strategic
form games to extensive form games, Bernheim, Peleg, and Whinston (1987)
provide a definition of coalition-proof Nash equilibrium for multi-stage games,
perfectly coalition-proof Nash equilibrium (PCPNE). The first-stage lobby-
formation game is such that N is the set of players, and player i’s action
set is a list Σ1i = {0, 1}: i.e., player i announces her participation decision,
where 0 and 1 represent non-participation and participation, respectively.
Once action profile σ1 = (σ11, ..., σ

1
n) ∈ Σ1 = Πj∈NΣ

1
j is determined, the

lobbying game then takes place in the second stage with the set of active
players S(σ1) = {i ∈ N : σ1i = 1}.8
The second-stage game is amenu auction game (or a common agency

game) played by participating principals S(σ1) (Bernheim and Whinston
1986). Thus, N\S(σ1) is the set of passive free-riders. Each player i ∈ S(σ1)
simultaneously offers a contribution scheme σ2i : A→ R+. Given the profile

8Note that there will be a single coalition lobbying for public goods provision. In
contrast, Ray and Vohra (2001) analyze a dynamic coalition bargaining of a public goods
provision problem with multiple resulting coalitions. For detailed surveys on coalition
formation problems with multiple coalitions (and externalities), see Bloch (1997) and Ray
(2007). We do not allow multiple lobbying groups having multiple agents (such as local
governments), since the analysis would become exceedingly complicated in such a case.
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of contribution schemes σ2S(σ1), the government G (an agent) chooses a public
goods provision level a ∈ A in order to maximize its net payoff:

uG(a; (σ
2
i (a))i∈S(σ1)) =

X
i∈S(σ1)

σ2i (a) + vG(a)

=
X

i∈S(σ1)

σ2i (a)− C(a),

where the first term of the RHS is the contribution revenue and the second
term is the cost of public goods provision. If the government chooses a ∈ A,
then player i gets payoff

ui(a;σ
2
i (a)) = vi(a)− σ2i (a),

for i ∈ S(σ1), and
ui(a) = vi(a),

for i /∈ S(σ1). The government’s optimal choice is described by

a∗(S, σ2S(σ1)) ∈ argmax
a∈A

uG(a; (σ
2
i (a))i∈S(σ1)).

In the game, the government is not a player: it is just a machine that maxi-
mizes its payoff given the contribution schemes.9

2.2.1 Example: Grossman-HelpmanModel with a Single Industry

Here, we show how the above game can accommodate a single-industry ver-
sion of the "Protection for Sale" model by Grossman and Helpman (1994).
Suppose that there is only one import competing industry with n firms in a
small open country. Firms produce a homogenous commodity, and the gov-
ernment can provide a tariff protection to the industry. The world price and
specific tariff rate for the commodity are denoted by p and t, respectively.
Thus, the domestic price of the commodity is p̃ = p + t. Each firm i has
a (reduced-form) profit function πi(p̃), which is a strictly increasing in p̃.

9Strictly speaking, since the government may have multiple optimal policies, we need to
introduce a tie-breaking rule. However, it is easy to show that the set of truthful equilibria
(see below) would not depend on the choice of tie-breaking rules.
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The government cares about both contribution money and the social welfare
(total surplus). The social welfare W (p, t) is defined by

W (p, t) = CS(p̃) +
X
i∈N

πi(p̃) + t

Ã
D(p̃)−

X
i∈N

qi(p̃)

!
,

where CS(p̃) denotes a consumer surplus that is decreasing in p̃, and D(p̃)
and qi(p̃) denote a consumer demand and firm i’s supply, respectively. The
contents of the parenthesis show the amount of import, and the last term
describes the tariff revenue. This expression can be rewritten as

W (p, t) =W (p, 0)−DWL(t; p),

where DWL(t; p) denotes the deadweight loss (see Figure 1). Note that
the world price p is fixed: thus, W (p, 0) is nothing but a constant. Thus,
the government’s payoff function can be written as vG(t) = −DWL(t; p) by
notmalizing W (p, 0) = 0. Similarly, firm i’s utility function can be written
as vi(t) = πi(p̃)− πi(p) by normalizing it.
Now we are ready to rewrite the problem in our notations. Among the set

of firms N , let S be the set of lobby participants and others are free-riders.
Lobby participant firm i’s contribution scheme is τ i : T → R+, where T = R
is the set of possible tariff rates. The government’s payoff function is

uG(t; (τ i(t))i∈S) =
X
i∈S

τ i(t) + vG(t)

=
X
i∈S

τ i(t)−DWL(t),

Firm i’s payoff function is

ui(t; τ i(t)) = vi(t)− τ i(t)

= πi(p+ t)− πi(p),

for i ∈ S, and
ui(t) = vi(t),

for i /∈ S. Thus, the "Protection for Sale" model with a single industry is
described by our public good model. By letting t = a, DWL(t) = C(a),
and πi(t) = vi(a). We endogeneize firms’ lobby participation decision in

10
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our game. Paltseva’s (2007) game is a symmetric firm version of this game
with symmetric contribution scheme. Although Bombardini (2007) does not
model firms’ entry decision to the lobby as a game, the rest is the same as
the above lobbying game except that she assumes costly entry to the lobby.10

2.3 Perfectly Coalition-Proof Nash Equilibrium in the
Lobby Participation Game

Now, we will define PCPNE for our two-stage game following Bernheim, Pe-
leg, and Whinston (1987). Player i’s strategy σi = (σ

1
i , σ

2
i ) ∈ Σi = Σ1i × Σ2i

is such that σ1i ∈ Σ1i denotes i’s lobby participation choice, and σ2i ∈ Σ2i is a
function σ2i : S(i) → Σ2i if σ

1
i = 1, where S(i) = {S ∈ 2N : i ∈ S}.11 Each

player’s payoff function is ui : Σ→ R, which is the same payoff function of the
lobbying game when lobby group S is determined by S(σ1). For T ⊆ N , con-
sider a reduced game Γ(T, σ−T ) that is a game with players in T by letting
players in N\T be passive players in Γ, who always play σ−T . We also con-
sider subgames for all σ1 ∈ Σ1, and reduced subgames Γ(T, σ1, σ2−T ) in
similar ways. A perfectly coalition-proof Nash equilibrium (PCPNE)
(σ∗, a∗) = ((σ1∗i , σ

2∗
i )i∈N , a

∗) is defined recursively as follows:12

(a) In a single-player, single-stage subgame Γ({i},Σ2i , σ1, σ2−{i}), the strat-
egy σ2∗i ∈ Σ2i and the agenda chosen by the agent a

∗ is a PCPNE if
σ2∗i maximizes ui via a∗.

(b-1) Let (n, 2) be the numbers of players and stages of games. Pick any
pair of positive integers (m, r) ≤ (n, 2) with (m, r) 6= (n, 2).13 For all
T ⊆ N with |T | ≤ m, assume that PCPNE has been defined for all

10Our Theorem 1 holds even with individual entry costs for the lobby.
11For notational simplicity, we trivially include second-stage strategies by non-

participants in the strategy profile. Of course, such a non-participant’s second-stage strat-
egy σ2i is absolutely irrelevant to the outcome, since the government does not receive
money from her.
12Note that in Bernheim, Peleg, and Whinston (1987), the definition of PCPNE is based

on strictly improving coalitional deviations. However, we adopt a definition based on
weakly improving coalitional deviations, since the theorem on menu auction in Bernheim
and Whinston (1986) uses CPNE based on weakly improving deviation. For details on
these two definitions, see Konishi, Le Breton, and Weber (1999).
13The numbers n and t represent the numbers of players and stages of a reduced (sub)

game, respectively.
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reduced games Γ(T, σ−T ) and their subgames Γ(T, σ1, σ2−T ) (if r = 1,
then only for all reduced subgames Γ(T, σ1, σ2−T )). Then,

(i) for all reduced games Γ(S, σ−S) and their subgames Γ(S, σ1, σ2−S)
with |S| = n, (σ∗, a∗) ∈ Σ × A is perfectly self-enforcing if
for all T ⊂ S we have (σ∗T , a

∗) is a PCPNE of reduced game
Γ(T, σ∗S\T , σ−S), and σ

2∗
T is a PCPNE of reduced subgame Γ(T, σ

1, σ2∗S\T , σ
2
−S),

and

(ii) for all S ⊆ N with |S| = n, (σ∗S, a
∗) is a PCPNE of reduced

game Γ(S, σ−S) if (σ∗S, a
∗) is perfectly self-enforcing in reduced

game Γ(S, σ−S), and there is no other perfectly self-enforcing σ0S
such that ui (σ0S, σ−S) ≥ ui (σ

∗
S, σ−S) for every i ∈ S with at least

one strict inequality.

(b-2) Let (n, 1) be the numbers of players and stages of games. Pick any
positive integer m < n. For any T ⊆ N with |T | ≤ m, assume that
PCPNE has been defined for all reduced subgames Γ(T, σ1, σ2−T ). Then,

(i) for all reduced subgame Γ(S, σ1, σ2−S) with |S| = n, (σ∗, a∗) ∈
Σ × A is perfectly self-enforcing if for all T ⊂ S we have
(σ2∗T , a

∗) is a PCPNE of reduced subgame Γ(T, σ1, σ2∗S\T , σ
2
−S), and

(ii) for all S ⊆ N with |S| = n, (σ2∗S , a
∗) is aPCPNE of reduced game

Γ(S, σ1, σ−S) if (σ2∗S , a
∗) is perfectly self-enforcing in reduced sub-

game Γ(S, σ1, σ−S), and there is no other perfectly self-enforcing
σ20S such that ui

¡
σ1, σ20S , σ

2
−S
¢
≥ ui

¡
σ1, σ2∗S , σ

2
−S
¢
for every i ∈ S

with at least one strict inequality.

For any T ⊆ N and any strategy profile σ, let PCPNE(Γ(T, σ−T )) de-
note the set of PCPNE strategy profiles on T for the game Γ(T, σ−T ). For
any strategy profile (σ, a), a strategic coalitional deviation (T, σ0T , a

0) from
(σ, a) is credible if (σ0T , a

0) ∈ PCPNE(Γ(T, σ−T )). A PCPNE is a strategy
profile that is immune to any credible coalitional deviation. An outcome al-
location for (σ∗, a∗) is a list (S, a∗, u) ∈ 2N ×A×RN ×R, where S = S(σ1∗)
and (u, uG) is the resulting utility allocation for players.
There are two remarks to be made on PCPNE. First, if a coalition T

wants to deviate in the first stage, within the reduced game Γ(T, σ−T ) (thus
keeping the outsiders’ strategy profile fixed), it can orchestrate the whole
plan of the deviation by assigning a new CPNE to each subgame so that
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the target allocation (by the deviation) would be attained as PCPNE of the
reduced game Γ(T, σ−T ).
Second, note that the definition of PCPNE coincides with coalition-proof

Nash equilibrium (CPNE) in the (static) second stage. Thus, a CPNE needs
to be assigned to each subgame. There are useful characterizations of CPNE
of a menu auction (common agency) game in the literature. Bernheim and
Whinston (1986) introduced a concept of truthful strategies, where τ i is
truthful relative to ā if and only if for all a ∈ A either vi(a) − σ2i (a) =
vi(ā) − σ2i (ā), or vi(a) − σ2i (a) < vi(ā) − σ2i (ā) and σ2i (a) = 0. A truthful
Nash equilibrium (σ2∗S , a

∗) is a Nash equilibrium such that σ2∗i is truthful
relative to a∗ ∈ A for all i ∈ S. Bernheim and Whinston (1986) showed that
(i) every truthful equilibrium is a CPNE, and that (ii) the set of truthful equi-
libria and that of CPNE in utility space are equivalent, and provided a nice
characterization of CPNE in utility space. Laussel and Le Breton (2001) fur-
ther analyzed CPNE in utility space. One of many results in Laussel and Le
Breton (2001) provided a beautiful characterization of CPNE under a special
(yet very useful) property, a comonotonic payoff property: ui(a) ≥ ui(a

0)
if and only if uj(a) ≥ uj(a

0) for all i, j ∈ S and all a, a0 ∈ A. Obviously, this
property is satisfied in our public goods provision problem.

Fact. (Laussel and Le Breton 2001) Consider a menu auction (common
agency) problem Γ = (A, S, (Σ2i , vi)i∈S, C) with a comonotonic payoff prop-
erty. Then, in all CPNEs of the menu auction game, G obtains uG =
maxa∈A−C(a) (no rent property), and the set of CPNE in utility space is
equivalent to the core of the characteristic function game (Ṽ (T ))T⊆S, where
Ṽ (T ) = V (T )− uG = maxa∈A

¡P
i∈S vi(a)− C(a)

¢
− uG.14

3 The Main Result

Now, we will characterize PCPNE. To do so, we first define an intuitive
hybrid solution concept, free-riding-proof core (FRP-core), which is the set
of Foley-core allocations15 that are immune to free-riding incentives and are

14In the public goods provision problem, uG = −C(0) = 0, thus Ṽ (T ) = V (T ) for all
T ⊆ S. A payoff vector uS = (ui)i∈S is in the core iff

P
i∈S ui = V (S), and

P
i∈T ui ≥

V (T ) for all T ⊂ S.
15The Foley core of our public good economy is the standard core concept assuming

that deviating coalitions have to provide public goods by themselves. That is, it assumes
that there is no spillover of public goods across the groups.
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Pareto-optimal in a constrained sense. The FRP-core is always nonempty in
the public goods provision problem.
A public goods provision problem determines two things: (i) which group

provides public goods and how much, and (ii) how to allocate the benefits
from providing public goods among the members of the group (or how to
share the cost). Let S ⊆ N with S 6= ∅. For T ⊆ S, let

V (S) ≡ max
a∈A

"X
i∈S

vi(a)− C(a)

#
,

and

a∗(S) ≡ argmax
a∈A

"X
i∈S

vi(a)− C(a)

#
.

An allocation for S is (S, a, u) such that u ∈ RN
+ ,
P

i∈S ui ≤
P

i∈S vi(a)−
C(a), and uj = vj(a) for all j /∈ S (utility allocation). An efficient al-
location for S is an allocation (S, a, u) such that

P
i∈S ui = V (S) with

a = a∗(S).16 That is, N\S are passive free-riders, and they do not con-
tribute at all. Given that S is the lobby group, a natural way to allocate
utility among the members is to use the core (Foley 1970). A core allocation
for S, (S, a∗(S), u), is an efficient allocation for S such that

P
i∈T ui ≥ V (T )

holds for all T ⊆ S.
However, a core allocation for S may not be immune to free-riding in-

centives by its members of S. So we will define a hybrid solution concept of
cooperative and noncooperative games. A free-riding-proof core alloca-
tion for S (FRP-core allocation for S) is a core allocation (S, a∗(S), u)
for S such that

ui ≥ vi(a
∗(S\{i})) for all i ∈ S.

A FRP-core allocation for S is immune to unilateral deviations by the mem-
bers of S. Note that, given the nature of public goods provision problem, we
can allow a coalitional deviation from S at no cost (since one-person devia-
tion is the most profitable). Let CoreFRP (S) be the set of all free-riding-proof
core allocations for S. Note that CoreFRP (S)may be empty for a large group
S, while for small groups it is nonempty (especially, for singleton groups it is
always nonempty). We collect free-riding-proof core allocations for all S, and

16Note that we have V (S) =WΓ(S)−WΓ(∅) in our public good provision problem.
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take their Pareto frontiers: the set of free-riding-proof core (FRP-core)
is defined as

CoreFRP =
©
(S, a∗(S), u) ∈ ∪S0∈2NCoreFRP (S0) :
∀T ∈ 2N , ∀u0 ∈ CoreFRP (T ), ∃i ∈ N with ui > u0i

ª
.

That is, an element of CoreFRP is a free-riding-proof core allocation for some
S that is not weakly dominated by any other free-riding-proof core allocation
for any T . Note that CoreFRP is not a subsolution of Core(N): it only
achieves constrained efficiency due to free-riding incentives, since we often
have CoreFRP (N) = ∅. Note that there always exists a free-riding-proof core
allocation, since for all singleton sets S = {i}, CoreFRP (S) is nonempty.

Proposition 1. CoreFRP 6= ∅.

Now, we will characterize PCPNE by the FRP-core. In the public goods
provision problem, the above fact (Laussel and Le Breton 2001) says that
the second-stage CPNE outcomes coincide the set of all core allocations
of a characteristic function form game for S: (V (T ))T⊆S with V (S) =
maxa∈A

¡P
i∈T vi(a)− C(a)

¢
.17 This is nothing but Foley’s core in a pub-

lic goods economy for S (Foley 1970). This gives us some insight in our
two-stage noncooperative game. First, for each subgame characterized by
S0 = S(σ10), the utility outcome uS0 must be in the core of (V (T ))T⊆S0.
Second, given the setup of our lobby-formation game in the first stage, if a
CPNE outcome u in a subgame S can be realized as the equilibrium out-
come (on-equilibrium path), it is necessary to have u ∈ CoreFRP (S), since
otherwise, some member of S would deviate in the first stage obtaining a
secured free-riding payoff. This observation is useful in our analysis in the
equivalence theorem. With some constructions, we can show the following:

Proposition 2. If an allocation (S, a∗(S), u) is in the FRP-core, then there
is a PCPNE σ of which outcome is (S, a∗(S), u).

We postpone the proof of Proposition 2 to Appendix B (with useful pre-
liminary analyses in Appendix A), since it is quite involved. Here, we only

17Actually, with no rent property, CPNE and strong Nash equilibrium (Aumann 1959,
but with weakly improving deviations) are equivalent in a menu auction (common agency)
game. See Konishi, Le Breton, and Weber (1999).
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describe how to construct PCPNE σ. First, in defining σ, we need to as-
sign a CPNE utility profile to every subgame that corresponds to a coalition
S ⊆ N (although this does not happen in equilibrium, it matters when de-
viations are considered). Since the second-stage strategy profile is described
by utility allocations assigned in each subgame, we partition the set of sub-
games S = {S ∈ 2N : S 6= ∅} into three categories: Case 1. on equilib-
rium path S1 = {S∗}, Case 2. S2 = {S ∈ S : S ∩ S∗ = ∅}, and Case 3.
S3 = {S ∈ S\S1 : S ∩ S∗ 6= ∅}. As is shown in Laussel and Le Breton
(2001), a CPNE outcome in a subgame S0 corresponds to a core alloca-
tion for S0. To support the on-equilibrium path (S∗, a∗(S∗), u∗) ∈ CoreFRP

by a PCPNE, we need to show that there is no credible deviation in the
first stage. This require careful assignments of core allocations to all sub-
games. We prove Proposition 2 by contradiction. Suppose that there is
a credible deviation T from S∗, which achieves lobby S0 after the devia-
tion. Then, for all members of T , both profitability of deviation and free-
riding-proofness are satisfied. Thus, for all players i ∈ T , the post devia-
tion payoff u0i must satisfy u0i ≥ ūi = max{u∗i , vi(S0\{i})}. The key case is
S0∩S∗ 6= ∅, and we show that if there were such a deviation, there is an allo-
cation (S0, a∗(S0), u0) ∈ CoreFRP (S0) that Pareto-dominates (S∗, a∗(S∗), u∗).
This contradicts with the assumption (S∗, a∗(S∗), u∗) ∈ CoreFRP . Pareto-
domination is shown by using the fact that the utility allocation assigned to
subgame S0 under σ is a core allocation, and we construct a core allocation
by an algorithm that is provided in Appendix A.
Once this direction is proved the other direction is trivial. Notice that

PCPNE requires free-riding-proofness. Every PCPNE must be a free-riding-
proof core allocation for some S. Since CoreFRP is the Pareto-frontier of
∪S⊆NCoreFRP (S), Proposition 2 actually proves that all Pareto-dominated
free-riding-proof core allocations for S can be defeated by a free-riding-proof
core allocation.

Theorem 1. An allocation (S, a∗(S), u) is in the FRP-core if and only if
there is a PCPNE σ of which outcome is (S, a∗(S), u).

Proof. We will show the other direction of Proposition 2: every PCPNE
σ generates a free-riding-proof core allocation as its outcome. It is easy to
see that the outcome (S, a∗(S), u) of a PCPNE σ is a FRP-core allocation
for S, since otherwise the resulting allocation will not be a subgame perfect
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Nash equilibrium. Thus, (S, a∗(S), u) ∈ CoreFRP (S). Suppose to the con-
trary that u /∈ CoreFRP . Then, there is an free-riding-proof core allocation
(S0, a∗(S0), u0) ∈ CoreFRP with u0 > u. Consider a coalitional deviation with
a grand coalition N by preparing a PCPNE σ0 that achieves u0. There is
such a σ0 by Proposition 2. This implies that there is a credible coalitional
deviation from σ. This is a contradiction. Thus, every PCPNE achieves a
free-riding-proof core allocation.¤

Note that this result crucially depends on the "comonotonicity of pref-
erences" (Laussel and Le Breton, 2003), and perfectly nonexcludable public
goods (free riders can enjoy public goods perfectly). Without these assump-
tions, the above equivalence may not hold. Although the FRP-core is much
easier to understand than PCPNE, it may still not be clear what the FRP-
core looks like. In the next section, we will use a simple example to illustrate
the properties of free-riding-proof core allocations, and thus the outcome of
PCPNE.

4 Examples: Linear-Utility and Quadratic-
Cost Case

Let vi(a) = θia for all i ∈ N and C(a) = 1
2
a2, where θi > 0 is a parame-

ter.18 With this setup, for group S, the optimal public goods provision is
determined by the first-order condition

P
i∈S θi − a = 0: i.e.,

a∗(S) =
X
i∈S

θi.

Thus, the value of S is written as

V (S) =
X
i∈S

θi

ÃX
i∈S

θi

!
− 1
2

ÃX
i∈S

θi

!2

=

¡P
i∈S θi

¢2
2

.

18Coefficient 1/2 of C(a) function is just matter of normalization. For any k > 0 with
C(a) = ka2, we get isomorphic results.
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For an outsider j ∈ N\S, the payoff is

vj(a
∗(S)) = θj

ÃX
i∈S

θi

!
.

Consider the following example.

Example 1. Let N = {1, 3, 5, 11} with θi = i for each i ∈ N .

First we check if the grand coalition S = N is supportable. We then
have a∗(N) =

P
i∈N i = 20, and V (N) = 202

2
= 200. However, to have free-

riding-proofness, we need to give each player the following payoff at the very
least:

v11(a
∗(N\{11})) = (20− 11)× 11 = 99,

v5(a
∗(N\{5})) = (20− 5)× 5 = 75,

v3(a
∗(N\{3})) = (20− 3)× 3 = 51,

v1(a
∗(N\{1})) = (20− 1)× 1 = 19.

The sum of all the above values exceeds the value of the grand coalition
V (N). As a result, we can conclude CoreFRP (N) = ∅.
• The free-riding-proof core for grand coalition N may be empty. Thus,
the free-riding-proof core may be suboptimal.

Next, consider S = {11, 5}. Then, a∗(S) = 16, and V (S) = 128. In order
to check if the free-riding-proof core for S is nonempty, first check again the
free-riding-incentives.

v(a∗(S\{11})) = (16− 11)× 11 = 55,
v(a∗(S\{5})) = (16− 5)× 5 = 55.

Thus, if there is a free-riding-proof core allocation u = (u11, u5) for S, u must
satisfy

u11 + u5 = 128,

u11 ≥ 55,

u5 ≥ 55,

u11 ≥
11× 11
2

= 60.5,

u5 ≥
5× 5
2

= 12.5.
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The last two conditions are obtained by the core requirement. Thus, we
have19

Core({11, 5}) =
½

ũ ∈ R5+ : u11 + u5 = 128, u11 ≥ 60.5, u5 ≥ 12.5,
ũ3 = 48, ũ2 = 32, ũ1 = 16

¾
,

and

CoreFRP ({11, 5}) =
½

ũ ∈ R5+ : u11 + u5 = 128, u11 ≥ 60.5, u5 ≥ 55,
ũ3 = 48, ũ2 = 32, ũ1 = 16

¾
.

As is easily seen, CoreFRP ({11, 5}) 6= ∅, but it is a smaller set thanCore({11, 5}).
Thus, we have:

• Free-riding-proof constraints may narrow the set of attainable core al-
locations for a coalition.

Note that in this case, only the free-riding incentive constraint for player
5 is binding, since player 11 can do a lot alone, it is better for her to provide
public goods alone than free-riding on player 5.¤

Now, let us analyze the free-riding-proof core. Since the free-riding-proof
core requires Pareto-efficiency on the union of free-riding-proof cores for all
subsets S of the players, we first need to find the free-riding-proof core for
each S. However, in general, it is not an easy task to check if the free-riding-
proof core for S is empty or not. This is because the free-riding-proof core for
S requires two almost unrelated requirements: immunity to coalitional de-
viation attempts to be independent, and immunity to free-riding incentives.
Interestingly, in the linear-utility and quadratic-cost case, an aggregated ver-
sion of the latter requirements would suffice to check the nonemptiness of the
free-riding-proof core for S.

Proposition 3. In the linear-utility and quadratic cost case, the free-riding-
proof core for S is nonempty if and only if S satisfies (the aggregated "no
free-riding condition"):

Φ(S) ≡ V (S)−
X
i∈S

θia
∗(S\{i})

=
X
i∈S

θia
∗(S)− 1

2
(a∗(S))2 −

X
i∈S

θia
∗(S\{i}) ≥ 0

19For notational simplicity, without confusion, we abuse notations by dropping irrelevant
arguments of allocations. Thus, in this subsection, allocations are utility allocations.
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This condition is equivalent to

X
i∈S

θ2i ≥
1

2

ÃX
i∈S

θi

!2
.

The proof is postponed to Appendix B. By utilizing this proposition, we
can completely characterize the FRP-core of the public goods economy in
Example 1.

Example 1. (continued) The free-riding-proof core allocations are at-
tained by groups {11, 5, 1}, {11, 3, 1}, {11, 5}, {11, 3}, and {5, 3}.

First, by applying Proposition 3, we can easily check for which S, CoreFRP (S) 6=
∅ holds. There are 12 such contribution groups: {11, 5, 1}, {11, 3, 1}, {11, 5},
{11, 3}, {11, 1}, {5, 3}, {5, 1}, {3, 1}, {11}, {5}, {3}, and {1}.
Note that S = {11, 5, 3} does not have a nonempty free-riding-proof core

for S. Let S = {11, 5, 3}. Then, a∗(S) = 19 and W (S) = 180.5. Now,
11v(a∗(S\{11})) = 88, 5v(a∗(S\{5}) = 70, and 3v(a∗(S\{3})) = 48. Since
88 + 70 + 48 > 180.5, there is no free-riding-proof core allocation for S =
{11, 5, 3}. Thus, {11, 5, 1} is the group that achieves the highest level of
public goods provision and has a nonempty free-riding-proof core.20 This
analysis provides an interesting observation:21

• (Even the largest) group that achieves a free-riding-proof core allocation
may not be consecutive.

The intuition behind this result is simple. Suppose Φ(S) is positive (say,
S = {11, 5}). Then by Lemma 1, there is an internally stable allocation for
S. Now, we may try to find S0 ⊃ S that still keeps Φ(S0) ≥ 0. If the value of
Φ(S) is positive yet not too large, then adding a high θ player (say, player 3)
may make Φ(S0) < 0, since adding such a player may greatly increase a∗(S0),
making the free-riding problem more severe. However, if a low θ player (say,

20As is seen below, group {11, 5, 1} supports some allocations in CoreFRP .
21Although the context and approach are very different, in political science and sociology,

the formation of such non-consecutive coalitions is of a tremendous interest. For a game-
theoretical treatment of this line of literature (known and "Gamson’s law"), see Le Breton
et al. (2007).
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player 1) is added, the free-rider problem does not become too severe, and
Φ(S0) ≥ 0 may be satisfied relatively easily.
Among the above 12 groups, it is easy to see that groups {5, 1}, {3, 1},

{11}, {5}, {3}, and {1} do not survive the test of Pareto-domination by
free-riding-proof core allocations for other groups. For example, consider
S = {11, 5} and u0 = (73, 55, 48, 32, 16) ∈ CoreFRP ({11, 5}).22 Since the
payoff of 11 by free-riding is v11(a) = 11a, every allocation for the above
groups is dominated by the above u0. On the other hand, {5, 3} is not
dominated, since player 11 gets 88 by free-riding. Thus, player 11 would
not join a deviation (11 can obtain at most 73 in a free-riding-proof core
allocation for S 3 11). Without player 11’s cooperation, there is no free-
riding core allocation that dominates those of {5, 3}.
By the same reasons, free-riding-proof core allocations for S = {11, 1} are

dominated by the one for S0 = {11, 5}. Under S = {11, 1}, player 5 gets 60,
but S0 can attain u0 = (63, 65, 48, 32, 16).23 However, free-riding-proof core
allocations for S = {11, 3, 1} and {11, 3} cannot be beaten by the ones for
S0 = {11, 5}, since player 5 gets 70 even under {11, 3}.24
Finally, S = {11, 5}, {11, 3}. The free-riding-proof core allocations for

S = {11, 5} are characterized by u11 + u5 = 128, u11 ≥ 60.5 and u5 ≥ 55,
with u3 = 48, u2 = 32 and u1 = 16. Now, consider S0 = {11, 5, 1}. The free-
riding-proof core allocations for S0 are characterized by u011+u05+u01 = 144.5,
u01 ≥ 66, u05 ≥ 60, and u01 ≥ 16, with u03 ≥ 51 and u02 ≥ 34. Thus, S0 can
attain u011+ u05 = 144.5− 16 = 128.5 as long as u011 ≥ 66 and u05 ≥ 60. Thus,
if u ∈ CoreFRP ({11, 5}) satisfies u11+u5 = 128, 60.5 ≤ u11 ≤ 68.5, and 55 ≤
u5 ≤ 62.5, then u is improved upon by an allocation in CoreFRP ({11, 5, 1}).
However, if u ∈ CoreFRP ({11, 5}) satisfies u11 + u5 = 128, u11 > 68.5, or
u5 > 62.5, then u cannot be improved upon by forming group {11, 5, 1}. The
free-riding-proof core allocations for S = {11, 3} have a similar property with
possible deviations by group S0 = {11, 3, 1}. This phenomenon illustrates
another interesting observation:

• An expansion of a group definitely increases the total value of the group,
22The best allocation for player 11 in CoreFRP ({11, 5}). See the characterization of

CoreFRP ({11, 5}) in Example 1. Other players are free-riders, and their payoffs are di-
rectly generated from a∗({11, 5}) = 16.
23Under S = {11, 2}, player 11 can get at most 62.5 in order to satisfy the free-riding-

proofness for player 2 (v2({11}) = 22).
24Since V ({11, 5}) = 128, and player 5 demands at least 70, player 11 can get at most

58. However, V ({11}) = 60.5. Thus, involving player 5 is not feasible.
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while it gives less flexibility in allocating it since free-riding incentives
are strengthened by having a higher level of public goods. As a result,
some unequal free-riding-proof core allocations for the original group
may not be improved upon by expanding the group.

In summary, the free-riding-proof core is the union of the following sets
of allocations attained by five different groups.

1. S = {11, 5, 1}, then a∗(S) = 17 and all free-riding-proof core allocations
for S are attained:

CoreFRP ({11, 5, 1}) =
½

ũ ∈ R5+ : ũ11 + ũ5 + ũ1 = 144.5, ũ3 = 51, ũ2 = 34,
66 ≤ ũ11, 60 ≤ ũ5, 16 ≤ ũ1

¾
2. S = {11, 3, 1}, then a∗(S) = 15 and all free-riding-proof core allocations
for S are attained:

CoreFRP ({11, 3, 1}) =
½

ũ ∈ R5+ : ũ11 + ũ3 + ũ1 = 112.5, ũ5 = 75, ũ2 = 30,
60.5 ≤ ũ11, 36 ≤ ũ3, 14 ≤ ũ1

¾
3. S = {11, 5}, then a∗(S) = 16 and only a subset of free-riding-proof
core allocations for S can be attained:©

ũ ∈ CoreFRP ({11, 5}) : ũ11 > 68.5, or ũ5 > 62.5
ª

=

⎧⎨⎩ ũ ∈ R5+ : ũ11 + ũ5 = 128, ũ3 = 48, ũ2 = 32, ũ1 = 16,
[68.5 < ũ11 ≤ 73 and 55 ≤ ũ5 < 59.5]

or [62.5 < ũ5 ≤ 67.5 and 60.5 ≤ ũ11 < 65.5]

⎫⎬⎭
4. S = {11, 3}, then a∗(S) = 14 and only a subset of free-riding-proof
core allocations for S can be attained:©

ũ ∈ CoreFRP ({11, 3}) : ũ11 > 62.5
ª

=

½
ũ ∈ R5+ : ũ11 + ũ3 = 98, ũ5 = 70, ũ2 = 28, ũ1 = 14,

[62.5 < ũ11 ≤ 65 and 33 ≤ ũ3 < 35.5]

¾
5. S = {5, 3}, then a∗(S) = 8 and all free-riding-proof core allocations for

S are attained:

CoreFRP ({5, 3}) =
½

ũ ∈ R5+ : ũ5 + ũ3 = 32, ũ11 = 88, ũ2 = 16, ũ1 = 8,
15 ≤ ũ5, 15 ≤ ũ3

¾
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Now, we compare the free-riding-proof core allocations with a Nash equi-
librium of a voluntary publics good provision game. Let us consider a simul-
taneous move voluntary public goods provision game by Bergstrom, Blume,
and Varian (1986). Each player i chooses her monetary contribution mi ≥ 0
to provide public goods. The public goods provision level is determined by
a(m) =

p
2
P

i∈N mi reflecting the cost function of public goods production.
Consider player i. Given that others are contributing M−i together, player
i maximizes θi

p
2 (mi +M−i) − mi. Thus, the best response for player i

is m∗
i = max

n
i2

2
−M−i, 0

o
. This implies that only player 11 contributes,

and the public goods provision level is 11. Thus, by forming a contribution
group in the first stage, it is possible to increase the public goods provision
level in equilibrium.25 We can observe that in the last group, the level of
public goods provision is lower than the Nash equilibrium provision level of
the standard voluntary contribution game:

• There may be free-riding-proof core allocations that achieve lower public
goods provision levels than the one in Nash equilibrium of a simple
voluntary contribution game by Bergstrom, Blume, and Varian (1986).

This occurs because in our setup, player 11 can commit to being an
outsider in the first stage. In a simultaneous-move voluntary contribution
game, this cannot happen. However, with any coalitions that support free-
riding-proof core allocations, the public goods provision level exceeds 11.
Finally, needless to say, we have:

• The free-riding-proof core may be a highly nonconvex set.
25In relation to this, the reader may wonder about the Lindahl equilibrium allocation

for S = {11, 5}. Unfortunately, this example is not very useful since the utility function
is linear. The result would be totally dependent on how the profits are distributed as is
seen below. The Lindahl prices are p11 = 11 and p5 = 5 given θ11 = 11 and θ5 = 5, since
a∗({11, 5}) = 16 means the marginal cost is 16(= 11 + 5). Since there are pure profits
in producing public goods (cost function is strictly convex), we need to specify the way
to allocate the profits of 128. If they are distributed equally, then both get 64 each as
profit share, and this is the only source of their utilities. If they are distributed according
to the players’ willingnesses-to-pay, then players get 88 and 40. In the former case, the
free-riding-proof conditions are satisfied, but in the latter case, they are not satisfied.
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5 Replicated Economies

In this section, we analyze if public goods provision and the participation
rate decrease by replicating an economy. There is a tricky issue in repli-
cating a (pure) public goods economy. If the set of consumers is simply
replicated, the amount of resources in the economy goes to infinity with the
same cost function for public good production. Healy (2007) makes each
consumer’s endowment shrink proportionally to the population as the econ-
omy is replicated in order to isolate this problem, following Milleron’s (1972)
method.26 However, consumers’ preferences are also modified along repli-
cations. We adopt the same preference modification along replication in a
quasi-linear economy. We shrink each consumer’s willingness-to-pay function
(and thus utility function too) proportionally as the economy is replicated.
This way of replicating is natural in a quasi-linear economy, since the ag-
gregated willingness-to-pay and marginal cost functions stay the same. An
original economy is a list E = (N, (vi)i∈N , C). Let r = 1, 2, 3, ... be a nat-
ural number. An rth replica of E is a list Er = (N r, (vriq)i∈N, q=1,...,r, C),
where N r = ∪i∈N{ir1, ..., irr} and vriq(a) = vri (a) =

1
r
vi(a) for all q = 1, .., r.27

Let a characteristic function form game generated from Er be V r. Each
PCPNE of a lobby participation game generated from Er has a correspond-
ing free-riding-proof core allocation (S, a∗(S), u∗) of characteristic function
form game V r. Note that for all r, all S ⊆ N r, the public goods provi-
sion level a = a∗(S) is achieved at

P
iq∈S WTP r

iq(a) = MC(a) under our
assumptions, where WTP r

iq(a) = vr0iq(a) and MC(a) = C 0(a). We needP
iq∈S

³
vriq(a

∗(S)− vriq(a
∗(S\{iq})

´
≥ C(a∗(S)) in order to satisfy the free-

riding-proofness (the contents of the parenthesis in the LHS is how much each
player can pay without sacrificing the free-riding-proofness). Let S contain
qi(S) ∈ {0, ..., r} type i players for all i ∈ N . Then, the above necessary
condition for free-riding-proofness is stated asX

i∈N
qi(S) (v

r
i (a

∗(S))− vri (a
∗(S\{ir}))) ≥ C(a∗(S)).

26Conley (1994) used a different definition of replicated economy, and investigated con-
vergence of core.
27Milleron’s (1972) preference modification is described as follows. Let ºi and ºr

i be
preference relations in the original and rth replica economy, respectively. Relation ºr

i is
generated as follows: (x, a) ºr

i (x
0, a0) iff (rx, a) ºi (rx

0, a0). Then, by setting a0 = 0, we
have x+ vri (a) = x0 and rx+ vi(a) = rx0. This implies vri (a) =

1
rvi(a).
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or X
i∈N

mi(S)

r
(vi(a

∗(S))− vi(a
∗(S\{ir}))) ≥ C(a∗(S)).

Consider k × rth replication (k = 1, 2, 3, ...: k = 1 means the original rth
replica). This means that each player is divided into k players. Let Sk be a
coalition in k × rth replica economy that contains all k replica players of all
members of S in rth replica economy. Obviously, a∗(S) in rth replica econ-
omy is equivalent to a∗(Sk) in k×rth replica economy. However, although the
coefficients satisfy qi(S)

r
= qi(S

k)
k×r , a

∗(Sk\{ik×r}) converges to a∗(Sk) = a∗(S)
as k goes to infinity. Thus, this inequality would not be satisfied at some
point. Formally, we have the following result. For simplicity, we assume
differentiability and other conditions, although we can weaken some of them.

Proposition 4. Suppose that C and vis are twice continuously differentiable
for all i ∈ N with (i) C(0) = 0, C 0(a) > 0, C 00(a) > 0, and lima→0C

0(a) = 0,
and (ii) v0i(a) > 0 and v00i (a) ≤ 0 for all i ∈ N . For all ā > 0, there exists
a natural number r̄(a) such that a∗(S∗) ≤ ā holds for all (S∗, a∗(S∗), u∗) ∈
CoreFRP (V r) for all r ≥ r̄(a).

The proof is given in Appendix B. In the above, we use the properties
of cost function unlike in Proposition 2. Proposition 4, with Theorem 1,
immediately implies the following theorem.

Theorem 2. Suppose that C and vis are twice continuously differentiable
for all i ∈ N with (i) C(0) = 0, C 0(a) > 0, C 00(a) > 0, and lima→0C

0(a) = 0,
and (ii) v0i(a) > 0 and v00i (a) ≤ 0 for all i ∈ N . The public good provision
levels in all PCPNEs shrink to zero as the economy is replicated.

Although this result has some similarity to the main result of Healy
(2007), the models and the objectives are very different, since Healy requires
that all players participate voluntarily in equilibrium, unlike our model. Note
also that Theorem 2 (and Proposition 4) relies on differentiability unlike The-
orem 1.

6 Summary

This paper added players’ participation decisions to common agency games.
The solution concept we used is a natural extension of coalition-proof Nash
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equilibrium to a dynamic game, perfectly coalition-proof Nash equilibrium
(PCPNE). We considered a special class of common agency games: an en-
vironment without conflict of interests (comonotonic preferences), such as
public goods economies. In this case, we showed that PCPNE is equivalent
to an intuitive hybrid solution in transferrable utility case, the free-riding-
proof core, which is the Pareto-frontier of a union of all core allocations for a
subset of players that are immune to unilateral free-riding incentives. With
a simple example, we found that the equilibrium lobby group may be not
consecutive (with respect to willingness-to-pay), and the public good can be
underprovided. Finally, we show that public goods provision relative to the
size of economy goes down to zero, as the participants of the economy are
replicated to large numbers.

Appendix A: Preliminary Analysis on Core of
Convex Games

In this appendix, we list a few useful preliminary results on the core of
convex games. In our public goods domain, the characteristic function game
generated from a (public goods) economy is convex. Let V : 2N → R with
V (∅) = 0 be a characteristic function form game. Game V is convex if
V (S ∪ T ) + V (S ∩ T ) ≥ V (S) + V (T ) for all pairs of subsets S and T of
N . The core of game V is Core(N,V ) = {u ∈ RN :

P
i∈N ui = V (N) andP

i∈S ui ≥ V (S) for all S ⊂ N}. Shapley (1971) analyzed the properties of
the core of convex games in detail. One of the convenient results for us is
the following.

Property 1. (Shapley 1971) Let ω : |N | → N be an arbitrary bijection,
and let uω(1) = V ({ω(1)}), uω(2) = V ({ω(1), ω(2)}) − V ({ω(1)}),..., and
uω(|N |) = V (N) − V (N\{ω(|N |)}). Then, u = (ui)i∈N ∈ Core(N, V ), and
the set of all such allocations forms the set of vertices of Core(N, V ).

Now, we consider a kind of reduced game, when outsiders walk away
with the payoffs they can obtain by themselves. Let T be a proper subset
of N . A reduced game of V on T is ṼT : 2T → R such that ṼT (S) =
V (S ∪ (N\T ))− V (N\T ) for all S ⊆ T . We have the following result.
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Property 2. Suppose that V : N → R is a convex game. Let uN\T =
(ui)i∈N\T be a core allocation of a game V : N\T → R. Then, uT ∈
Core(T, ṼT ) if and only if (uT , uN\T ) ∈ Core(N,V ).

Proof. First, we show that uT ∈ Core(T, ṼT ) if (uT , uN\T ) ∈ Core(N,V ).
Since (uT , uN\T ) ∈ Core(N,V ),

P
i∈S∪(N\T ) ui ≥ V (S ∪ (N\T )) holds for all

S ⊂ T . Rewriting this, we have
P

i∈S ui ≥ V (S ∪ (N\T )) −
P

i∈N\T ui =

V (S ∪ (N\T ))− V (N\T ) = ṼT (S). Thus, uT ∈ Core(T, Ṽ ).
Second, we show that uT ∈ Core(T, ṼT ) implies (uT , uN\T ) ∈ Core(N,V ).

Suppose not. Then, there is S ⊂ N such that V (S) >
P

i∈S ui =
P

i∈S∩T ui+P
i∈S∩(N\T ) ui. Since uT ∈ Core(T, Ṽ ), we have

P
i∈S∩T ui ≥ V (S∪(N\T ))−

V (N\T ). Since V is a convex game, V (S∪(N\T ))+V (S∩(N\T )) ≥ V (S)+
V (N\T ), thus, we have

P
i∈S∩T ui ≥ V (S)−V (S∩(N\T )). Substituting this

into our supposition, we have V (S) > V (S)−V (S∩ (N\T ))+
P

i∈S∩(N\T ) ui.
However, since uN\T ∈ Core(N\T, V ),

P
i∈S∩(N\T ) ui ≥ V (S∩ (N\T )) holds.

This is a contradiction.¤

Now, we will rewrite the core. Let u = (ui)i∈N be an arbitrary utility
vector. Let

Q+(u) = {S ∈ 2N :
X
j∈S

uj > V (S)},

Q0(u) = {S ∈ 2N :
X
j∈S

uj = V (S)},

Q−(u) = {S ∈ 2N :
X
j∈S

uj < V (S)}.

That is, sets Q+(u) and Q−(u) denote collections of coalitions that are satis-
fied and unsatisfied (in the strict sense) under utility vector u, respectively.
The set Q0(u) is collection of coalitions that are just indifferent between
deviating and not deviating. Obviously, a utility vector u is in the core
(u ∈ Core(N, V )) if and only if Q−(u) = ∅ (or S ∈ Q+(u) ∪ Q0(u) for all
S ∈ 2N) and N ∈ Q0(u). Let η(S, u) ≡ V (S)− i∈S ui

|S| be the (per capita)
shortage of payoff for coalition S for all S ∈ Q−(u). Let

Q−max(u) ≡ {S ∈ Q−(u) : η(S, u) ≥ η(S0, u) for all S0 ∈ Q−(u)},

and
Q−max(u) = ∪S∈Q−max(u)S.
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Using the above definitions, we now construct an algorithm that starts from
an arbitrary utility vector u and terminates at a core allocation û.

Algorithm. Let u ∈ RN and let V : N → R be a convex game. Let u(t) be
the utility vector at stage t ≥ 0, and u(0) = u (the initial value).

(a) Suppose Q−(u) = ∅. Then, 2N\{∅} = Q0(u)∪Q+(u). If N ∈ Q0(u(0))
then the algorithm terminates immediately. Otherwise,

P
i∈N ui >

V (N) holds, and we reduce uis by the same speed simultaneously and
continuously for i ∈ N\(∪S∈Q0(u)S) as t increases.28 Since all elements
in Q0(u) stay in Q0(u(t)) as the process continues, while some of ele-
ments of Q+(u(t)) start switching to Q0(u(t)), Q0(u(t)) monotonically
expands in the process. At some stage t = t̂, N ∈ Q0(u(t̂)) occurs.
Then we terminate the process. The final outcome is û = u(t̂).

(b) Suppose Q−(u) 6= ∅. Start with u(0) = u. There are two phases:

i. Phase 1 (t ∈ [0, t̃]). For all i ∈ Q−max(t), increase uis by the
same amount simultaneously and continuously. Terminate the
algorithm when Q−max(u(t)) = ∅ (or Q−(u(t)) = ∅), and call such
t = t̃.29

ii. Phase 2 (t ∈ (t̃, t̂]). Now, Q−(u(t)) = ∅. Then, we repeat the
procedure in (a), and we reach at a final outcome û = u(t̂) when
N ∈ Q0(u(t̂)) occurs.

Let Q0(u) ≡ ∪S∈Q0(u)S, and define

W ≡ {i ∈ N : ∃t ≥ 0 with i ∈ Q−max(u(t)) in phase 1 of case (b)},
I ≡ {i ∈ N : i ∈ Q0(u(0)) in case (a), or i ∈ Q0(u(t̃))\W in phase 2 of case (b)},
L ≡ {i ∈ N : i /∈ Q0(u(0)) in case (a), or i /∈ Q0(u(t̃)) in phase 2 of case (b)}.
28Note that N\(∪Q∈Q0(u)Q) = ∅ implies N ∈ Q0(u). This follows from the definition of

a convex game. We show that if T, T 0 ∈ Q0(u), then T ∪ T 0 ∈ Q0(u) when Q−(u) = ∅ as
is assumed. By the definition of a convex game, V (T ∪ T 0) + V (T ∩ T 0) ≥ V (T ) + V (T 0)
=
P

i∈T∪T 0 ui +
P

i∈T∩T 0 ui holds. Since V (T ∩ T 0) ∈ Q0(u) ∪ Q+(u),
P

i∈T∩T 0 ui ≥
V (T ∩T 0). This implies V (T ∪T 0) ≥

P
i∈T∪T 0 ui. Since Q−(u) = ∅, T ∪T 0 ∈ Q0(u). This

argument implies that (S0 ∩ S∗)\(∪Q∈Q0(uS0∩S∗ )Q) = ∅ implies S
0 ∩ S∗ ∈ Q0(u), and the

process terminates.
29This process guarantees that a player i ∈ Q−min(u(t)) (at some stage t ∈ [0, t̃]) must

belongs to some S0 ∈ Q0(u(t̃)) at the end of phase 1.
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These sets will be shown to be collections of players who gained, kept intact,
and lost in their payoffs in the above algorithm relative to the initial value
u, respectively. By the construction of the algorithm, the following Lemma
is straightforward.

Lemma 1. Consider the above algorithm. In phase (i) of case (b),Q−max(u(t))
monotonically expands as t increases for t ∈ [0, t̃). This phase terminates
with Q−(u(t̃)) = ∅. Moreover, W = limt→t̃Q

−
max(u(t)), and for all S ∈

limt→t̃Q−max(u(t)), S ⊆W and S ∈ Q0(u(t̃)) hold.

Proof. As t increases, the payoffs of all members of Q−max(u(t)) increase by
the same speed; thus for any S ∈ Q−max(u(t)), η(S, u(t)) decreases with the
same speed. Note that for all other coalitions T /∈ Q−max(u(t)), η(T, u(t))
decreases with a slower pace (if T ∩Q−max(u(t)) 6= ∅) or stays constant (if T ∩
Q−max(u(t)) = ∅). Therefore, Q−max(u(t))monotonically expands as t increases.
This monotonic utility-raising process continues until Q−(u(t)) = ∅ realizes
at t = t̃. Since Q−max(u(t)) monotonically expands, W = limt→t̃Q

−
max(u(t))

holds, and by continuity of u(t) andQ−(u(t̃)) = ∅, for all S ∈ limt→t̃Q−max(u(t)),
S ⊆W and S ∈ Q0(u(t̃)) hold.¤

Lemma 2. Starting from any initial value u ∈ RN , this algorithm terminates
at a core allocation û ∈ Core(N, V ).

Proof. First, we show that case (a) terminates at a core allocation, since the
same argument applies to phase 2 of case (b). We can show this statement,
if N\(∪S∈Q0(u)S) 6= ∅ holds whenever

P
i∈N ui > V (N) holds (otherwise, u is

infeasible while the algorithm stops). Suppose that
P

i∈N ui > V (N), while
N\(∪Q∈Q0(u)Q) = ∅ in case (a). Then, for all i ∈ N , there exists S ∈ Q0(u)
with i ∈ S. Then, we can construct a balanced family B by collecting these
Ss (see, e.g., Ichiishi 1983). Then, with balanced weight {λS}S∈B such thatP

S3i,S∈B λS = 1 for all i ∈ N . This impliesX
S3i,S∈B

λSui = ui.

Since for all S ∈ B,
P

j∈S uj = V (S) by definition, we haveX
S∈B

λSV (S) =
X
i∈N

ui.
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By assumption, we have
P

i∈N ui > V (N), and we can concludeX
S∈B

λSV (S) > V (N).

This means that the game V is not balanced. This is a contradiction, since
convex games are balanced. Thus, in case (a), the algorithm terminates at
a feasible allocation. Since u(t) changes continuously, N ∈ Q0(û) holds, and
û ∈ Core(N,V ).
Now, by Lemma 1, phase 1 of case (b) terminates with Q−(ũ) = ∅.

Thus, the same argument as case (a) applies to phase 2 of case (b). Thus,
û ∈ Core(N,V ) in case (b) as well.¤

Lemma 3. Set N is partitioned into W , I, and L. For all i ∈ W , ûi > ui;
for all i ∈ I, ûi = ui; and for all i ∈ L, ûi < ui.

Proof. Note that in phase 2 of case (b), members of W are intact since
W ⊆ ∪S∈Q0(u(t̃))S. Thus, for all i ∈ W , ûi > ui. Given this, the rest is
obvious.¤

This lemma says that the winners, unaffected players, and losers of the
algorithm are identified by sets W , I, and L, respectively.

Appendix B: Proofs

Proof of Proposition 2.

First, we construct a strategy profile σ below, which will be shown to support
(S∗, a∗(S∗), u∗) as a PCPNE. By definition, we have u∗ ∈ CoreFRP (S∗). In
defining σ, we need to assign a CPNE utility profile to every subgame S0

(although this does not happen in equilibrium, it matters when deviations
are considered). Then, we show by way of contradiction that there is no
credible and profitable deviation from σ.
A strategy profile in the second stage σ2 is generated from utility alloca-

tions assigned in each subgame (we utilize truthful strategies that support
utility outcomes). We partition the set of subgames S = {S0 ∈ 2N : S0 6= ∅}
into three categories: Case 1. on equilibrium path S1 = {S∗}, Case 2.
S2 = {S0 ∈ S : S0∩S∗ = ∅}, and Case 3. S3 = {S0 ∈ S\S1 : S0∩S∗ 6= ∅}. As
is shown in Lausell and Le Breton (2001), a CPNE outcome in a subgame S0
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corresponds to a core allocation for S0. In order to support the on-equilibrium
path (S∗, a∗(S∗), u∗), we need to show that there is no credible deviation in
the first stage. Since a credible deviation requires both free-riding-proofness
and profitability, utility level ūi = max{u∗i , vi(S0\{i})} plays an important
role for player i to join a coalitional deviation. We construct a core allocation
for subgame S0 by utilizing utility vector ū by the algorithm described in
Appendix A. Our construction guarantees that if there is j ∈ S0 ∩ S∗ with
uj(S

0) < ūj (j ∈ L), then for all i ∈ S0 ∩ S∗ with ui(S
0) ≥ ūi (i ∈ W ∪ I),

there exists Q ⊆ S0 ∩ S∗ with i ∈ Q, ui0(S0) ≥ ūi (i ∈ Q ⊆ W ∪ I), and
V (Q) =

P
i0∈Q ui0(S

0). This property restricts what a credible coalitional
deviation can do by taking advantage of others. The construction of a core
allocation for each subgame is as follows.

1. We assign (S∗, a∗(S∗), u∗) ∈ CoreFRP to the on-equilibrium subgame
S∗.

2. For any S0 with S0 ∩ S∗ = ∅, we assign an extreme point of the core
for S0 of a convex game (just to assign a concrete core allocation).
For an arbitrarily selected order ω over S0, we assign payoff vector
uω(1) = V ({ω(1)}) − V (∅), uω(2) = V ({ω(1), ω(2)}) − V ({ω(1)}),...
etc. following Shapley (1971). Call the allocation ûS0 ∈ Core(S0, V )
(property 1).

3. For any S0 with S0∩S∗ 6= ∅, we assign a core allocation in the following
manner. It requires a few steps. First, we deal with the outsiders.
Let ω : |S0\S∗| → S0\S∗ be an arbitrary bijection, and let uω(1) =
V ({ω(1)}), uω(2) = V ({ω(1), ω(2)}) − V ({ω(1)}),..., and uω(|S0\S∗|) =
V (S0\S∗)− V (S0\S∗\{ω(|S0\S∗|)}). Such a core allocation suppresses
the total payoffs of S0\S∗ the most (Shapley 1971). The rest V (S0)−
V (S0\S∗) goes to S0 ∩ S∗. Consider a reduced game of (S0, V ) on
S0 ∩ S∗ with uS0\S∗, ṼS0∩S∗ : 2S

0∩S∗ → R such that ṼS0∩S∗(Q) = V (Q ∪
(S0\(S0 ∩S∗)))−

P
j∈S0\S∗ uj = V (Q∪ (S0\(S0 ∩S∗)))− (S0\(S0 ∩S∗)).

By property 2, we know that uS0∩S∗ ∈ Core(S0 ∩ S∗, ṼS0∩S∗) if and
only if (uS0∩S∗ , uS0\S∗) ∈ Core(S0, V ). For each i ∈ S0 ∩ S∗, let ūi =
max{u∗i , vi(S0\{i})}. By the algorithm in Appendix A, we construct
a core allocation ûS0∩S∗ from vector ūS0∩S∗ = (ūi)i∈S0∩S∗ for reduced
game ṼS0∩S∗ of game V : 2S

0 → R.
We support these core allocations by truthful strategies. Let σ1i = 1 for

i ∈ S∗, and σ1i = 0 for j /∈ S∗. Let σ2i (S
∗) be a truthful strategy relative to
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a∗(S∗) with τ i(a
∗(S∗)) = vi(a

∗(S∗))− u∗i for all i ∈ S∗. And let σ2i (S
0) be a

truthful strategy relative to a∗(S0) with τ i(a
∗(S0)) = vi(a

∗(S0)) − ûi(S
0) for

all i ∈ S0. Since every subgame has a core allocation with truthful strategies,
it is a CPNE. Thus, if there is a deviation from σ, then it must happen in
the first stage. The rest of the proof is done by way of contradiction.
Suppose to the contrary that coalition T profitably and credibly deviates

from the equilibrium σ. Note that in the reduced game by T , it must be
a PCPNE deviation given σ−T fixed. In the original equilibrium, S∗ is the
lobby group. This implies that all i ∈ (N\S∗)\T play σ1i = 0 in the first
stage and they free-ride, while all i ∈ S∗\T play σ1i = 1 in the first stage and
they play the same strategies (σ2i (S

0) a menu contingent to formed lobby S0)
in the second stage. Note that all i ∈ T\S∗ play σ10i = 1 in the first period
after the deviation (by definition), while i ∈ T ∩ S∗ may or may not play
σ10i = 1. Some may choose to free-ride by switching to 0, while others stay
in the lobby with an adjustment to their strategies in the second stage.
Let S0 be the lobby formed by T ’s deviation: S0 = S(σ1−T , σ

10
T ). Then,

there are five groups of players (see Figure 2):

(i) the members of S∗\S0 ⊂ T free-ride after the deviation,

(ii) the members of S0\S∗ ⊂ T join the lobby,

(iii) the members of (S∗ ∩ S0)\T ⊂ S0 do not change their strategies in any
stage (participate in lobbying, and keep the same menu in the second
stage),

(iv) the members of (S∗∩S0)∩T ⊂ S0 change strategies in the second stage,

(v) the members of N\(S0∪S∗) are outsiders before or after the deviation.

Let the resulting allocation be (S0, a∗(S0), u0). Since T is a profitable and
credible deviation, the members in (i), (ii), and (iv) are better off after T
deviates. That is,

vi(a
∗(S0)) ≥ u∗i for all i ∈ S∗\S0,

u0i ≥ ūi for all i ∈ S0\S∗,
u0i ≥ ūi for all i ∈ (S∗ ∩ S0) ∩ T ,

must hold, where ūi = max{u∗i , v∗i (a∗(S0\{i})}.
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Given our supposition, we will provide a sequence of claims below.
First note that since members of (ii) exist and are better off, we have

a∗(S0) > a∗(S∗). It is because (ii) is nonempty, since otherwise, S0 ⊂ S∗

holds, and a coalitional deviation cannot be profitable.

Claim 1. S0\S∗ 6= ∅, and a∗(S0) > a∗(S∗).

Since in σ, all players use truthful strategies, even after T ’s deviation, the
members in (iii) (outsiders of T ) get the same payoff vector û(S∗∩S0)∩T (S0) as
in the original subgame CPNE for S0. It is because in subgame S0 (even after
deviation), a∗(S0) must be provided since CPNE (core) must be assigned to
the subgame. Thus, we have the following for group (iii).

Claim 2. After deviation by T , all i ∈ (S∗ ∩ S0)\T ⊂ S0 receives exactly
u0i = ûi(S

0).

Note that, since u0 needs to be is a CPNE in the second stage of the
reduced game by T , we have

P
i∈S0\S∗ u

0
i ≥ V (S0\S∗) (to be in Core(S0)).

By construction of û(S0), we have
P

i∈S0\S∗ ûi = V (S0\S∗). Thus, we have
the following for group (ii).

Claim 3.
P

i∈S0\S∗ u
0
i ≥

P
i∈S0\S∗ ûi = V (S0\S∗).

Now, we consider group (iv). By Claims 2 and 3, the members of (iv)
together can get at most X

i∈S0∩S∗∩T
u0i ≤

X
i∈S0∩S∗∩T

ûi,

since group (iv) cannot get transfers from groups (ii). Since group (iv) is
better off and free-riding-proofness is satisfied for them after the deviation
(PCPNE deviation), u0i ≥ ūi = max{u∗i , vi(a∗(S0\{i}))} must be satisfied for
all group (iv) members, i ∈ S0 ∩ S∗ ∩ T .
Claim 4. Suppose that L 6= ∅. Then, L ∩ (S0 ∩ S∗ ∩ T ) = ∅, andP

i∈S0∩S∗∩T u
0
i ≥

P
i∈S0∩S∗∩T ûi holds.

Proof of Claim 4. In case (a), for all i ∈ S0∩S∗, we have ûi ≤ ūi, since there
is no winner for case (a) (Lemma 3). Claims 2 and 3 require

P
i∈S0∩S∗∩T u

0
i ≤P

i∈S0∩S∗∩T ûi. However, we need u0i ≥ ūi for all i ∈ S0 ∩ S∗ ∩ T . Thus, we
have u0i = ûi = ūi for all i ∈ S0 ∩ S∗ ∩ T , and S0 ∩ S∗ ∩ T ⊆ I.

33



In case (b) with L 6= ∅, W ∩ (S0 ∩S∗ ∩ T ) 6= ∅ holds (otherwise, by claim
3, there must be i ∈ S0 ∩ S∗ ∩ T with u0i < ūi, which is a contradiction with
the supposition that T is a credible deviation). Thus, some of the members
of W must belong to (iv). However, for all i ∈ W , the winner group, there
is Q ∈ Q0(ûS0∩S∗)\(S0 ∩ S∗) with i ∈ Q ⊆ W by Lemma 1. Since members
of group (iii) j ∈ S0 ∩ S∗\T take ûjs with them (Claim 2), for all such Q,P

j∈Q∩T u
0
j =

P
j∈Q∩T ûj must hold. Therefore, no winner can transfer utility

to non-winners within group (iv):
P

i∈W∩(S0∩S∗∩T ) u
0
i ≥

P
i∈W∩(S0∩S∗∩T ) ûi.

For all i ∈ L, ûi < ūi, if group (iv) has such a member, it needs more
total payoffs than assigned core allocation (

P
i∈S0∩S∗∩T u

0
i >

P
i∈S0∩S∗∩T ûi)

in order to satisfy the necessary condition for profitable and credible deviation
(u0i ≥ ūi). With claims 2 and 3, this cannot happen since

P
i∈S0 u

0
i > V (S0)

would be concluded. Thus, L∩(S0∩S∗∩T ) = ∅must hold. Since members of
I cannot transfer utility to anybody, members ofW cannot either. Therefore,
we have

P
i∈S0∩S∗∩T u

0
i ≥

P
i∈S0∩S∗∩T ûi.¤

Claims 2, 3, and 4 immediately imply the following for group (ii).

Claim 5. Suppose that L 6= ∅ holds. Then, we haveX
i∈S0\S∗

u0i =
X

i∈S0\S∗
ûi = V (S0\S∗).

Thus, we have shown that if L 6= ∅, then group (ii) can deviate profitably
and credibly (together with group (iv)) achieve u0S0∩S∗ with a limited resource
V (S0\S∗). Due to profitability of T , V (S0\S∗) ≥

P
i∈S0\S∗ vi(a

∗(S∗)), we
have a∗(S0\S∗) > a∗(S∗). Moreover, due to credibility of T , we have u0i ≥
vi(a

∗(S0\{i})) for all i ∈ S0\S∗, which implies u0i ≥ vi(a
∗(S0\S∗\{i})). Thus,

a deviation by S0\S∗ is credible, too. We consider a new allocation that is
achieved only by group (ii).

Claim 6. Consider the case where S0\S∗ is the lobby group. Then, an al-
location (S0\S∗, a∗(S0\S∗), (u0i)i∈S0\S∗ , (vj(a∗(S0\S∗))j /∈S0\S∗) can be achieved
only by S0\S∗ (u0T is the deviators’ allocation by T ), and this allocation
Pareto-dominates (S∗, a∗(S∗), u∗).

Proof of Claim 6. First, groups (i) and (v) are better off, since a∗(S0) >
a∗(S∗). By assumption, members of group (ii) are better off (u0i ≥ vi(a

∗(S∗))
with at least one strict inequality) and have no free-riding incentives (u0i ≥
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vi(a
∗(S0\{i})) > vi(a

∗(S0\S∗\{i}))). Thus, the only groups which need inves-
tigation are groups (iii) and (iv). We check whether there can be i ∈ S0 ∩S∗
with u∗i > vi(a

∗(S0\S∗)) despite of a∗(S0\S∗) > a∗(S∗). Since u∗i ∈ Core(S∗),
and the game V is convex, u∗i ≤ V (S∗)− V (S∗\{i}) (Shapley 1971). Since

V (S∗)− V (S∗\{i})

=
X
j∈S∗

vj(a
∗(S∗))− C(a∗(S∗))−

⎛⎝ X
j∈S∗\{i}

vj(a
∗(S∗\{i}))− C(a∗(S∗\{i}))

⎞⎠
< vi(a

∗(S0\S∗))

+
X

j∈S∗\{i}

vj(a
∗(S∗))− C(a∗(S∗))−

⎛⎝ X
j∈S∗\{i}

vj(a
∗(S∗\{i}))− C(a∗(S∗\{i}))

⎞⎠
< vi(a

∗(S0\S∗)).
The last inequality holds since

P
j∈S∗\{i} vj(a) − C(a) is maximized at a =

a∗(S∗\{i}). This proves that all members of (iii) and (iv) are better off
in (S0\S∗, a∗(S0\S∗), (u0i)i∈S0\S∗, (vj(a∗(S0\S∗))j /∈S0\S∗). Hence, we conclude
that (S∗, a∗(S∗), u∗) ∈ CoreFRP is Pareto-dominated by
(S0\S∗, a∗(S0\S∗), (u0i)i∈S0\S∗, (vj(a∗(S0\S∗))j /∈S0\S∗) ∈ CoreFRP (S0\S∗), since
the members of (ii), S0\S∗, have no free-riding incentive.¤
The statement of Claim 6 is an apparent contradiction to (S∗, a∗(S∗), u∗) ∈

CoreFRP . Thus, we conclude that L = ∅ holds.
Suppose that case (a) holds. Then, L = ∅ implies I = S0∩S∗, thus ûi = ūi.

Since there is an allocation u0S0\S∗ ≥ ūS\S∗ with
P

i∈S0\S∗ u
0
i = V (S0\S∗) for

group (ii). This implies that, by property 2, (u0S0\S∗ , ûS0∩S∗) ∈ Core(S0),
and no one has a free-riding incentive. Thus, since T can improve upon
S∗, this allocation (S0, u0S0\S∗ , ûS0∩S∗ , vN\S0(a

∗(S0))) Pareto improves upon
(S∗, u∗). This is a contradiction.
Suppose that case (b) holds with L = ∅. Then, we have ûi > ūi =

max{u∗i , vi(a∗(S0\{i}))} for all i ∈ S0 ∩ S∗. Thus, members of group (iii) are
better off and have no free-riding incentive. Players in groups (i), (ii), and
(iv) deviate credibly and profitably by T , they are better off and have no
free-riding incentive for groups (ii) and (iv). Group (v) is better off by Claim
1. This means that (S0, a∗(S0), (u0i)i∈S0∩T , (ûi)i∈(S0∩S∗)\T , (vj(a

∗(S0)))j∈N\S0) ∈
CoreFRP (S0), and Pareto-dominates (S∗, a∗(S∗), u∗) ∈ CoreFRP . This is a
contradiction. Hence, (S∗, a∗(S∗), u∗) is supportable with a PCPNE σ.¤
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Proof of Proposition 3

If the above condition is violated, there is no allocation that satisfies no
free riding for S. Thus, we need only show that if the above condition is
satisfied then we can find a core allocation that satisfies

P
i∈T ui ≥ V (T ) =P

i∈T θia
∗(T )− 1

2
(a∗(T ))2. To be instructive, we will not explicitly solve a∗(T )

yet. The strategy we take is to construct an allocation, and verify that it is
in the core. Let uS ∈ RS

+ be such that for all i ∈ S

ui = θia
∗(S\{i}) + θiP

j∈S θj

ÃX
i∈S

θia
∗(S)− 1

2
(a∗(S))2 −

X
j∈S

θja
∗(S\{j})

!
.

Notice that the contents of the parenthesis is the aggregated "no-free-riding"
surplus: given the no free riding conditions, the most surplus the lobby
group S can distribute for their members. The above formula distributes
this surplus proportionally according to members’ willingnesses-to-pay θs.
Obviously, we have

P
i∈S ui = V (S) =

P
i∈S θia

∗(S) − k(a∗(S))2, and ui ≥
θia

∗(S\{i}). Thus, we need only check condition 2. For a coalition T $ S,
we haveX

i∈T
ui − V (T )

=
X
i∈T

θia
∗(S\{i}) +

P
i∈T θiP
j∈S θj

ÃX
j∈S

θja
∗(S)− 1

2
(a∗(S))2 −

X
j∈S

θja
∗(S\{j})

!

−
ÃX

i∈T
θia

∗(T )− 1
2
(a∗(T ))2

!

=

P
i∈T θiP
j∈S θj

ÃX
j∈S

θja
∗(S)− 1

2
(a∗(S))2

!
−
ÃX

i∈T
θia

∗(T )− 1
2
(a∗(T ))2

!

+
X
i∈T

θia
∗(S\{i})−

P
i∈T θiP
j∈S θj

X
j∈S

θja
∗(S\{j}).

We want this to be nonnegative for all T ⊂ S. Now, we use quadratic cost
and linear utility. The first-order condition for optimal public goods provision
is

a∗(S) =
X
i∈S

θi.
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Thus, we have

X
i∈S

θia
∗(S)− 1

2
(a∗(S))2 =

¡P
i∈S θi

¢2
2

,

and

θia
∗(S\{i}) = θi

ÃX
j∈S

θj − θi

!
.

Thus, we haveX
i∈T

ui − V (T )

=

P
i∈T θi

2
P

j∈S θj

ÃX
j∈S

θj

!2
− 1
2

ÃX
i∈T

θi

!2
+
X
i∈T

θi
X

j 6=i,j∈S
θj −

P
i∈T θiP
i∈S θi

X
i∈S

θi
X

j 6=i,j∈S
θj

=
1

2

ÃX
i∈T

θi

!ÃX
j∈S

θj

!
+
X
i∈T

θi

ÃX
j∈S

θj − θi

!
−
P

i∈T θiP
i∈S θi

X
i∈S

θi

ÃX
j∈S

θj − θi

!

=
1

2

ÃX
i∈T

θi

!ÃX
j∈S

θj

!
+
X
i∈T

θi

ÃX
j∈S

θj

!
−
X
i∈T

θ2i −
X
i∈T

θi

ÃX
j∈S

θj

!
+

P
i∈T θiP
i∈S θi

X
i∈S

θ2i

=
1

2

ÃX
i∈T

θi

!ÃX
j∈S

θj

!
−
X
i∈T

θ2i +

P
i∈T θiP
i∈S θi

X
i∈S

θ2i

=

ÃX
i∈T

θi

!"P
j∈S θj

2
−
P

i∈T θ
2
iP

i∈T θi
+

P
i∈S θ

2
iP

i∈S θi

#

=

ÃX
i∈T

θi

!"P
j∈S θj

2
−
X
j∈T

θjP
i∈T θi

× θj +
X
j∈S

θjP
i∈S θi

× θj

#
.

The second term is the only negative term, and it takes maximum absolute
value when T is composed by the players with the highest values of θj. Let us
call such value θmax (the second term’s maximum value is also θmax). Suppose
that

P
i∈S ui−V (T ) < 0. Then, by focusing on the first two terms, we know
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θmax >
1
2

P
i∈S θi. However, if that is the case, we haveP

j∈S θj

2
−
X
j∈T

θjP
i∈T θi

× θj +
X
j∈S

θjP
i∈S θi

× θj

≥
P

j∈S θj

2
− θmax +

X
j∈S

θjP
i∈S θi

× θj

≥ θmax
2
− θmax +

θmaxP
i∈S θi

× θmax

>
θmax
2
− θmax +

1

2
× θmax = 0.

This is a contradiction. Therefore, u is in CoreFRP (S).¤

Proof of Proposition 4

The relevant range of a is an interval [0, a∗(N)]. Let c ≡ mina∈[0,a∗(N)]C 00(a).
This is the minimum slope of marginal cost curve C 0 in the relevant range.
Since C(a) is twice continuously differentiable and C 00(a) > 0, c > 0 holds.
We will show that for a given public good provision level ā > 0, there exists
an r̄(ā) such that the above necessary condition for free-riding-proofness,X

i∈N

qi(S)

r
(vi(a

∗(S))− vi(a
∗(S\{ir}))) ≥ C(a∗(S)),

fails for all S ⊂ N r with a∗(S) ≥ ā and all r ≥ r̄(ā). We consider an
artificial group of players in which the optimal public good provision level
is ā. Pick r ∈ Z++ large enough, and pick i ∈ N . Let WTP−ir(a) ≡
C 0(ā)−WTPir(ā) for all a ∈ A: i.e., except for one of ir, irq, all players have
constant willingnesses-to-pay. Obviously, WTP−ir(a) +WTPir(a) = C 0(a)
is satisfied at a = ā. Note that WTPir(a) +WTP−ir(a) is the lower bound
for

P
iq∈S WTP r

iq(a) and function C 0(ā) − c × (ā− a) is the upperbound
for marginal cost C 0(a) for all a ≤ ā. Since vr0i (a) is weakly decreasing,
vr0i (a) ≤ vr0i (ā) holds for all a > ā. Thus, for all S 3 irq with a∗(S) ≥ ā, we
have

a∗(S)− a∗(S\{irq}) ≤
vr0i (ā)

c
= ā− ā−ir ,

where ā−ir is defined by WTP−ir(ā−ir) = C 0(ā)− c× (ā− ā−ir). Note that
we are considering r that is large enough so that ā−ir > 0 for all i ∈ N , in
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order to be meaningful: i.e.,

WTPir(ā) = vr0i (ā) =
v0i(ā)

r
< c× ā

for all i ∈ N . Since vr0i (a) > 0 and vr00i (a) ≤ 0, we have

vri (a
∗(S))− vri (a

∗(S\{irq})) ≤ vri (ā)− vri (ā−ir)

for all S 3 ir that achieves a∗(S) ≥ ā and all i ∈ N . This implies

vi(a
∗(S))− vi(a

∗(S\{irq})) ≤ vi(ā)− vi(ā−ir)

for all S ∈ ir that achieves a∗(S) ≥ ā. Note that ā−ir is increasing in r, which
implies vi(ā) − vi(ā−ir) is decreasing in r. Let r(ā) be the smallest integer
with X

i∈N
(vi(ā)− vi(ā−ir)) < C(ā).

This implies that even if all players get together, ā cannot be provided vol-
untarily. Hence, we haveX

i∈N

qi(S)

r
(vi(a

∗(S))− vi(a
∗(S\{ir}))) < C(a∗(S)),

for all S ⊂ N r with a∗(S) ≥ ā and all r > r(ā). This means that a∗(S∗) ≤ ā
holds for all (S∗, a∗(S∗), u∗) ∈ CoreFRP (V r) for all r ≥ r̄(a).¤
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