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Abstract

In this paper uniform confidence bands are constructed for non-
parametric quantile estimates of regression functions. The method
is based on the bootstrap, where resampling is done from a suitably
estimated empirical density function (edf) for residuals. It is known
that the approximation error for the uniform confidence band by the
asymptotic Gumbel distribution is logarithmically slow. It is proved
that the bootstrap approximation provides a substantial improvement.
The case of multidimensional and discrete regressor variables is dealt
with using a partial linear model. Comparison to classic asymptotic
uniform bands is presented through a simulation study. An economic
application considers the labour market differential effect with respect
to different education levels.
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1 Introduction

Quantile regression, as first introduced by Koenker and Bassett (1978), is
“gradually developing into a comprehensive strategy for completing the re-
gression prediction” as claimed by Koenker and Hallock (2001). Quantile
smoothing is an effective method to estimate quantile curves in a flexible
nonparametric way. Since this technique makes no structural assumptions
on the underlying curve, it is very important to have a device for understand-
ing when observed features are significant and deciding between functional
forms, for example a question often asked in this context is whether or not
an observed peak or valley is actually a feature of the underlying regression
function or is only an artifact of the observational noise. For such issues,
confidence intervals should be used that are simultaneous (i.e., uniform over
location) in nature. Moreover, uniform confidence bands give an idea about
the global variability of the estimate.

In the previous work the theoretical focus has mainly been on obtain-
ing consistency and asymptotic normality of the quantile smoother, thereby
providing the necessary ingredients to construct its pointwise confidence in-
tervals. This, however, is not sufficient to get an idea about the global vari-
ability of the estimate, neither can it be used to correctly answer questions
about the curve’s shape, which contains the lack of fit test as an immediate
application. This motivates us to construct the confidence bands. To this
end, Härdle and Song (2010) used strong approximations of the empirical
process and extreme value theory. However, the very poor convergence rate
of extremes of a sequence of n independent normal random variables is well
documented and was first noticed and investigated by Fisher and Tippett
(1928), and discussed in greater detail by Hall (1991). In the latter paper
it was shown that the rate of the convergence to its limit (the suprema of a
stationary Gaussian process) can be no faster than (log n)−1. For example,
the supremum of a nonparametric quantile estimate can converge to its limit
no faster than (log n)−1. These results may make extreme value approxi-
mation of the distributions of suprema somewhat doubtful, for example in
the context of the uniform confidence band construction for a nonparametric
quantile estimate.

This paper proposes and analyzes a method of obtaining any number
of uniform confidence bands for quantile estimates. The method is simple
to implement, does not rely on the evaluation of quantities which appear
in asymptotic distributions and also takes the bias properly into account
(at least asymptotically). More importantly, we show that the bootstrap
approximation to the distribution of the supremum of a quantile estimate is
accurate to within n−2/5 which represents a significant improvement relative
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to (log n)−1. Previous research by Hahn (1995) showed consistency of a
bootstrap approximation to the cumulative density function (cdf) without
assuming independence of the error and regressor terms. Horowitz (1998)
showed bootstrap methods for median regression models based on a smoothed
least-absolute-deviations (SLAD) estimate.

Let (X1, Y1), (X2, Y2), . . ., (Xn, Yn) be a sequence of independent identi-
cally distributed bivariate random variables with joint pdf f(x, y), joint cdf
F (x, y), conditional pdf f(y|x), f(x|y), conditional cdf F (y|x), F (x|y) for Y
given X and X given Y respectively, and marginal pdf fX(x) for X, fY (y)
for Y . With some abuse of notation we use the letters f and F to denote dif-
ferent pdf’s and cdf’s respectively. The exact distribution will be clear from
the context. At the first stage we assume that x ∈ J∗, and J∗ = (a, b) for
some 0 < a < b < 1. Let l(x) denote the p-quantile curve, i.e. l(x) = F−1Y |x(p).

In economics, discrete or categorial regressors are very common. An ex-
ample is from labour market analyse where one tries to find out how revenues
depend on the age of the employee (for different education levels, labour
union status, genders and nationalities), i.e. in econometric analysis one
targets for the differential effects. For example, Buchinsky (1995) examined
the U.S. wage structure by quantile regression techniques. This motivates
the extension to multivariate covariables by partial linear modelling (PLM).
This is convenient especially when we have categorial elements of the X vec-
tor. Partial linear models, which were first considered by Green and Yandell
(1985), Denby (1986), Speckman (1988) and Robinson (1988), are gradually
developing into a class of commonly used and studied semiparametric regres-
sion models, which can retain the flexibility of nonparametric models and
ease the interpretation of linear regression models while avoiding the “curse
of dimensionality”. Recently Liang and Li (2009) used penalised quantile
regression for variable selection of partially linear models with measurement
errors.

In this paper, we propose an extension of the quantile regression model
to x = (u, v)> ∈ Rd with u ∈ Rd−1 and v ∈ J∗ ⊂ R. The quantile re-
gression curve we consider is: l̃(x) = F−1Y |x(p) = u>β + l(v). The multi-
variate confidence band can now be constructed, based on the univariate
uniform confidence band, plus the estimated linear part which we will prove
is more accurately (

√
n consistency) estimated. This makes various tasks in

economics, e.g. labour market differential effect investigation, multivariate
model specification tests and the investigation of the distribution of income
and wealth across regions, countries or the distribution across households
possible. Additionally, since the natural link between quantile and expec-
tile regression was developed by Newey and Powell (1987), we can further
extend our result into expectile regression for various tasks, e.g. demog-
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raphy risk research or expectile-based Value at Risk (EVAR) as in Kuan
et al. (2009). For high-dimensional modelling, Belloni and Chernozhukov
(2009) recently investigated high-dimensional sparse models with L1 penalty
(LASSO). Additionally, by simple calculations, our result can be further ex-
tended to intersection bounds (one side confidence bands), which is similar
to Chernozhukov et al. (2009).

The rest of this article is organised as follows. To keep the main idea
transparent, we start with Section 2, as an introduction to the more compli-
cated situation, the bootstrap approximation rate for the uniform confidence
band (univariate case) in quantile regression is presented through a coupling
argument. An extension to multivariate covariance X with partial linear
modelling is shown in Section 3 with the actual type of confidence bands
and their properties. In Section 4, in the Monte Carlo study we compare the
bootstrap uniform confidence band with the one based on the asymptotic
theory and investigate the behaviour of partial linear estimates with the cor-
responding confidence band. In Section 5, an application considers the labour
market differential effect. The discussion is restricted to the semiparamet-
ric extension. We do not discuss the general nonparametric regression. We
conjecture that this extension is possible under appropriate conditions. All
proofs are sketched in Section 6.

2 Bootstrap confidence bands in the univari-

ate case

Suppose Yi = l(Xi) + εi, i = 1, . . . , n, where εi has distribution function
F (·|Xi). For simplicity, but without any loss of generality, we assume that
F (0|Xi) = p. F (ξ|x) is smooth as a function of x and ξ for any x, and for
any ξ in the neighbourhood of 0. We assume:

(A1). X1, . . . , Xn are an i.i.d. sample, and infx fX(x) = λ0 > 0. The quantile
function satisfies: supx |l(j)(x)| ≤ λj <∞, j = 1, 2.

(A2). The distribution of Y given X has a density and infx,t f(t|x) ≥ λ3 > 0,
continuous in x, and in t in a neighbourhood of 0. More exactly, we
have the following Taylor expansion, for some A(·) and f0(·), and for
every x, x′, t:

F (t|x′) = p+ f0(x)t+ A(x)(x′ − x) +R(t, x′;x), (1)

where

sup
t,x,x′

|R(t, x′;x)|
t2 + |x′ − x|2

<∞.
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Let K be a symmetric density function with compact support and dK =∫
u2K(u)du < ∞. Let lh(·) = ln,h(·) be the nonparametric p-quantile es-

timate of Y1, . . . , Yn with weight function K{(Xi − ·)/h} for some global
bandwidth h = hn (Kh(u) = h−1K(u/h)), that is, a solution of:∑n

i=1Kh(x−Xi)1{Yi < lh(x)}∑n
i=1Kh(x−Xi)

< q ≤
∑n

i=1Kh(x−Xi)1{Yi ≤ lh(x)}∑n
i=1Kh(x−Xi)

. (2)

Generally, the bandwidth may also depend on x. A local (adaptive) band-
width selection though deserves future research.

Note that by assumption (A1), lh(x) is the quantile of a discrete distribu-
tion, which is equivalent to a sample of sizeOp(nh) from a distribution with p-
quantile whose bias isO(h2) relative to the true value. Let δn be the local rate
of convergence of the function lh, essentially δn = h2 + (nh)−1/2 = O(n−2/5)
with optimal bandwidth choice h = hn = O(n−1/5). We employ also an

auxiliary estimate lg
def
= ln,g, essentially one similar to ln,h but with a slightly

larger bandwidth g = gn = hnn
ζ (a heuristic explanation of why it is es-

sential to oversmooth g is given later), where ζ is some small number. The
asymptotically optimal choice of ζ as shown later is 4/45.

(A3). The estimate lg satisfies:

sup
x∈J∗
|l′′g(x)− l′′(x)| = Op(1),

sup
x∈J∗
|l′g(x)− l′(x)| = Op(δn/h). (3)

Assumption (A3) is only stated to overwrite the issue here. It actually follows
from the assumptions on (g, h). A sequence {an} is slowly varying if n−αan →
0 for any α > 0. With some abuse of notation we will use Sn to denote any
slowly varying function which may change from place to place e.g. S2

n = Sn
is a valid expression (since if Sn is a slowly varying function, then S2

n is slowly
varying as well). λi and Ci are generic constants throughout this paper and
the subscripts have no specific meaning. Note that there is no Sn term in (3)
exactly because the bandwidth gn used to calculate lg is slightly larger than
that used for lh. As a result lg, as an estimate of the quantile function, has
a slightly worse rate of convergence, but its derivatives converge faster.

We also consider a family of estimates F̂ (·|Xi), i = 1, . . . , n, estimating
respectively F (·|Xi) and satisfying F̂ (0|Xi) = p. For example we can take
the distribution with a point mass c−1K{αn(Xj −Xi)} on Yj − lh(Xi), j =
1, . . . , n, where c =

∑n
j=1K{αn(Xj −Xi)} and αn ≈ h−1, i.e.

F̂ (·|Xi) =

∑n
j=1Kh(Xj −Xi)1{Yj − lh(Xi) ≤ ·}∑n

j=1Kh(Xj −Xi)
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We additionally assume:

(A4). fX(x) is twice continuously differentiable and f(t|x) is uniformly bounded
in x and t by, say, λ4.

LEMMA 2.1 [Franke and Mwita (2003), p14] If assumptions (A1, A2, A4)
hold, then for any small enough (positive) ε→ 0,

sup
|t|<ε,i=1,...,n,Xi∈J∗

|F̂ (t|Xi)− F (t|Xi)| = Op{Snδnε1/2 + ε2}. (4)

Note that the result in Lemma 2.1 is natural, since by definition, there
is no error at t = 0, since F̂ (0|Xi) ≡ p ≡ F (0|Xi). For t ∈ (0, ε), F̂ (t|Xi),
like lh, is based on a sample of size Op(nh). Hence, the random error is
Op{(nh)−1/2t1/2}, while the bias is Op(εh2) = Op(δn). The Sn term takes
care of the maximisation.

Let F−1(·|·) and F̂−1(·|·) be the inverse function of the conditional cdf and
its estimate. We consider the following bootstrap procedure: Let U1, . . . , Un
be i.i.d. uniform [0, 1] variables. Let

Y ∗i = lg(Xi) + F̂−1(Ui|Xi), i = 1, . . . , n (5)

be the bootstrap sample. We couple this sample to an unobserved hypothet-
ical sample from the true conditional distribution:

Y #
i = l(Xi) + F−1(Ui|Xi), i = 1, . . . , n. (6)

Note that the vectors (Y1, . . . , Yn) and (Y #
1 , . . . , Y

#
n ) are equally distributed

given X1, . . . , Xn. We are really interested in the exact values of Y #
i and

Y ∗i only when they are near the appropriate quantile, that is, only if |Ui −
p| < Snδn. But then, by equation (1), Lemma 2.1 and the inverse function
theorem, we have:

max
i:|F−1(Ui|Xi)−F−1(p)|<Snδn

|F−1(Ui|Xi)− F̂−1(Ui|Xi)|

= max
i:|Y #

i −l(Xi)|<Snδn

|Y #
i − l(Xi)− Y ∗i + lg(Xi)| = Op{Snδ3/2n }. (7)

Let now qhi(Y1, . . . , Yn) be the solution of the local quantile as given by

(2) at Xi, with bandwidth h, i.e. qhi(Y1, . . . , Yn)
def
= lh(Xi) for data set

{(Xi, Yi)}ni=1. Note that by (3), if |Xi −Xj| = O(h), then

max
|Xi−Xj |<ch

|lg(Xi)− lg(Xj)− l(Xi) + l(Xj)| = Op(δn) (8)
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Let l∗h and l#h be the local bootstrap quantile and its coupled sample analogue.
Then

l∗h(Xi)− lg(Xi) = qhi[{Y ∗j − lg(Xi)}nj=1]

= qhi[{Y ∗j − lg(Xj) + lg(Xj)− lg(Xi)})nj=1], (9)

while
l#h (Xi)− l(Xi) = qhi[{Y #

j − l(Xj) + l(Xj)− l(Xi)}nj=1]. (10)

From (7) – (10) we conclude that

max
i
|l∗h(Xi)− lg(Xi)− l#h (Xi) + l(Xi)| = Op(δn). (11)

Based on (11), we obtain the following theorem (the proof is given in the
appendix):

THEOREM 2.1 If assumptions (A1 - A3) and Lemma 2.1 hold, then

sup
x∈J∗
|l∗h(x)− lg(x)− l#h (x) + l(x)| = Op(δn) = Op(n−2/5).

A number of replications of l∗h(x) can be used as the basis for simultaneous
error bars because the distribution of l#h (x) − l(x) is approximated by the
distribution of l∗h(x)− lg(x), as Theorem 2.1 shows.

Although Theorem 2.1 is stated with a fixed bandwidth, in practice, to
take care of the heteroscedasticity effect, we construct confidence bands with
the width depending on the densities, which is motivated by the counterpart
based on the asymptotic theory as in Härdle and Song (2010). Thus we have
the following corollary:

COROLLARY 2.1 Under the assumptions (A1) - (A8), an approximate
(1− α)× 100% confidence band over R is

lh(v) ±
[
f̂{lh(x)|x}

√
f̂X(x)

]−1
d∗α,

where d∗α is based on the bootstrap sample (defined later) and f̂{lh(x)|x}, f̂X(x)
are consistent estimators of f{l(x)|x}, fX(x) with use of f(y|x) = f(x, y)/fX(x).

Below is the summary of the basic steps for the bootstrap procedure:

1) Given (Xi, Yi), i = 1, . . . , n, compute the local quantile smoother lh(x)
of Y1, . . . , Yn with bandwidth h and obtain residuals ε̂i = Yi−lh(Xi), i =
1, . . . , n.
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2) Compute the conditional edf:

F̂ (t|x) =

∑n
i=1Kh(x−Xi)1{ε̂i 6 t}∑n

i=1Kh(x−Xi)

3) For each i = 1, . . . , n, generate random variables ε∗i,b ∼ F̂ (t|x), b =
1, . . . , B and construct the bootstrap sample Y ∗i,b, i = 1, . . . , n, b =
1, . . . , B as follows:

Y ∗i,b = lg(Xi) + ε∗i,b.

4) For each bootstrap sample {(Xi, Y
∗
i,b)}ni=1, compute l∗h and the random

variable

db
def
= sup

x∈J∗

[
f̂{l∗h(x)|x}

√
f̂X(x)|l∗h(x)− lg(x)|

]
. (12)

where f̂{l(x)|x}, f̂X(x) are consistent estimators of f{l(x)|x}, fX(x).

5) Calculate the (1− α) quantile d∗α of d1, . . . , dB.

6) Construct the bootstrap uniform confidence band centered around lh(x),

i.e. lh(x)±
[
f̂{lh(x)|x}

√
f̂X(x)

]−1
d∗α.

While bootstrap methods are well-known tools for assessing variability,
more care must be taken to properly account for the type of bias encountered
in nonparametric curve estimation. The choice of bandwidth is crucial here.
In our experience the bootstrap works well with a rather crude choice of g,
one may, however, specify g more precisely. Since the main role of the pilot
bandwidth is to provide a correct adjustment for the bias, we use the goal of
bias estimation as a criterion. Recall that the bias in the estimation of l(x)
by l#h (x) is given by

bh(x) = E l#h (x)− l(x).

The bootstrap bias of the estimate constructed from the resampled data is

b̂h,g(x) = E l∗h(x)− lg(x). (13)

Note that in (13) the expected value is computed under the bootstrap
estimation. The following theorem gives an asymptotic representation of the
mean squared error for the problem of estimating bh(x) by b̂h,g(x). It is then
straightforward to find g to minimise this representation. Such a choice of g
will make the quantiles of the original and coupled bootstrap distributions
close to each other. In addition to the technical assumptions before, we also
need:
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(A5). l and f are four times continuously differentiable.

(A6). K is twice continuously differentiable.

THEOREM 2.2 Under assumptions (A1 - A6), for any x ∈ J∗

E
[{

b̂h,g(x)− bh(x)
}2

|X1, . . . , Xn

]
∼ h4(C1g

4 + C2n
−1g−5) (14)

in the sense that the ratio between the RHS and the LHS tends in probability
to 1 for some constants C1, C2.

An immediate consequence of Theorem 2.2 is that the rate of convergence
of g should be n−1/9, see also Härdle and Marron (1991). This makes precise
the previous intuition which indicated that g should slightly oversmooth.
Under our assumptions, reasonable choices of h will be of the order n−1/5 as
in Yu and Jones (1998). Hence, (14) shows once again that g should tend
to zero more slowly than h. Note that Theorem 2.2 is not stated uniformly
over h. The reason is that we are only trying to give some indication of how
the pilot bandwidth g should be selected.

3 Bootstrap confidence bands in PLMs

The case of multivariate regressors may be handled via a semiparametric
specification of the quantile regression curve. More specifically we assume
that with x = (u, v)> ∈ Rd, v ∈ R:

l̃(x) = u>β + l(v)

In this section we show how to proceed in this multivariate setting and how -
based on Theorem 2.1 - a multivariate confidence band may be constructed.
We first describe the numerical procedure for obtaining estimates of β and l,
where l denotes - as in the earlier sections - the one-dimensional conditional
quantile curve. We then move on to the theoretical properties. First note
that the PLM quantile estimation problem can be seen as estimating (β, l)
in

y = u>β + l(v) + ε (15)

= l̃(x) + ε

where the p-quantile of ε conditional on both u and v is 0.
In order to estimate β, let an denote an increasing sequence of positive

integers and set bn = a−1n . For each n = 1, 2, . . ., partition the unit interval
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[0, 1] for v in an intervals Ini, i = 1, . . . , an, of equal length bn and let mni

denote the midpoint of Ini. In each of these small intervals Ini, i = 1, . . . , an,
l(v) can be considered as being approximately constant, and hence (15) can
be considered as a linear model. This observation motivates the following
two stage estimation procedure:

1) A linear quantile regression inside each partition is used to estimate
β̂i, i = 1, . . . , an. Their weighted mean yields β̂. More exactly, con-
sider the parametric quantile regression of y on u,1

(
v ∈ [0, bn)

)
,1
(
v ∈

[bn, 2bn)
)
, . . . ,1

(
v ∈ [1− bn, 1]

)
. That is, let

ψ(t)
def
= (1− p)1(t < 0) + p1(t > 0).

Then let

β̂ = arg min
β

min
l1,...,lan

n∑
i=1

ψ{Yi − βTUi −
an∑
j=1

lj1
(
Vi ∈ Ini

)
}

2) Calculate the smooth quantile estimate as in (2) from (Vi, Yi−U>i β̂)ni=1,

and name it as ˜̃lh(v).

The following theorem states the asymptotic distribution of β̂.

THEOREM 3.1 There exist positive definite matrices D, C (defined in the
appendix), such that

√
n(β̂ − β)

L→ N{0, p(1− p)D−1CD−1} as n→∞.

Note that l(v), l̃h(v) (quantile smoother based on (v, y− u>β)) and ˜̃lh(v)
can be treated as a zero (w.r.t. θ, θ ∈ I where I is a possibly infinite, or
possibly degenerate, interval in R) of the functions

H̃(θ, v)
def
=

∫
R
f(v, ỹ)ψ(ỹ − θ)dỹ, (16)

H̃n(θ, v)
def
= n−1

n∑
i=1

Kh(v − Vi)ψ(Ỹi − θ), (17)

˜̃
Hn(θ, v)

def
= n−1

n∑
i=1

Kh(v − Vi)ψ(
˜̃
Yi − θ), (18)
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where

Ỹi
def
= Yi − U>i β˜̃

Yi
def
= Yi − U>i β̂ = Yi − U>i β + U>i (β − β̂)

def
= Ỹi + Zi.

From Theorem 3.1 we know that β̂−β = Op(1/
√
n) and ||Zi||∞ = Op(1/

√
n).

Under the following assumption, which are satisfied by exponential, and gen-
eralised hyperbolic distributions, also used in Härdle et al. (1988):

(A7). The conditional densities f(·|ỹ), ỹ ∈ R, are uniformly local Lipschitz
continuous of order α̃ (ulL-α̃) on J , uniformly in ỹ ∈ R, with 0 < α̃ 6 1,
and (nh)/ log n→∞.

For some constant C3 not depending on n, Lemma 2.1 in Härdle and Song
(2010) shows a.s. as n→∞:

sup
θ∈I

sup
v∈J∗
|H̃n(θ, v)− H̃(θ, v)| ≤ C3 max{(nh/ log n)−1/2, hα̃}.

Observing that
√
h/ log n = O(1), we then have:

sup
θ∈I

sup
v∈J∗
| ˜̃Hn(θ, v)− H̃(θ, v)| ≤ sup

θ∈I
sup
v∈J∗
|H̃n(θ, v)− H̃(θ, v)|

+ sup
θ∈I

sup
v∈J∗
|H̃n(θ, v)− ˜̃Hn(θ, v)|︸ ︷︷ ︸

≤Op(1/
√
n) supv∈J |n−1

∑
Kh|

≤ C4 max{(nh/ log n)−1/2, hα̃} (19)

for a constant C4 which can be different from C3. To show the uniform
consistency of the quantile smoother, we shall reduce the problem of strong

convergence of ˜̃lh(v) − l(v), uniformly in v, to an application of the strong

convergence of
˜̃
Hn(θ, v) to H̃(θ, v), uniformly in v and θ. For our result on

˜̃lh(·), we shall also require

(A8). infv∈J∗
∣∣ ∫ ψ{y − l(v) + ε}dF (y|v)

∣∣ > q̃|ε|, for |ε| 6 δ1,

where δ1 and q̃ are some positive constants, see also Härdle and Luckhaus
(1984). This assumption is satisfied if a constant q̃ exists giving f{l(v)|v} >
q̃/p, x ∈ J . Härdle and Song (2010) showed:
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LEMMA 3.1 Under assumptions (A7) and (A8), we have a.s. as n→∞

sup
v∈J∗
|˜̃lh(v)− l(v)| ≤ C5 max{(nh/ log n)−1/2, hα̃} (20)

with another constant C5 not depending on n. If additionally
α̃ > {log(

√
log n)− log(

√
nh)}/log h, (20) can be further simplified to:

sup
v∈J∗
|˜̃lh(v)− l(v)| ≤ C5{(nh/ log n)−1/2}.

Since the proof is essentially the same as Theorem 2.1 of the above men-
tioned reference, it is omitted here.

The convergence rate for the parametric part Op(n−1/2) (Theorem 3.1) is
smaller than the bootstrap approximation error for the nonparametric part
Op(n−2/5) as shown in Theorem 2.1. This makes the construction of uniform
confidence bands for multivariate x ∈ Rd with a partial linear model possible.

PROPOSITION 3.1 Under the assumptions (A1) - (A8), an approximate
(1− α)× 100% confidence band over Rd−1 × [0, 1] is

u>β̂ + lh(v) ±
[
f̂{lh(x)|x}

√
f̂X(x)

]−1
d∗α,

where f̂{lh(x)|x}, f̂X(x) are consistent estimators of f{l(x)|x}, fX(x).

4 A Monte Carlo study

This section is divided into two parts. First we concentrate on a univariate
regressor variable x, check the validity of the bootstrap procedure together
with settings in the specific example, and compare it with asymptotic uni-
form bands. Secondly we incorporate the partial linear model to handle the
multivariate case of x ∈ Rd.

Below is the summary of the simulation procedure:

1) Simulate (Xi, Yi), i = 1, . . . , n according to their joint pdf f(x, y).

In order to compare with earlier results in the literature, we choose the
joint pdf of bivariate data {(Xi, Yi)}ni=1, n = 1000 as:

f(x, y) = fy|x(y − sinx)1(x ∈ [0, 1]), (21)

where fy|x(x) is the pdf of N(0, x) with an increasing heteroscedastic
structure. Thus the theoretical quantile is l(x) = sin(x) +

√
xΦ−1(p).

Based on this normality property, all the assumptions can be seen to
be satisfied.

12



2) Compute the local quantile smoother lh(x) of Y1, . . . , Yn with band-
width h and obtain residuals ε̂i = Yi − lh(Xi), i = 1, . . . , n.

If we choose p = 0.9, then Φ−1(p) = 1.2816, l(x) = sin(x) + 1.2816
√
x.

Set h = 0.05.

3) Compute the conditional edf:

F̂ (t|x) =

∑n
i=1Kh(x−Xi)1{ε̂i 6 t}∑n

i=1Kh(x−Xi)

with the quartic kernel

K(u) =
15

16
(1− u2)2, (|u| 6 1).

4) For each i = 1, . . . , n, generate random variables ε∗i,b ∼ F̂ (t|x), b =
1, . . . , B and construct the bootstrap sample Y ∗i,b, i = 1, . . . , n, b =
1, . . . , B as follows:

Y ∗i,b = lg(Xi) + ε∗i,b,

with g = 0.2.

5) For each bootstrap sample {(Xi, Y
∗
i,b)}ni=1, compute l∗h and the random

variable

db
def
= sup

x∈J∗

[
f̂{l∗h(x)|x}

√
f̂X(x)|l∗h(x)− lg(x)|

]
. (22)

where f̂{l(x)|x}, f̂X(x) are consistent estimators of f{l(x)|x}, fX(x)
with use of f(y|x) = f(x, y)/fX(x).

6) Calculate the (1− α) quantile d∗α of d1, . . . , dB.

7) Construct the bootstrap uniform confidence band centered around lh(x),

i.e. lh(x)±
[
f̂{lh(x)|x}

√
f̂X(x)

]−1
d∗α.

Figure 1 shows the theoretical 0.9 quantile curve, 0.9 quantile estimate
with corresponding 95% uniform confidence band from the asymptotic theory
and the confidence band from the bootstrap. The real 0.9 quantile curve is
marked as the black dotted line. We then compute the classic local quantile
estimate lh(x) (cyan solid) with its corresponding 95% uniform confidence
band (magenta dashed) based on asymptotic theory according to Härdle and
Song (2010). The 95% confidence band from the bootstrap is displayed as

13
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Figure 1: The real 0.9 quantile curve, 0.9 quantile estimate with correspond-
ing 95% uniform confidence band from asymptotic theory and confidence
band from bootstrapping.

red dashed-dot lines. At first sight, the quantile smoother, together with two
corresponding bands, all capture the heteroscedastic structure quite well, and
the width of the bootstrap confidence band is similar to the one based on
asymptotic theory in Härdle and Song (2010).

To compare the small sample performance and convergence rate of both
methods, Table 1 presents the simulated coverage probabilities together with
the calculated area of the 95% confidence band of the quantile smoother, for
three sample sizes, n = 50, 100 and 200. 500 simulation runs are carried out
and for each simulation, 500 bootstrap samples are generated. From Table 1
we observe that, for the asymptotic method, coverage probabilities improve
with increasing sample size and the bootstrap method (shown in brackets)
obtains a significantly larger coverage probability than the asymptotic one,
though still smaller than the nominal coverage, which results from the fact
that quantile regression usually needs a larger sample size than mean regres-
sion and n here is quite moderate. It is also observed that the size of the
bands decrease with increasing sample size. Overall, the bootstrap method
displays a better convergence rate, while not sacrificing much on the width
of the bands.
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n Cov. Prob. Area
50 0.144 (0.642) 0.58 (1.01)
100 0.178 (0.742) 0.42 (0.58)
200 0.244 (0.862) 0.31 (0.36)

Table 1: Simulated coverage probabilities & areas of nominal asymptotic
(bootstrap) 95% confidence bands with 500 repetition.

We now extend x to the multivariate case and use a different quantile
function to verify our method. Choose x = (u, v)> ∈ Rd, v ∈ R, and generate
the data {(Ui, Vi, Yi)}ni=1, n = 1000 with:

y = 2u+ v2 + ε− 1.2816, (23)

where u and v are uniformly distributed random variables in [0, 2] and [0, 1]
respectively. ε has a standard normal distribution. The theoretical 0.9-
quantile curve is l̃(x) = 2u + v2. Since the choice of an is uncertain here,
we test different choices of an for different n by simulation. To this end, we
modify the theoretical model as follows:

y = 2u+ v2 + ε− Φ−1(p)

such that the real β is always equal to 2 no matter if p is 0.01 or 0.99. The
result is displayed in Figure 2 for n = 1000, n = 8000, n = 261148 (number of
observations for the data set used in the following application part). Different
lines correspond to different an, i.e. n1/3/8, n1/3/4, n1/3/2, n1/3, n1/3·2, n1/3·4
and n1/3 · 8. At first, it seems that the choice of an doesn’t matter too much.
To further investigate this, we calculate the SSE (

∑99
1 {β̂(i/100)−β}) where

β̂(i/100) denotes the estimate corresponding to the i/100 quantile. Results
are displayed in Table 2. Obviously an has much less effect than n on SSE.
Considering computational cost, which increases with an, and estimation
performance, empirically we suggest an = n1/3. Certainly this issue is far
from settled and needs further investigations.

Thus for the specific model (23), we have an = 10, β̂ = 1.997, h = 0.2
and g = 0.7. In Figure 3 the theoretical 0.9 quantile curve with respect to v,
and the 0.9 quantile estimate with corresponding uniform confidence band
are displayed. The real 0.9 quantile curve is marked as the black dotted line.
We then compute the quantile smoother lh(x) (magenta solid). The 95%
bootstrap uniform confidence band is displayed as red dashed lines and cover
the true quantile curve quite well.
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an n = 1000 n = 8000 n = 261148

n1/3/8 3.6 ∗ 10−3

n1/3/4 5.4 ∗ 10−1 4.0 ∗ 10−2 3.3 ∗ 10−3

n1/3/2 6.1 ∗ 10−1 3.5 ∗ 10−2 3.2 ∗ 10−3

n1/3 6.2 ∗ 10−1 3.6 ∗ 10−2 3.1 ∗ 10−3

n1/3 · 2 8.0 ∗ 10−1 3.9 ∗ 10−2 2.9 ∗ 10−3

n1/3 · 4 4.9 ∗ 10−1 3.6 ∗ 10−2 2.8 ∗ 10−3

n1/3 · 8 3.4 ∗ 10−3

Table 2: SSE of β̂ with respect to an for different numbers of observations.

5 A labour market application

Our intuition of the effect of education on income is summarised by Day and
Newburger (2002)’s basic claim: “At most ages, more education equates with
higher earnings, and the payoff is most notable at the highest educational
levels”, which is actually from the point of view of mean regression. However,
whether this difference is significant or not is still questionable, especially
for different ends of the (conditionally) income distribution. To this end,
a careful investigation of quantile regression is necessary. Since different
education levels may reflect different productivity, which is unobservable and
may also results from different ages, abilities etc, to study the labour market
differential effect with respect to different education levels, a semiparametric
partial linear quantile model is preferred, which can retain the flexibility of
the nonparametric models for the age and other unobservable factors and
ease the interpretation of the education factor.

We use the administrative data from the German National Pension Office
(Deutsche Rentenversicherung Bund) for the following group: West Germany
part, males aged 25− 59, born between 1939 and 1942 who began receiving
a pension in 2004 or 2005, with at least 30 yearly uncensored observations,
and thus in total, n = 128429 observations are available. We have the fol-
lowing three education categories: “low education”, “apprenticeship” and
“university” for the variable u (assign them the numerical values 1, 2 and
3 respectively); the variable v is the age of the employee. “Low education”
means without post-secondary education in Germany. “Apprenticeship” are
part of Germany’s dual education system. Depending on the profession, they
may work for three to four days a week in the company and then spend one
or two days at a vocational school (Berufsschule). “University” in Germany
also includes the technical colleges (applied universities). Since the level and

16



structure of wages differs substantially between East and West Germany, we
concentrate on West Germany only here (which we usually refer to simply as
Germany). Our data have several advantages over the most often used Ger-
man Socio-Economics Panel (GSOEP) data to analyze wages in Germany.
Firstly, it is available for a much longer period, as opposed to from 1984
only for the GSOEP data. Secondly, more importantly, it has a much larger
sample size. Thirdly, wages are likely to be measured much more precisely.
Fourthly, we observe a complete earnings history from the individual’s first
job until his retirement, therefore this is a true panel, not a pseudo-panel.
There are also several drawbacks. For example, some very wealthy individ-
uals are not registered in the German pension system, e.g. if the monthly
income is more than some threshold (which may vary for different years due
to the inflation effect), the individual has the right not to be included in the
public pension system, and thus not recorded. Besides this, it is also right-
censored at the highest level of earnings that are subject to social security
contributions, so the censored observations in the data are only for those
who actually decided to stay within the public system. Because of the com-
bination of truncation and censoring, this paper focuses on the uncensored
data only, and we should not draw inferences from the very high quantile.
Recently, similar data is also used to investigate the German wage structure
as in Dustmann et al. (2009).

Following from Becker (1994)’s human capital mode, a log transformation
is performed first on the hourly real wages (unit: EUR, in year 2000 prices).
Figure 4 displays the boxplots for the “low education”, “apprenticeship” and
“university” groups corresponding to different ages. In the data all ages
(25 ∼ 59) are reported as integers and are categorised in one-year groups.
We rescaled them to the interval [0, 1] by dividing by 40, with a corresponding
bandwidth of 0.059 for the nonparametric quantile smoothers. This is equiv-
alent to setting a bandwidth 2 in the original age data. This makes sense,
because to detect whether a differential effect for different education levels
exists, we compare the corresponding uniform confidence bands, i.e. differ-
ences indicate that the differential effect may exist for different education
levels in the German labour market for that specific labour group.

Following an application of the partial linear model in Section 3, Fig-
ure 5 displays β̂ with respect to different quantiles for 6, 13, 25 partitions,
respectively. At first, the β̂ curve is quite surprising, since it is not, as in
mean regression, a positive constant, but rather varies a lot, e.g. β̂(0.20) =
0.026, β̂(0.50) = 0.057 and β̂(0.80) = 0.061. Furthermore, it is robust to
different numbers of partitions. It seems that the differences between the
“low education” and “university” groups are different for different tails of
the wage distribution. To judge whether these differences are significant, we
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use the uniform confidence band techniques discussed in Section 2 which are
displayed in Figure 6 - 8 corresponding to the 0.20, 0.50 and 0.80 quantiles
respectively.

The 95% uniform confidence bands from bootstrapping for the “low edu-
cation” group are marked as red dashed lines, while the ones for “apprentice-
ship” and “university” are displayed as blue dotted and brown dashed-dot
lines, respectively. For the 0.20 quantile in Figure 6, the bands for “univer-
sity”, “apprenticeship” and “low education” do not differ significantly from
one another although they become progressively lower, which indicates that
high education does not equate to higher earnings significantly for the lower
tails of wages, while increasing age seems the main driving force. For the
0.50 quantile in Figure 7, the bands for “university” and “low education”
differ significantly from one another although not from “apprenticeship”’s.
However, for the 0.80-quantiles in Figure 8, all the bands differ significantly
(except on the right boundary because of the nonparametric method’s bound-
ary effect) resulting from the relatively large β̂(0.80) = 0.061, which indicates
that high education is significantly associated with higher earnings for the
uppers tails of wages.

If we investigate the explanations for the differences in different tails
of the income distribution, maybe the most prominent reason is the rapid
development of technology, which has been extensively studied. The point is
technology does not simply increase the demand for upper-end labour realtive
to that of lower-end labour, but instead asymmetrically affects the bottom
and the top of the wage distribution, resulting in its strong asymmetry.

Conclusions from the point of view of quantile regression are consistent
with the (grouped) mean regression’s, but in a careful way, i.e. we pro-
vide formal statistical tools to judge these uniformly. Partial linear quantile
regression techniques, together with confidence bands, as developed in this
paper, display very interesting findings compared with classic (mean) meth-
ods. Motivated by several key observations like the average income for female
employees increase more than men’s during the past few decades, partially
because a better social welfare system means women can be more and more
selective; and the “hollowing out” effect of employment, i.e. job growth in
U.S., U.K. and continental Europe has increasingly been concentrated in the
tails of the skill distribution over the last two decades, with disproportionate
employment gains in high-wage, high-education occupations and low-wage,
low-education occupations, further applications, for example to different gen-
ders, labour union status, nationalities and inequality analysis amongst other
things will definitely bring more contributions to the differential analysis of
the labour market.
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Figure 2: β̂ with respect to different quantiles for different numbers of ob-
servations, i.e. n = 1000, n = 8000, n = 261148.
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Figure 3: Nonparametric part smoothing, real 0.9 quantile curve with re-
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groups corresponding to different ages.
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Figure 5: β̂ corresponding to different quantiles with 6, 13, 25 partitions.
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Figure 6: 95% uniform confidence bands for 0.05-quantile smoothers with 3
different education levels
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Figure 7: 95% uniform confidence bands for 0.50-quantile smoothers with 3
different education levels
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Figure 8: 95% uniform confidence bands for 0.99-quantile smoothers with 3
different education levels

22



6 Appendix

Proof of Theorem 2.1 We start by proving equation (7). Write first
F̂−1(Ui|Xi) = F−1(Ui|Xi) + ∆i. Fix any i such that |F−1(Ui|Xi)| ≤ Snδn,
which, by equation (1), implies that |Ui − p| < Snδn. Lemma 2.1 gives:

max
i
|F̂ (S2

nδn|Xi)− F (S2
nδn|Xi)| = Op(δn). (24)

Together with F (±S2
nδn|Xi) = p ± O(S2

nδn) again by equation (1), we have
F̂ (±S2

nδn|Xi) = p±Op(S2
nδn) and thus

F̂ (−S2
nδn|Xi) = p−Op(S2

nδn)

< p− Snδn < Ui < p+ Snδn

< p+Op(S2
nδn) = F̂ (S2

nδn|Xi).

Since F̂ (·|Xi) is monotone non-decreasing, |F̂−1(Ui|Xi)| ≤ S2
nδn, which means,

by S2
n = Sn,

|F̂−1(Ui|Xi)| ≤ Snδn. (25)

Apply now Lemma 2.1 again to equation (25), and obtain:

Snδ
3/2 ≥ |F̂i{F̂−1(Ui|Xi)} − F{F̂−1(Ui|Xi)|Xi}|

= |Ui − F{F−1(Ui|Xi) + ∆i|Xi}|
= |F{F−1(Ui|Xi)|Xi} − F{F−1(Ui|Xi) + ∆i|Xi}|
≥ f0(Xi)|∆i| (26)

Hence |∆i| < Snδ
3/2
n , and we summarise it as:

max
i:|F−1(Ui|Xi)−F−1(p)|<Snδn

|F−1(Ui|Xi)− F̂−1(Ui|Xi)| = Op{Snδ3/2n }.

Beside the above approach, there is an alternative way. Note that
|F̂−1(Ui|Xi)| ≤ |F−1(Ui|Xi)|+ |∆i| ≤ Snδn + |∆i|. Similar to inequality (26),
by applying Lemma 2.1, we have Snδn(|∆i|+ Snδn)1/2 ≥ f0(Xi)|∆i|. Solving
this inequality w.r.t. |∆i| gives:

|∆i| < {Snδ2n + (Snδ
2
n + 4Snδ

3
n)1/2}/2 = Op(Snδ

3/2
n ),

which leads to the same conclusion.
To show equation (11), define

Z1j
def
= Y ∗j − lg(Xj) + lg(Xj)− lg(Xi)

Z2j
def
= Y #

j − l(Xj) + l(Xj)− l(Xi).
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Thus qhi[{Y ∗j − lg(Xj) + lg(Xj)− lg(Xi)})nj=1] and qhi[{Y #
j − l(Xj) + l(Xj)−

l(Xi)}nj=1] can be seen as lh(Xi) for data sets {(Xi, Z1i)}ni=1 and {(Xi, Z2i)}ni=1

respectively. Similar to Härdle and Song (2010), they can be treated as a
zero (w.r.t. θ, θ ∈ I where I is a possibly infinite, or possibly degenerate,
interval in R) of the functions

G̃n(θ,Xi)
def
= n−1

n∑
j=1

Kh(Xi −Xj)ψ(Z1j − θ), (27)

˜̃
Gn(θ,Xi)

def
= n−1

n∑
j=1

Kh(Xi −Xj)ψ(Z2j − θ). (28)

From (7) and (8), we have

max
i

∣∣∣[{Y ∗j − lg(Xj) + lg(Xj)− lg(Xi)})nj=1]− [{Y #
j − l(Xj) + l(Xj)− l(Xi)}nj=1]

∣∣∣
= Op{Snδ3/2n }+Op(δn) = Op(δn) (29)

Thus

sup
θ∈I

max
i
|G̃n(θ,Xi)−

˜̃
Gn(θ,Xi)| ≤ Op(δn) max |n−1

∑
Kh| = Op(δn)

To show the difference of the two quantile smoothers, we shall reduce the
strong convergence of qhi[{Y ∗j − lg(Xj) + lg(Xj) − lg(Xi)})nj=1] − qhi[{Y

#
j −

l(Xj) + l(Xj)− l(Xi)}nj=1], for any i, to an application of the strong conver-

gence of G̃(θ,Xi) to
˜̃
Gn(θ,Xi), uniformly in θ, for any i. Under assumptions

(A7) and (A8), in a similar spirit of Härdle and Song (2010), we get

max
i
|l∗h(Xi)− lg(Xi)− l#h (Xi)− l(Xi)| = Op(δn).

To show the supremum of the bootstrap approximation error, without loss
of generality, based on assumption (A1), we reorder the original observations
{Xi, Yi}ni=1, such that X1 6 X2 6 . . . ,6 Xn. First decompose:

sup
x∈J∗
|l∗h(x)− lg(x)− l#h (x)− l(x)| = max

i
|l∗h(Xi)− lg(Xi)− l#h (Xi)− l(Xi)|

+ max
i

sup
x∈[Xi,Xi+1]

|l∗h(x)− lg(x)− l#h (x)− l(x)|.(30)

From assumption (A1) we know l′(·) ≤ λ1 and maxi(Xi+1−Xi) = Op(Sn/n).
By the mean value theorem, we conclude that the second term of (30) is of
a lower order than the first term. Together with equation (11) we have
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sup
x∈J∗
|l∗h(x)− lg(x)− l#h (x)− l(x)|

= O{max
i
|l∗h(Xi)− lg(Xi)− l#h (Xi)− l(Xi)|} = Op(δn),

which means that the supremum of the approximation error over all x is of
the same order of the maximum over the discrete observed Xi. �

Proof of Theorem 2.2. The proof of (14) uses methods related to those in
the proof of Theorem 3 of Härdle and Marron (1991), so only the main steps
are explicitly given. The first step is a bias-variance decomposition,

E
[{

b̂h,g(x)− bh(x)
}2

|X1, ...Xn

]
= Vn + B2

n (31)

where

Vn = Var
[
b̂h,g(x)|X1, ...Xn

]
,

B2
n = E

[
b̂h,g(x)− bh(x)|X1, ...Xn

]
.

Following the uniform Bahadur representation techniques for quantile re-
gression as in Theorem 3.2 of Kong et al. (2008), we have the following linear
approximation for the quantile smoother as a local polynomial smoother cor-
responding to a specific loss function:

l#h (x)− l(x) = Ln + Op(Ln),

where

Ln =
n−1

∑
Kh(x−Xi)ψ {Yi − l(x)}
f {l(x)|x} fX(x)
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for

ψ(u) = p1{u ∈ (0,∞)} − (1− p)1{u ∈ (−∞, 0)}
= p− 1{u ∈ (−∞, 0)},

l(x− t)− l(x) = l′(x)(−t) + l′′(x)t2 + O(t2),

{l(x− t)− l(x)}′ = l′′(x)(−t) + l′′′(x)t2 + O(t2),

f(x− t) = f(x) + f ′(x)(−t) + f ′′(x)(t2) + O(t2),

f ′(x− t) = f ′(x) + f ′′(x)(−t) + f ′′′(x)t2 + O(t2),∫
Kh(t)tdt = 0,∫
Kh(t)t

2dt = h2dK ,∫
Kh(t)O(t2)dt = O(h2).

Then we have
Bn = Bn1 + O(Bn1),

where

Bn1 =

∫
Kg(x− t)Uh(t)dt− Uh(x)

fX(x)f {l(x)|x}
for

Uh(x) =

∫
Kh(x− s)ψ {l(s)− l(x)} f(s)ds

=

∫
Kh(t)ψ {l(x− t)− l(x)} f(x− t)dt.

By differentiation, a Taylor expansion and properties of the kernel K (see
assumption (A2)),

U ′h(x) =

∫
Kh(t)[ψ

′ {l(x− t)− l(x)}′ f(x− t)

+ψ {l(x− t)− l(x)} f ′(x− t)]dt.

Collecting terms, we get

U ′h(x) =

∫
Kh(t){ψ′l′′(x)f ′X(x)t2 + ψ′l′′′fX(x)t2

+af ′′′(x)t2 + O(t2)}dt

=

∫
Kh(t)

{
C0t

2 + o(t2)
}
dt = h2dK · C0 + O(h2),
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where a is a constant with |a| < 1 and C0 = ψ′l′′(x)f ′X(x) + ψ′l′′′fX(x) +
af ′′′(x).

Hence, by another substitution and Taylor expansion, for the first term
in the numerator of Bn1, we have

Bn2 = g2h2(dK)2 · C0 + O(g2h2).

Thus, along almost all sample sequences,

B2
n = C1g

4h4 + O(g4h4) (32)

for C1 = (dK)4C2
0/[f

2
X(x)f 2 {l(x)|x}].

For the variance term, calculation in a similar spirit shows that

Vn = Vn1 + O(Vn1),

where

Vn1 =

∫
K2
g (x− t)Wh(t)dt− {

∫
Kg(x− t)Uh(t)dt}2fX(x)f {l(x)|x}

fX(x)f {l(x)|x}

for

Wh(x) =

∫
K2
h(x− s)ψ {l(s)− l(x)}2 f(s)ds

=

∫
K2
h(t)ψ {l(x− t)− l(x)}2 f(x− t)dt.

Hence, by Taylor expansion, collecting items and similar calculation, we have

Vn = n−1h4g−5C2 + O(n−1h4g−5) (33)

for a constant C2. This, together with (31) and (32) completes the proof of
Theorem 2.2. �

Proof of Theorem 3.1. In case the function l is known, the estimate β̂I is:

β̂I = argmin
β

n∑
i=1

ψ{Yi − l(Vi)− U>i β}.

Since l is unknown, in each of these small intervals Ini, l(Vi) could be
regarded as a constant α = l(mni) for some i whose corresponding interval
Ini covers Vi. From assumption (A1), we know that |l(Vi)−αi| ≤ λ1bn <∞.
If we define our first step estimate β̂i inside each small interval as
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(α̂i, β̂i) = argmin
α, β

∑
ψ(Yi − α− U>i β),

|{Yi − l(Vi)− U>i β} − (Yi − α− U>i β)| ≤ λ1bn <∞ indicates that we could
treat β̂i as β̂I inside each partition. If we use di to denote the number
of observations inside partition Ini (based on the i.i.d. assumption as in
assumption (A1), on average di = n/an). For each of the β̂i inside interval
Ini, various parametric quantile regression literature, e.g. the convex function
rule in Pollard (1991) and Knight (2001) yields√

di(β̂i − β)
L→ N{0, p(1− p)D′−1i (p)C ′iD

′−1
i (p)} (34)

with the matrices C ′i = di
−1∑di

i=1 U
>
i Ui andD′i(p) = di

−1∑di
i=1 f{l(Vi)|Vi}U>i Ui.

To get β̂, our second step is to take the weighted mean of β̂1, . . . , β̂an as:

β̂ = arg min
β

an∑
i=1

di(β̂i − β)2

=
an∑
i=1

diβ̂i/n

Please note that under this construction, β̂1, . . . , β̂an are independent but
not identical. Thus we intend to use the Lindeberg condition for the central
limit theorem. To this end, we use s2n to denote Var(

∑an
i=1 diβ̂i/n), and we

need to further check whether the following “Lindeberg condition” holds:

lim
an→∞

1

s2n

an∑
i=1

∫
(|diβ̂i/n−β|>εsn)

(β̂i − β)2 dF = 0, for all ε > 0. (35)

Since

Var(
an∑
i=1

diβ̂i/n) =
an∑
i

p(1− p)
{[
n/di

di∑
j=1

f{l(Vj)|v}U>j Uj
]−1

×
di∑
i=1

U>i Ui

[
n/di

di∑
j=1

f{l(Vj)|v}U>j Uj
]−1}

≈ p(1− p)
[ n∑
j=1

f{l(Vj)|v}U>j Uj
]−1

×
n∑
i=1

U>i Ui

[ n∑
j=1

f{l(Vj)|v}U>j Uj
]−1

def
=

1

n
p(1− p)D−1n CnD

−1
n ,
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where Dn = 1
n

∑n
j=1 f{l(Vj)|Vi}U>j Uj and Cn = 1

n

∑n
i=1 U

>
i Ui, together with

the normality of β̂i as in (34) and properties of the tail of the normal distri-
bution, e.g. Exe. 14.3− 14.4 of Borak et al. (2010), (35) follows.

Thus as n, an → ∞ (although at a lower rate than n), together with
C = plimn→∞Cn, D = plimn→∞Dn, we have

√
n(β̂ − β)

L→ N{0, p(1− p)D−1CD−1}. (36)
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