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Fitting high-dimensional Copulae to Data∗

Ostap Okhrin†

April 12, 2010

Abstract: This paper make an overview of the copula theory from a practical side. We consider

different methods of copula estimation and different Goodness-of-Fit tests for model selection. In

the GoF section we apply Kolmogorov-Smirnov and Cramer-von-Mises type tests and calculate

power of these tests under different assumptions. Novating in this paper is that all the procedures

are done in dimensions higher than two, and in comparison to other papers we consider not

only simple Archimedean and Gaussian copulae but also Hierarchical Archimedean Copulae.

Afterwards we provide an empirical part to support the theory.

Keywords: copula; multivariate distribution; Archimedean copula; GoF.

JEL Classification: C13, C14, C50.

1 Introduction

Many practical problems arise from modelling high dimensional distributions. Precise
modelling is important in fitting of asset returns, insurance payments, overflows from a
dam and so on. Often practitioners stay ahead of potential problems by using assets
backed up in huge portfolios, payments spatially distributed over land, and dams located
on rivers where there are already other hydrological stations. This means that univariate
problems are extended to multivariate ones in which all the univariate ones are dependent
on each other. Until the late 1990s elliptical distribution, in particular the multivariate
normal one, was the most desired distribution in practical applications. However the
normal distribution does not, in practice, meet most applications. Some studies (see
e.g Fama (1965), Mandelbrot (1965), etc.) show that daily returns are not normally
distributed but follow stable distributions. This means that on one hand one cannot take
the distribution in which margins are normal, and on the other hand, stable multivariate
distributions are difficult to implement. In the hydrological problem, margins arise from
extreme value distribution, while one is interested in the maximal value of the water
collected after the winter season over a number of years, this value arises from the family

∗The financial support from the Deutsche Forschungsgemeinschaft via SFB 649 “Okonomisches
Risiko”, Humboldt-Universität zu Berlin is gratefully acknowledged.

†C.A.S.E. - Center for Applied Statistics and Economics, Ladislaus von Bortkiewicz Chair of
Statistics of Humboldt-Universität zu Berlin, Spandauer Straße 1, D-10178 Berlin, Germany. Email:
ostap.okhrin@wiwi.hu-berlin.de
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Figure 1: Scatter plots of bivariate samples with different dependency structures

of extreme distributions. As in the previous example, the multivariate extreme value
distribution family is also somewhat restrictive.

Two further problems are illustrated in Figure 1. The scatter plot in the first figure
shows the realisations of two Gaussian random variables. The points are symmetric and
no extreme outliers can be observed. In contrary, the second picture exhibits numerous
outliers. The outliers in the first and third quadrants show that extreme values often
occur simultaneously for both variables. Such behaviour is observed in crisis periods,
when strong negative movements on financial markets occur simultaneously. On the third
figure we observe that the dependency between the negative values is different compared
to the positive values. This type of non-symmetric dependency cannot be modeled by
elliptical distributions, because they impose a very specific radially symmetric dependency
structure.

Following these examples we need a solution to easily separate the modelling of the de-
pendency structure and the margins. This is one of the tasks of copulae; to enable the
modelling of marginals separately from the dependency. The above problem concerning
assets could be solved by taking margins from the stable distribution and the dependency,
as in the multivariate one. Similar solutions could be found for other problems. In fi-
nance, copulae are applied in different fields such as credit portfolio modelling and risk
management.

Over the last 40 years, copula has only been attractive from a mathematical perspective,
and only as late as 1999 were the different complicated properties of copula, such as the
distribution (which made it more flexible), settled and solved. Nowadays dependency
plays a key role in many financial models, starting from the basic portfolio theory of
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Markowitz. Recent developments strongly support the joint non-Gaussianity of asset
returns and exploit numerous alternative approaches to model the underlying distribution.
The key role of dependency can be best illustrated by the famous quote “Given the prices
of single-bet financial contracts, what is the price of multiple-bet contracts? There is
no unique answer to that question...”. The first application of copulae to financial data
was carried out by Embrechts, McNeil and Straumann (1999). In this paper copulae
were used in risk management framework which stimulated a series of ground breaking
applied papers. Breymann, Dias and Embrechts (2003) model the dependencies of high-
frequency data. An application to risk management is discussed in Junker and May (2005).
Portfolio selection problems were considered in Hennessy and Lapan (2002) and in Patton
(2004). Theoretical foundations of copula-based GARCH models and its application were
proposed by Chen and Fan (2005). Lee and Long (2009), Giacomini, Härdle and Spokoiny
(2009) and Härdle, Okhrin and Okhrin (2010) consider time varying copulae.

The new fields of application show the need for further theoretical developments. Each
proposed model should be estimated with either parametric, semi- or nonparametric meth-
ods. The semiparametric estimation of the copula-based distribution, which is based on
the nonparametric estimation of margins and estimation of the parameter for the fixed
copula function, is discussed in Chen and Fan (2006), Chen, Fan and Tsyrennikov (2006),
Genest, Ghoudi and Rivest (1995), Joe (2005), Wang and Wells (2000). Fully nonpara-
metric estimation is discussed in Fermanian and Scaillet (2003), Chen and Huang (2007),
Lejeune and Sarda (1992). To measure how well a copula-based statistical model fits the
data, several goodness-of-fit tests were developed and discussed in the papers by Chen
and Fan (2005), Chen, Fan and Patton (2004), Fermanian (2005) and Genest, Quessy
and Rémillard (2006), Genest and Rémillard (2008), Breymann et al. (2003). In-depth
discussion of simulation methodologies for Archimedean copulae can be found in Whelan
(2004) and McNeil (2008). A detailed review and discussion of copula theory is given in
Joe (1997) and Nelsen (2006).

In this chapter we describe the attractive features of copulae from the statistical perspec-
tive, with examples and applications in real data. We consider the most important copula
classes with different methods of estimation and goodness-of-fit tests. We compare differ-
ent goodness-of-fit tests by their rejection rates, for which a profound simulation study
has been devised. In the empirical part of the chapter we apply different copula models to
the normalised residuals and test the quality of the fit by discussed goodness-of-fit tests.
We found that for the selected datasets hierarchical Archimedean copula outperform the
simple Archimedean copula and the Gaussian copula by all goodness-of-fit tests.

2 Theoretical Background

From the early days of the multivariate probability theory it is well known, that given the
d-variate distribution function F : R → [0; 1] of a d-variate random vector (X1, . . . , Xd)
the distribution function, called marginal distribution function of each of the d components
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X1, . . . , Xd is easily computed:

F1(x) = F (x,+∞, . . . ,+∞),

F2(x) = F (+∞, x,+∞, . . . ,+∞),

· · ·
Fd(x) = F (+∞, . . . ,+∞, x).

The converse problem was studied by Fréchet (1951), Hoeffding (1940), Hoeffding (1941),
where having the distribution functions F1, . . . , Fd of d random variables X1, . . . , Xd de-
fined on the same probability space (Ω,F ,P) they wanted to make a conclusions about
the set Γ(F1 . . . , Fd) of the d-variate distribution functions whose marginals are F1, . . . , Fd

F ∈ Γ(F1, . . . , Fd) ⇔


F1(x) = F (x,+∞, . . . ,+∞),
F2(x) = F (+∞, x,+∞, . . . ,+∞),

· · ·
Fd(x) = F (+∞, . . . ,+∞, x).

Nowadays the set Γ(F1, . . . , Fd) is called the Fréchet class of F1, . . . , Fd. Γ is not empty,
because it always contains the independence case in which F (x1, . . . , xd) = F1(x1) · · · · ·
Fd(xd), ∀x1, . . . , xd ∈ R. Dealing with Fréchet classes, one often interests in the bounds
and members of the Γ. Dall’Aglio (1972) studies conditions under which there is only
one distribution function which belongs to Γ(F1, . . . , Fd). A nice and short review of the
Fréchet classes can be found in Joe (1997).

In 1959 Sklar found the partial solution to the above mentioned problem by introducing
copulae. Because there are a variety of copula definitions we will first look at the most
general one. For this we will need to define the C-volume with the d-box that is a cartesian
product [a,b] =

∏d
j=1[aj, bj], where, for every index j ∈ {1, 2, . . . , d}, 0 ≤ aj ≤ bj ≤ 1.

Definition 1 For a function C : [0; 1]d → [0; 1], the C-volume Vc of the box [a,b] is
defined via

Vc([a,b])
def
=
∑
v

sign(v)C(v),

where the sum is carried over all the 2d vertices v of the box [a,b]. Here also

sing(v) =

{
1, if vj = aj for an even number of vertices,
−1, if vj = aj for an odd number of vertices.

Here is the definition of a copula, see Härdle and Simar (2007):

Definition 2 A function C : [0, 1]d → [0, 1] is a d-dimensional copula if

1. C(x1, . . . , xd) = 0, when xj = 0 for at least one index j ∈ {1, . . . , d};
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2. C(1, 1, . . . , xj, 1 . . . , 1) = xj;

3. the Vc-volume of every d-box [a,b] is positive: Vc([a,b]) ≥ 0.

The set of all the d-dimensional copulae (d ≥ 3) in the rest of the chapter is denoted as
Cd, while the set of all bivariate (d = 2) copulae is denoted by C. As already mentioned
above, this simple family of functions has been extremely popular because of its property
given in the Sklar (1959) theorem

Theorem 1 Given a d-dimensional distribution function F , a copula C ∈ Cd exists such

that for all (x1, . . . , xd) ∈ Rd
:

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}. (1)

The copula C is uniquely defined on
∏d

j=1 Fj(R) and therefore unique if all margins are
continuous, thus

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
d (ud)}. (2)

Conversely, if F1, . . . , Fd are d one-dimensional distribution functions, then the function
F defined in (1) is a d-dimensional distribution function.

Sklar’s theorem also answers the question of the uniqueness of the copula C. However, if,
for example, in the two dimensional case at least one of the two distribution functions has
a discrete component, there may be more than one copula extending C from F1(R)×F2(R)
to the whole unit square [0, 1]2. This is due to a fact that C is uniquely defined only on the
product of the ranges F1(R)×F2(R). In this case it is good to have a procedure of bilinear
interpolation in order to single out a unique copula. In the variety of papers where copulae
are applied in different fields, authors usually do not consider the assumption that the
random variables are continuous. This assumption is necessary to avoid problems with
non-uniqueness. The second part of the Sklar’s theorem is based on the construction of
the multivariate distribution from the margins and the copula function. It is extremely
popular in practice, where, for example, in risk management, analysts may have a better
idea about the marginal behaviour of individual risk factors, than about their dependency
structure. This approach allows them to combine marginal models and to investigate the
sensitivity of risk to the dependence specification.

New multivariate distributions are created in two steps. At first, all univariate random
variables X1, . . . , Xd are separately described by their marginal distributions F1, . . . , Fd.
Then secondly, the copula C ∈ Cd which contains all the information about the relation-
ship between the original variables X1, . . . , Xd – not taking into account the information
provided by F1, . . . , Fd – is introduced.

Being armed with the remarks written above, one can write the following copula definition

Definition 3 A d-dimensional copula is a cumulative distribution function on [0, 1]d with
standard uniform marginal cumulative distribution functions.
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As in the case of the multivariate distribution, mentioned at the beginning, setting all of
the arguments equal to +∞ one gets an univariate marginal distribution. A univariate
marginal of copula C is obtained by setting some of its arguments equal to 1. Similarly
the m-marginal of C, m < d is given by setting all d−m arguments equal to 1, from the
simple combinatoric problem, we see that there are

(
d
m

)
different m-margins of the copula

C.

A copula C satisfies a set of different important conditions, one of which is the Lipschitz
condition which says that:

|C(u1, . . . , ud)− C(v1, . . . , vd)| ≤
d∑

j=1

|vj − uj|.

Another property says, that ∀j ∈ {1, . . . , d}, {u1, . . . , uj−1, t, uj+1, . . . , ud}, ∀t ∈ [0, 1],
the functions t 7→ C(u1, . . . , uj−1, t, uj+1, . . . , ud) are increasing as functions of t.

To get a better impression of what a copula is from a definition, let us consider a special
bivariate case. Explicitly, a bivariate copula is a function C : [0, 1]2 → [0, 1] such that:

1. ∀u ∈ [0, 1] C(u, 0) = C(0, u) = 0;

2. ∀u ∈ [0, 1] C(u, 1) = C(1, u) = u;

3. ∀u, u′, v, v′ ∈ [0, 1] with u ≤ u′ and v ≤ v′

C(u′, v′)− C(u′, v)− C(u, v′) + C(u, v) ≥ 0.

The last inequality is referred to as the rectangular inequality and the function that
satisfies it is said to be 2-increasing. The bivariate copula is always of special interest,
because of the properties that are difficult to derive in higher dimensions.

The property of increasingness with respect to each argument could be profound for the
bivariate copula in the following way. As we know from above, if C is a bivariate copula,
then functions [0, 1] ∋ t 7→ C(t, v) and [0, 1] ∋ t 7→ C(v, t) are increasing with respect to t.
The increasingness with respect to each argument means that derivatives with respect to
Lebegue measure exist almost everywhere, and those derivatives are positive where they
exist. From the Lipschitz conditions they are also bound above

0 ≤ ∂C(s, t)

∂s
≤ 1, 0 ≤ ∂C(s, t)

∂t
≤ 1.

Every copula can be expressed in the form of the sum of absolutely continuous and singular
part and an absolutely continuous copula C has a density c such that

C(u1, . . . , ud) =

∫
[0,1]d

c(s1, . . . , sd)ds1 . . . dsd =

1∫
0

ds1 . . .

1∫
0

c(s1, . . . , sd)dsd

from which the copula density is found by differentiation

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud

.
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Following the Sklar theorem, the multivariate distribution F with margins F1, . . . , Fd

has multivariate density f with marginal densities f1, . . . , fd respectively. If, from the
Sklar theorem copula C exists such that F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)} then the
d-variate density is

f(x1, . . . , xd) = c{F1(x1), . . . , Fd(xd)} · f1(x1) . . . fd(xd). (3)

Notice, however, that, as a consequence of the Lipschitz condition, for every bivariate
copula C and for every v ∈ [0, 1], both functions t 7→ C(t, v) and t 7→ C(v, t) are absolutely
continuous so that

C(t, v) =

t∫
0

c1v(s)ds and C(v, t) =

t∫
0

c2v(s)ds.

Unfortunately, this representation has no application so far.

3 Copula Classes

Naturally, there are an infinite number of different copula functions satisfying the assump-
tions of definition. In this section we discuss in details three important classes of simple,
elliptical and Archimedean copulae.

3.1 Simple Copulae

Often we are interested in some extreme, special cases, like independence and perfect
positive or negative dependence. If d-random variables X1, . . . , Xd are stochastically in-
dependent from the Sklar Theorem the structure of such a relationship is given by the
product (independence) copula defined as

Π(u1, . . . , ud) =
d∏

j=1

uj, u1, . . . , ud ∈ [0, 1].

Another two extremes are the lower and upper Fréchet-Hoeffding bounds. They represent
the perfect negative and positive dependencies respectively

W (u1, . . . , ud) = max
(
0,

d∑
j=1

uj + 1− d
)
,

M(u1, . . . , ud) = min(u1, . . . , ud), u1, . . . , ud ∈ [0, 1].

If, in a two dimensional case C = W and (X1, X2) ∼ C(F1, F2) then X2 is a decreasing
function of X1. Similarly, if C = M , then X2 is an increasing function of X1. In other
words both M and W are singular, where M uniformly spreads the probability mass on
the diagonal X1 = X2 and W uniformly spreads the probability mass on the opposite
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Figure 2: Lower Frechet Hoeffdings bound, Product copula and upper Frechet Hoeffdings
bound in two-dimensional case (from left to right).

diagonal X1 = −X2. In general we can argue that an arbitrary copula which represents
some dependency structure lies between these two bounds, i.e.

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ M(u1, . . . , ud).

The bounds serve as benchmarks for the evaluation of the dependency magnitude. Note,
however, that the lower Fréchet-Hoeffding bound is not a proper copula function for d > 2
but is a proper quasi-copula. Both upper and lower bounds are sharp, because there are
copulae, that are either equal, at some points, to one of the two bounds.

The simple copulae for the two dimensional case are plotted in Figure 2.

3.2 Elliptical Copulae

Due to the popularity of Gaussian and t-distributions in financial applications, elliptical
copulae also play an important role. For example, in the modelling of collateralized
debt obligations, where the assumption of the Gaussian one-factor dependency between
joint default of the obligors, proposed by Li (2000), is seen as a standard approach. The
construction of this type of copulae is based directly on the Sklar Theorem. The Gaussian
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Figure 3: Contour diagrams for Gaussian copula with Gaussian (left column) and t3
distributed (right column) margins.

copula and its copula density are given by:

CN(u1, . . . , ud,Σ) = ΦΣ{Φ−1(u1), . . . ,Φ
−1(ud)},

cN(u1, . . . , ud,Σ) =

= |Σ|−1/2 exp

{
− [Φ−1(u1), . . . ,Φ

−1(ud)]
′(Σ−1 − I)[Φ−1(u1), . . . ,Φ

−1(ud)]

2

}
,

for all u1, . . . , ud ∈ [0, 1],

where ΦΣ is a d-dimensional normal distribution with a zero mean and the correlation
matrix Σ. The variances of the variables are imposed by the marginal distributions. Note,
that in the multivariate case the implementation of elliptical copulae is very involved due
to technical difficulties with multivariate cdf’s. The level plots of the two-dimensional
respective densities with different margins are given in Figure 3.

Using (2) one can derive the copula function for an arbitrary elliptical distribution. The
problem is, however, that such copulae depend on the inverse distribution functions and
these are rarely available in an explicit form. Therefore, the next class of copulae with
its generalisations provides an important flexible and rich family of alternatives to the
elliptical copulae.

3.3 Archimedean Copulae

In contrast to elliptical copulae, Archimedean copulae have a special method of construc-
tion which does not use (2), but fulfills all the conditions of the copula. Having M as
an univariate distribution function of the positive random variable let ϕ be the Laplace
transform of M , ϕ = LS(M)

ϕ(s) =

∞∫
0

e−sw dM(w), s ≥ 0. (4)

Thus, M is said to be the inverse Laplace transform of ϕ, M = LS−1(ϕ). We denote as L
the class of Laplace transforms which contain strictly decreasing differentiable functions,
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see Joe (1997):

L = {ϕ : [0;∞) → [0, 1] |ϕ(0) = 1, ϕ(∞) = 0; (−1)jϕ(j) ≥ 0; j = 1, . . . ,∞}.

It is known, that for an arbitrary univariate distribution function F , a unique distribution
function G exists such that

F (x) =

∞∫
0

Gα(x) dM(α) = ϕ{− logG(x)}.

This leads to G = exp{−ϕ[−1](F )}, where ϕ[−1] is the generalised inverse

ϕ[−1](x) =

{
ϕ−1(x) for 0 ≤ x < ϕ(0);
0 else.

Taking d univariate distributions F1, . . . , Fd, a simple extension leads to the multivariate
distribution function that belongs to Γ(F1, . . . , Fd)

F =

∫
Gα

1 . . . G
α
d dM(α) = ϕ(− logG1 − · · · − logGd)

= ϕ

{
d∑

j=1

ϕ[−1](Fj)

}
,

with Archimedean copula given by

C(u1, . . . , ud) = ϕ

{
d∑

j=1

ϕ[−1](uj)

}
. (5)

The function ϕ is called the generator of the Archimedean copula. Throughout the chapter
the notation ϕ−1 is understood as the generalised inverse ϕ[−1]. Usually generator function
depends on the parameter θ which is set to be the parameter of the copula. It is easy
to see, that Archimedean copulae are exchangeable. In two-dimensional cases they are
symmetric in the sense that C(u, v) = C(v, u), ∀u, v ∈ [0, 1]. Joe (1997) and Nelsen
(2006) provide a classified list of the typical Archimedean generators. Here we discuss the
three most commonly used ones in financial applications, Archimedean copulae.

The first, widely used (in practice) copula is the Gumbel (1960) copula, which gained
its popularity from the extreme value theory. The multivariate distribution based on the
Gumbel copula with univariate extreme value marginal distributions is the only extreme
value distribution based on an Archimedean copula, see Genest and Rivest (1989). More-
over, all distributions based on Archimedean copulae belong to its domain of attraction
under common regularity conditions. Direct and inverse generators of the Gumbel copula
with the copula function are given by

ϕ(x, θ) = exp {−x1/θ}, 1 ≤ θ < ∞, x ∈ [0,∞),

ϕ−1(x, θ) = (− log x)θ, 1 ≤ θ < ∞, x ∈ [0, 1],

Cθ(u1, . . . , ud) = exp

−{ d∑
j=1

(− log uj)
θ

}θ−1 , u1, . . . , ud ∈ [0, 1].
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The Gumbel copula leads to asymmetric contour diagrams and shows stronger linkage
between positive values, however, is also shows more variability and more mass in the
negative tail.

For θ = 1, the Gumbel copula reduces to the product copula and for θ → ∞ we obtain the
Fréchet-Hoeffding upper bound. This copula does not have an extension to the negative
dependence. The Gumbel copula is one of a few Archimedean copulae for which we have
an explicit form of the distribution function M from (4). In the case of Gumbel copula
M is the stable distribution, see Renyi (1970). This information is very useful in the
simulation techniques, especially for the Marshall and Olkin (1988) method, see Section
Simulations 4.

Another example is the Clayton (1978) copula which, in contrary to the Gumbel, has
more mass on the lower tail, and less on the upper. This copula is often used in the
modelling of the losses, which is of interest, for example, in insurance and finance. The
necessary functions for this example are

ϕ(x, θ) = (θx+ 1)−
1
θ , −1/(d− 1) ≤ θ < ∞, θ ̸= 0, x ∈ [0,∞),

ϕ−1(x, θ) =
1

θ
(u−θ − 1), −1/(d− 1) ≤ θ < ∞, θ ̸= 0, x ∈ [0, 1],

Cθ(u1, . . . , ud) =

{(
d∑

j=1

u−θ
j

)
− d+ 1

}−θ−1

, u1, . . . , ud ∈ [0, 1].

The Clayton copula is one of few copulae that has a truncation property and has a simple
explicit form of density for any dimension

cθ(u1, . . . , ud) =
d∏

j=1

{1 + (j − 1)θ}u−(θ+1)
j

(
d∑

j=1

u−θ
j − d+ 1

)−(θ−1+d)

.

As the parameter θ tends to infinity, dependence becomes maximal and the copula gives
the upper Frechet-Hoeffding bound. As θ tends to zero, we have independence. As
θ → −1/(d− 1), the distribution tends to the lower Fréchet bound.

Another interesting Archimedean copula is the so called Frank (1979) copula, which, in
the bivariate case, is the only elliptical Archimedean copula in the sense that C(u, v) =
u + v − 1 + C(1− u, 1− v) = C(u, v), where C(u, v) is called the survival or associative
copula. C(u, v) is also a copula for a survival bivariate distribution. Direct and inverse
generator of the Frank copula with the copula functions are

ϕ(x, θ) = −1

θ
log{1 + eu(e−θ − 1)}, 0 ≤ θ < ∞, x ∈ [0,∞),

ϕ−1(x, θ) = log

{
e−θx − 1

e−θ − 1

}
, 0 ≤ θ < ∞, x ∈ [0, 1],

Cθ(u1, . . . , ud) = −1

θ
log

1 +
d∏

j=1

{exp(−θuj)− 1}

{exp(−θ)− 1}d−1

 , u1, . . . , ud ∈ [0, 1].
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The dependence becomes maximal when θ tends to infinity and independence is achieved
when θ = 0.

The level plots of the bivariate copula-based densities with t3 and normal margins are
given in Figure 4.

3.4 Hierarchical Archimedean Copulae

A recently developed flexible method is provided by hierarchical Archimedean copulae
(HAC). The special, so called partially nested, case of HAC:

C(u1, . . . , ud) = C0{C1(u1, . . . , uk1), . . . , Cm(ukm−1+1, . . . , ud)} (6)

= ϕ0

 m∑
p=1

ϕ−1
0 ◦ ϕi


kp∑

j=kp−1+1

ϕ−1
p (uj)




for ϕ−1
0 ◦ ϕp ∈ {w : [0;∞) → [0;∞)|w(0) = 0; w(∞) = ∞; (−1)j−1w(j) ≥ 0; j =

1, . . . ,∞}, p = 1, . . . ,m, with k0 = 1. In contrast to the Archimedean copula, HAC
defines the whole dependency structure in a recursive way. At the lowest level the depen-
dency between the first two variables is modelled by a copula function with the generator
ϕ1, i.e. z1 = C(u1, u2) = ϕ1{ϕ−1

1 (u1) + ϕ−1
1 (u2)}. At the second level an another copula

function is used to model the dependency between z1 and u3, etc. Note, that the gen-
erators ϕi can come from the same family and differ only through the parameter or, to
introduce more flexibility, come from different generator families. As an alternative to the
fully nested model, we can consider copula functions, with arbitrarily chosen combinations
at each copula level. Okhrin, Okhrin and Schmid (2008) provide several methodologies of
determining the structure of the HAC from the data, Okhrin, Okhrin and Schmid (2009)
provide necessary theoretical properties of HAC, there are also several empirical papers
on the application HAC to CDO (see Choros, Härdle and Okhrin (2009)) and to weather
data (see Filler, Odening, Okhrin and Xu (2010)).

4 Simulation Techniques

To investigate the properties of some multivariate distributions, one needs the algorithms
of the simulations because many of those properties are to be checked by Monte Carlo
techniques. In this section we provide different methods of sampling from copula.

4.1 Conditional Inverse Method

The conditional inverse method is a general approach for the simulation of random vari-
ables from an arbitrary multivariate distribution. This method can be also used to sim-
ulate from copulae. The idea is to generate random variables recursively from the condi-
tional distributions. To sample U1, . . . , Ud from copula C we proceed with the following
steps

12



 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 
 0.14 

 0.16 

 0.18 

 0.2 

 0.22 

 0.24 

−2 −1 0 1 2

−
2

−
1

0
1

2

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

 0.18 

 0.2 

−2 −1 0 1 2

−
2

−
1

0
1

2

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

 0.18 

 0.2 

 0.22 

 0.24 

−2 −1 0 1 2

−
2

−
1

0
1

2

 0.02 

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

 0.18 

 0.2 

−2 −1 0 1 2

−
2

−
1

0
1

2

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

 0.16 

−2 −1 0 1 2

−
2

−
1

0
1

2

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

−2 −1 0 1 2

−
2

−
1

0
1

2

Figure 4: Contour diagrams for (from top to bottom) Gumbel, Clayton and Frank copula
with Normal (left column) and t3 distributed (right column) margins.
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1. sample V1, . . . , Vd from U(0, 1);

2. U1 = V1;

3. Uj = C−1
j (Vj|U1, . . . , Uj−1) for j = 2, . . . , d where the conditional distribution of Uj

is given by

Cj(uj|u1, . . . , uj−1) = P (Uj ≤ uj|U1 = u1 . . . Uj−1 = uj−1) (7)

=

∂j−1Cj(u1,...,uj)

∂u1...∂uj−1

∂j−1Cj−1(u1,...,uj−1)

∂u1...∂uj−1

with Cj = C(u1, . . . , uj, 1, . . . , 1) = C(u1, . . . , uj).

The approach is numerically expensive, due to high order derivatives of C and the calcu-
lation of the inverse of the conditional distribution function.

4.2 Marshall and Olkin (1988) Method

To simulate from Archimedean copulae a simpler method was introduced in Marshall and
Olkin (1988). The idea of the method is based on the fact that Archimedean copulae are
derived from Laplace transforms (4). Following Marshall and Olkin (1988) we proceed
with the following three steps procedure:

1. sample U from M = LS−1(ϕ);

2. sample independent (V1, . . . , Vd) ∼ U [0, 1];

3. Uj = ϕ{− ln(Vj)/U} for j = 1, . . . , d.

This method works much faster than the classic conditional inverse technique. The draw-
back is that the distribution M can only be determined explicitly for a few generator
functions ϕ. For example for Gumbel copula M(θ) = St(1/θ, 1, [cos{π/(2θ)}]θ) and for
Clayton copula M(θ) = Γ(1/θ, 1).

4.3 McNeil (2008) Method

Methods of simulation from the different HAC structures were proposed in McNeil (2008);
this is an extension of the Marshall and Olkin (1988) method. Below is the algorithm for
partially nested copulae (6)

1. sample U from M = LS−1(ϕ0);

2. for i = 1, . . . ,m sample

Vkp−1+1, . . . , Vkp from C[ukp−1+1, . . . , ukp ; exp{−Uϕ−1
0 ◦ ϕp(·)}]

14



using Marshall and Olkin (1988) method where

C[ukp−1+1, . . . , ukp ; exp{−Uϕ−1
0 ◦ ϕp(·)}]

is the simple Archimedean copula with the generator function given by exp{−Uϕ−1
0 ◦

ϕp(·)};

3. (Ukp−1+1, . . . , Ukp)
⊤ = ϕ0[− log{(Vkp−1+1, . . . , Vkp)

⊤}/U ], p = 1, . . . ,m.

This method, however also has some drawbacks because the inverse Laplace transform of
the composition of the generator function does not always have an explicit form. Never-
theless, McNeil (2008) provides a list of combinations, which enable this.

5 Estimation

For a given data-set one needs to find an appropriate model, and to estimate the parameter
when the model is fixed. In this section we describe different methods of the estimation
of the copula from the data. All methods are similar and are based on the equation (2).
Having the sample Xij, i = 1, . . . , n, j = 1, . . . , d one needs to estimate the copula. To

estimate the marginal distributions F̂j(·), j = 1, . . . , d at least three possible methods are
available. The most simple one is to use the empirical distribution function

F̂j(x) =
1

n+ 1

n∑
i=1

I{Xij ≤ x}.

The change of the fraction before the sum from the classical 1
n
to 1

n+1
is made to bound the

empirical distribution from 1; otherwise this causes problems in the maximum likelihood
(ML) calculation. The inverse function of F̂j(x) is then an empirical quantile. Instead
of this simplest empirical estimation one can smooth the distribution function by using a
kernel method, see Härdle and Linton (1994). Using kernel function κ : R → R,

∫
κ = 1

with the bandwidth h > 0 one gets following estimator

F̃j(x) =
1

n+ 1

n∑
i=1

K

(
x−Xij

h

)
,

with K(x) =
∫ x

−∞ κ(t)dt. Apart from nonparametric methods, there is also a parametric
method that is based on the assumption of a parametric form of the marginal distribution
Fj(x, α̂j), where αj is the parameter of the distribution, and α̂j is its estimator based on
the ML method or method of moments. The last case considers the full knowledge of the
true marginal distribution Fj(x), which is rare in practice.

In the same way, there are four possible choices of the copula function. Let us first
determine general margins F̆j(x) that could be one of F̂j(x), F̃j(x), Fj(x, α̂) or Fj(x).
The empirical copula is then defined as

Ĉ(u1, . . . , ud) =
1

n

n∑
i=1

d∏
j=1

I{F̆j(Xij) ≤ uj}. (8)
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Let Kj, j = 1, . . . , d be the same symmetric kernel for each direction as in the estimation
of marginal distributions, and let hj, j = 1, . . . , d be the set of bandwidths, then the
kernel based copula estimation considered in Fermanian and Scaillet (2003) is

C̃(u1, . . . , ud) =
1

n

n∑
i=1

d∏
j=1

Kj

{
uj − F̆j(Xij)

hj

}
. (9)

In the bivariate case (d = 2) to avoid boundary bias, one uses (Chen and Huang, 2007)
local linear kernel to smooth at u ∈ [0, 1]

Kuh =
K(x){a2(u, h)− a1(u, h)x}
a0(u, h)a2(u, h)− a21(u, h)

,

with aℓ(u, h) =
∫ u/h

(u−1)/h
tℓK(t)dt, ℓ = 0, 1, 2 and h > 0 (see Lejeune and Sarda (1992),

Jones (1993)). Let Guh(t) =
∫ t

−∞Kuh(x)dx and Tuh = Guh{(u− 1)/h}, then an unbiased
kernel based estimator of the bivariate copula is given by

C̃(u1, u2) =
1

n
Gu1h

{
u1 − F̆1(Xi1)

h

}
Gu2h

{
u2 − F̆2(Xi2)

h

}
(10)

− (u1Tu2h + u2Tu1h + Tu1hTu2h).

The last situation is the parametric copula C(u, θ), where the copula comes from some
fixed family. In this case the parameter of the copula function is estimated using the ML
method. From (3) the likelihood function for the case F̆j(x) = Fj(x, αj), j = 1, . . . , d is

L(θ, α1, . . . , αd) =
n∏

i=1

f(Xi1, . . . , Xid;α1, . . . , αd, θ)

and the log-likelihood function is given by

ℓ(θ, α1, . . . , αd) =
n∑

i=1

log c{F1(Xi1;α1), . . . , Fd(Xid;αd); θ}

+
n∑

i=1

d∑
j=1

log fj(Xij;αj),

where fj(·) are marginal densities. All parameters {θ, α1, . . . , αd} can be estimated in
one or two steps. For practical applications, however, a two step estimation procedure is
more efficient. A one step procedure, also called full maximum likelihood, is carried out
by maximising likelihood function simultaneously over all parameters, thus by solving

(∂ℓ/∂α1, . . . , ∂ℓ/∂αd, ∂ℓ/∂θ) = 0,

with respect to (θ, α1, . . . , αd). Following the standard theory on ML estimation estimators
are efficient and asymptotically normal. However, it is often computationally demanding
to solve the system simultaneously.

The two step procedure can be done for any kind of marginal distribution F̆j(x) ∈
{F̂j(x), F̃j(x), Fj(x, α̂)}. Firstly, we estimate the marginal distribution by using any of
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the above methods and secondly, we estimate the copula parameter by the pseudo log-
likelihood function

ℓp(θ) =
n∑

i=1

log c{F̆1(Xi1), . . . , F̆d(Xid); θ}.

The solution is then

θ̂ = argmax
θ

ℓp(θ).

If the marginal distributions are from parametric families F̆j(x) = Fj(x, α̂j), j = 1, . . . , d,
then the method is called inference for margins. Otherwise, if margins, are nonparametri-
cally estimated F̆j(x) ∈ {F̂j(x), F̃j(x)}, j = 1, . . . , d, then the method is called canonical
maximum likelihood method.

6 Goodness-of-Fit (GoF) Tests

After the copula is estimated, one needs to test how well the estimated copula describes
the sample. Nonparametric copula is certainly the best choice for this, and is usually
considered the benchmark in many tests. With the GoF tests one checks whether the
underlying copula belongs to any copula family. The test problem could be written as a
composite null hypothesis

H0 : C ∈ C0, against H1 : C /∈ C0,

where C0 = {Cθ : θ ∈ Θ} is a known parametric family of copulae. In some cases we
restrict ourselves to the one element family C0 = C0, thus the hypothesis in this case in
the simple one. The test problem is, in general, equivalent to the GoF tests for multivariate
distributions. However, since the margins are estimated we cannot apply the standard
test procedures directly.

Here we consider several methodologies recently introduced in the literature. We can
categorised them into three classes: tests based on the empirical copula, tests based on
the Kendall’s process and tests based on Rosenblatt’s transform.

6.1 Tests based on the empirical copula

These tests are based directly on the distance between C and C0. Naturally, as C is
unknown one takes the empirical copula which is fully nonparametric Ĉ or C̃ instead.
The estimated copula C0, that should be tested, is the parametric one C(·, θ̂). Two
statistics considered in the literature (see e.g Fermanian (2005), Genest and Rémillard
(2008), etc.) are similar to Crámer-von Mises and Kolmogorov-Smirnov test statistics

S = n

∫
[0,1]d

{Ĉ(u1, . . . , ud)− C(u1, . . . , ud, θ̂)}2 dĈ(u1, . . . , ud),

T = sup
u1,...,ud∈[0,1]

√
n|Ĉ(u1, . . . , ud)− C(u1, . . . , ud, θ̂)|.
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Genest and Rémillard (2008) show the convergence of
√
n{Ĉ(u1, . . . , ud)−C(u1, . . . , ud, θ̂)}

in distribution, they also show that tests based on S and T are consistent. In actual fact,
the p-values of the test statistics depends on this limiting distribution and in practice
p-values are calculated using the bootstrap methods described in Genest and Rémillard
(2008). This is quite expensive numerically, but leads to proper results.

6.2 Tests based on Kendall’s process

Genest and Rivest (1993), Wang and Wells (2000) and Barbe, Genest, Ghoudi and
Rémillard (1996) consider a test based on the true and empirical distributions of the
pseudo random variable V = C(U1, . . . , Ud) ∼ K. The expectation of v is the transfor-
mation of the multivariate extension of Kendall’s τ , hence the deviation of the true K
and empirical K̂ as a univariate function is called Kendall’s process. The most natural
empirical estimation of K is

K̂(v) =
1

n

n∑
i=1

I{Vi ≤ v}.

The theoretical form of theK was discussed in Barbe et al. (1996), Okhrin et al. (2009) for
different copula functions. In the bivariate case of the Archimedean copulae it is related
to the generator function as

K(v, θ) = v − ϕ−1
θ (v)

{ϕ−1
θ (v)}′

.

As in the tests based on the empirical copulae Wang and Wells (2000) and Genest et al.
(2006) propose to compute a Kolmogorov-Smirnov and Crámer-von-Mises statistics for
the K

SK = n

1∫
0

{K̂(v)−K(v, θ)}2 dv,

TK = sup
v∈[0,1]

|K̂(v)−K(v, θ)|,

where K̂(v) and K(v, θ) are empirical and theoretical K-distributions of the variable
v = C(u1, . . . , ud). However, as in the previous tests, exact p-values for this statistic
cannot be computed explicitly. Savu and Trede (2004) propose a χ2-test based on the
K-distribution. Unfortunately, in most cases the distribution of the test statistic does not
follow a standard distribution and either a bootstrap or another computationally intensive
methods should be used.

6.3 Tests based on Rosenblatt’s process

An alternative global approach is based on the probability integral transform introduced
in Rosenblatt (1952) and applied in Breymann et al. (2003), Chen et al. (2004) and Dobrić
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and Schmid (2007). The idea of the transformation is to construct the variables

Yi1 = F̆1(Xi1), (11)

Yij = C{F̆j(Xij)|F̆1(Xi1), . . . , F̆j−1(Xi,j−1)}, for j = 2, . . . , d,

where the conditional copula is defined in (7). Under H0 the variables Yij, for j = 1, . . . , d
are independently and uniformly distributed on the interval [0, 1]. Here we discuss the
second test based on Yij proposed in Chen et al. (2004). Consider the variable Wi =∑d

j=1[Φ
−1(Yij)]

2. Under H0 it holds that Wi ∼ χ2
d. Breymann et al. (2003) assume that

estimating margins and copula parameters does not significantly affect the distribution
of Ŵi and apply a standard χ2 test directly to the pseudo-observations. Chen et al.
(2004) developed a kernel-based test for the distribution of W and, thus, an account for
estimation errors. Let g̃W (w) denote the kernel estimator of the density of W . Under
H0 the density gW (w) is equal to one, as the density of the uniform distribution. As

a measure of divergency Chen et al. (2004) used Ĵn =
∫ 1

0
{g̃W (w) − 1}2dw. Assuming

non-parametric estimator of the marginal distributions Chen et al. (2004) prove under
regularity conditions that

Tn = (n
√
hĴn − cn)/σ → N(0, 1),

where the normalisation parameters h, cn and σ are defined in Chen et al. (2004). The
proof of this statement does not depend explicitly on the type of the non-parametric
estimator of the marginals F̆j, but uses the order of F̆j(Xij) − Fj(Xij) as a function of
n. It can be shown that if the parametric families of marginal distributions are correctly
specified and their parameters are consistently estimated, then the statement also holds
if we use parametric estimators for marginal distributions.

7 Simulation Study

A Monte Carlo experiment has been provided to discuss the finite sample properties of
the goodness-of-fit tests based on the empirical copula and different estimation techniques
on the simulated data. We restrict ourselves to the three dimensional case of three copula
families, namely Gaussian, simple AC with Gumbel generator and HAC with Gumbel
generator. For the simulation from the AC we use the Marshall and Olkin (1988) method
and for simulation from HAC the McNeil (2008) method. To simulate from the Gaussian
copula we simulate first from normal distribution and then apply the Sklar’s theorem (1).

The main characteristic of interest in this study is to see whether the tests are able to main-
tain their nominal level fixed at α = 0.1 and to see the power of the tests under the variety
of alternatives. This is the only study that discusses the power of goodness-of-fit tests for
copula in dimensions higher that d = 2. We consider all possible copulae with parame-
ters τ ∈ {0.25, 0.5, 0.75}. This means that under consideration were three AC: Cθ(0.25)(·),
Cθ(0.5)(·), Cθ(0.75)(·), three HAC: Cθ(0.25){Cθ(0.50)(u1, u2), u3}, Cθ(0.25){Cθ(0.75)(u1, u2), u3},
Cθ(0.75){Cθ(0.50)(u1, u2), u3}, and 15 Gaussian copulae with all possible positive definite
correlation matrices containing values ρ ∈ {0.25, 0.5, 0.75}. Here θ(τ) converts Kendall’s
τ correlation coefficient into a corresponding copula parameter.
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Figure 5: Samples of size n = 50 from C0.25(·), Cθ(0.75){Cθ(0.50)(u1, u2), u3} and Gaus-
sian copula with upper diagonal elements of the correlation matrix given by ρ =
(0.25, 0.25, 0.75)⊤

The results are provided in Table 1 for AC, in Table 2 for HAC and in Table 4 for
Gaussian copulae. To save the workspace we provide results for only 3 Gaussian copulae
out of 15 with the largest difference between parameters. For HAC, a vector function
θ(τ1, τ2) converts two Kendall’s τ into HAC copula parameters. If τ1 < τ2 then copula
Cθ(τ1){Cθ(τ2)(u1, u2), u3} is considered. For Gaussian copula

Σ(τ1, τ2, τ3) =

 1 τ1 τ2
τ1 1 τ3
τ2 τ3 1

 .

From each copula we simulate a sample of n = 50 or n = 150 observations with standard
normal margins. The margins are then estimated parametrically (normal distribution with
estimated mean and variance) or nonparametrically. Respective columns in the tables are
marked by “par.” and “emp.”. For each sample we estimate the AC using inference
for the margins method, HAC using Okhrin et al. (2008) and the Gaussian copula using
the generalised method of moments. Then we test how good these distributions fit the
sample. The empirical copula for both tests has been calculated as in (8). Number of
bootstrap steps provided for the tests is equal to N = 1000. To sum up the simulation
procedure, we used

1. F : two methods of estimation of margins (parametric and nonparametric);

2. C0 : hypothesised copula models under H0 (three models);

3. C : copula model from which the data were generated (three models with 3, 3 and
15 levels of dependence respectively);
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Figure 6: Levels of goodness-of-fit tests for different sample size, for parametric margins.

4. n : size of each sample drawn from C (two possibilities, n = 50 and n = 150).

Thus, for all these 2 × 3 × (3 + 3 + 15) × 2 = 252 situations we perform 100 repetitions
in order to calculate the power of both tests. This study is hardly comparable to other
similar studies, because, as far as we know, this is the only one that considers the three
dimensional case, and the only one that considers a hierarchical Archimedean copulae.

To understand the numbers in the tables more deeply let us consider first the value in
Table 1. The number 0.88 says, that testing using Kolmogorov-Smirnov type statistic
Tn for the AC with τ = 0.25 from the sample of a size n = 50, with nonparametrically
estimated margins, rejects the null hypotheses H0, assuming that the data are from HAC,
in 100% − 88% = 12% of chances. It is very natural that the rejection rate for the AC,
that have HAC under H0, is very close to the case, where AC is under H0. In general
AC is a special case of HAC. If the true distribution is AC, the rejection rates should be
equal, or close to each other, and the difference based only on the estimation error.

Figure 6 represents the level of both goodness-of-fit tests for different sizes in terms of
three quartiles; the outliers are marked with closed dots. In general, values lies below 0.1,
which implies that the bootstrap performs well. Increasing the number of runs improves
this graph. We see that if the sample size has enlarged three times, then the tests have
approximately doubled their power in S statistics, and a slightly smaller coefficient is
given for the T statistics. In general, small size samples from different models look very
similar (see Figure 5), this makes detection of the model that best fits the data hardly
applicable, this also explains a lot of outliers in Figure 6.

From the tables we see, that Sn performs, on average, better than Tn statistics, this can
be also seen from the Figure 6. In the tables, rejection rates for Sn under false H0 are in
general higher, than for Tn statistics. We can also conclude that the larger the difference
between parameters of the model is the faster AC is rejected. This can be expressed by
the only parameter in AC that does not covers the whole dependency.

8 Empirical Results

The empirical part of this study is based on the calculation of the Value-at-Risk for the
Profit and Loss function of the portfolio containing three assets. Asset returns follow some
GARCH-type process with residuals from copula based models. We consider the daily
stock prices of three American banks, namely Bank of America, Citigroup and Santander
from 29.09.2000 to 16.02.2001. This results in T = 100 observations being consistent with
the simulation study provided above. We take this time interval because several U.S.
banks have recorded strong earnings in the fourth quarter of 2000. Rising profits were
reported by U.S. industry leaders, namely Citigroup and Bank of America. At the same
time bad forecasts for technology companies were reported; these influence the financial
sector as well. Prices {Xtj}, j = 1, 2, 3 behave (over the chosen period) as in Figure 7.
Assuming the log-returns Rtj = log(Xtj/Xt−1,j), j = 1, 2, 3, t = 1, . . . , T (see Figure 8)
follow an ARMA(1,1)-GARCH(1,1) process, we have

Rtj = µj + γjRt−1,j + ζjσt−1,jεt−1,j + σtjεtj,

where
σ2
tj = ωj + αjσ

2
t−1,j + βjσ

2
t−1,jε

2
t−1,j
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AC
n = 50 n = 150

θ T S T S
emp. par. emp. par. emp. par. emp. par.

θ(0.25)
HAC 0.88 0.51 0.83 0.38 0.93 0.36 0.90 0.35
AC 0.88 0.51 0.89 0.50 0.95 0.32 0.90 0.34
Gauss 0.71 0.29 0.56 0.22 0.69 0.11 0.43 0.08

θ(0.5)
HAC 0.90 0.38 0.94 0.30 0.87 0.35 0.88 0.27
AC 0.96 0.55 0.95 0.45 0.90 0.45 0.92 0.35
Gauss 0.76 0.30 0.65 0.19 0.47 0.13 0.31 0.02

θ(0.75)
HAC 0.93 0.29 0.93 0.15 0.89 0.27 0.89 0.10
AC 0.93 0.29 0.93 0.22 0.90 0.25 0.91 0.13
Gauss 0.77 0.19 0.65 0.10 0.57 0.11 0.24 0.05

Table 1: Non-rejection rate of the different models, where the sample is drawn from the
simple AC

HAC
n = 50 n = 150

θ T S T S
emp. par. emp. par. emp. par. emp. par.

θ(0.25, 0.5)
HAC 0.88 0.29 0.90 0.24 0.96 0.31 0.92 0.26
AC 0.91 0.26 0.93 0.36 0.54 0.13 0.53 0.07
Gauss 0.82 0.20 0.69 0.19 0.57 0.14 0.37 0.04

θ(0.25, 0.75)
HAC 0.93 0.21 0.92 0.13 0.88 0.18 0.88 0.09
AC 0.46 0.14 0.54 0.07 0.00 0.00 0.00 0.00
Gauss 0.84 0.19 0.71 0.13 0.52 0.10 0.42 0.01

θ(0.5, 0.75)
HAC 0.86 0.31 0.87 0.18 0.91 0.20 0.94 0.08
AC 0.89 0.36 0.92 0.28 0.44 0.04 0.47 0.02
Gauss 0.70 0.19 0.55 0.12 0.50 0.11 0.30 0.05

Table 2: Non-rejection rate of the different models, where the sample is drawn from the
HAC
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Gauss
n = 50 n = 150

Σ T S T S
emp. par. emp. par. emp. par. emp. par.

Σ(0.25, 0.25, 0.75)
HAC 0.89 0.20 0.93 0.11 0.78 0.08 0.81 0.02
AC 0.43 0.13 0.47 0.09 0.00 0.00 0.00 0.00
Gauss 0.88 0.22 0.89 0.12 0.87 0.11 0.86 0.03

Σ(0.25, 0.75, 0.25)
HAC 0.92 0.20 0.91 0.14 0.76 0.07 0.69 0.04
AC 0.39 0.12 0.39 0.04 0.00 0.00 0.00 0.00
Gauss 0.90 0.18 0.87 0.13 0.92 0.12 0.94 0.10

Σ(0.75, 0.25, 0.25)
HAC 0.89 0.30 0.93 0.16 0.78 0.10 0.75 0.04
AC 0.51 0.16 0.46 0.07 0.00 0.00 0.00 0.00
Gauss 0.91 0.28 0.90 0.17 0.88 0.13 0.86 0.06

Table 4: Non-rejection rate of the different models, where the sample is drawn from the
Gaussian copula

µ̂j γ̂j ζ̂j ω̂j α̂j β̂j BL KS

Bank of America 1.879e-03 0.226 -0.232 3.465e-04 0.551 0.170 0.567 0.829
(2.598e-03) (0.642) (0.654) (1.369e-04) (0.284) (0.155)

Citigroup 0.116e-03 0.305 -0.455 2.669e-04 0.096 0.471 0.569 0.786
(1.487e-03) (0.296) (0.288) (5.533e-04) (0.165) (1.008)

Santander 1.359e-03 0.430 -0.566 4.512e-10 0.012 0.979 0.914 0.781
(0.908e-03) (0.149) (0.174) (1.376e-05) (0.018) (0.049)

Table 5: Fitting of univariate ARMA(1,1)-GARCH(1,1) to asset returns. The standard
deviation of the parameters, which are quiet big because of the small sample size, are
given in parentheses. The last two columns provide the p-values of the Box-Ljung test
(BL) for autocorrelations and Kolmogorov-Smirnov test (KS) for testing of normality of
the residuals.

and ω > 0, αj ≥ 0, βj ≥ 0, αj + βj < 1, |ζ| < 1.

The fit of an ARMA(1,1)-GARCH(1,1) model to the log returns Rt = (Rt1, Rt2, Rt3)
⊤,

T = 100, gives the estimates ω̂j, α̂j, β̂j, ζ̂j and γ̂j, as in Table 5. Empirical residuals
{ε̂t}Tt=1, where ε̂t = (ε̂t1, ε̂t2, ε̂t3)

⊤ are assumed to be normally distributed; this is not
rejected by the Kolmogorov-Smirnov test at the high level of significance for all three
banks. Residuals are also assumed to be independent, because of the Box-Ljung auto-
correlation test with lag 12. Thus, in the estimation of copula we use an inference for
margins method, where margins are normal, thus, estimated parametrically.

Upper diagonal cells of Figure 9 represent pair wise scatterplots of ARMA-GARCH resid-
uals. In the lower diagonal cells of the same figure we show the scatterplots of the residuals
mapped on the unit square by the estimated marginal cdf, F̂ (ε̂).

We estimated three different models, namely simple AC, HAC and Gaussian copula.
Afterwards two tests, used in the simulation study, were applied to see how good these
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Figure 7: Stock prices for Bank of America, Citigroup and Santander (from top to bot-
tom).
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Figure 9: Scatterplots from ARMA-GARCH residuals (upper triangular) and from resid-
uals mapped on unit square by the cdf (lower triangular).

T100 S100 estimates
HAC 0.3191 0.1237 C{C(u1, u2; 1.996), u3; 1.256}
AC 0.0012 0.0002 C(u1, u2, u3; 1.276)
Gauss 0.0160 0.0078 CN{u1, u2, u3;Σ(0.697, 0.215, 0.312)}

Table 6: p-values of both GoFs and estimates of the models under differentH0 hypotheses.

models describe data. In this case the number of bootstrap runs has been increased to
N = 10000 to make the test results more precise. Estimated models, and p-values are
represented in Table 6. We see that parameters in the HAC model deviate from each
other, we may conclude therefore, that a simple AC is not a proper model that fits the
data. On the other hand, from Figure 9 we see that the points are not elliptical; this
convinces us to expect a low p-value of the test where the Gaussian copula is under H0.
In the first two columns of Table 6 we put p-values for all tests. We conclude that HAC
is the most appropriate model for this particular dataset, because it has the largest p-
value. Based on two tests only HAC can not be rejected under significance level α = 0.05.
This means that our data may not be described by the simple three-dimensional normal
distribution, but the margins are still normal.

To see if knowledge of preferable distribution is worth knowing in a financial problem, we
estimate the Vale-at-Risk from a Profit and Loss of a linear portfolio using copulae. The
portfolio is composed of the stocks discussed above. We also perform an evaluation of
the estimators through backtesting. Let w be the portfolio, which is represented by the
number of assets for a specified stock in the portfolio, w = {w1, . . . , wd}, wi ∈ Z. The

25



value Vt of the portfolio w is given by

Vt =
d∑

j=1

wjXtj (12)

and the random variable defined as the absolute change in the portfolio

Lt+1 = (Vt+1 − Vt) =
d∑

j=1

wjXtj {exp(Rt+1,j)− 1} (13)

also called profit and loss (P&L) function, expresses the absolute change in the portfolio
value in one period. The distribution function of L, dropping the time index, is given by

FL(x) = P (L ≤ x). (14)

As usual the Value-at-Risk at level α from a portfolio w is defined as the α-quantile from
FL:

VaR(α) = F−1
L (α). (15)

It follows from (14) that FL depends on the d-dimensional distribution of log-returns FX .
In general, the loss distribution FL depends on a random process representing the risk
factors influencing the P&L from a portfolio. In the present case log-returns modelled by
an ARMA(1,1)-GARCH(1,1) model are a suitable risk factor choice. Thus, modelling their
distribution is essential to obtain the quantiles from FL. To estimate the VaR we simulate
samples of residuals εt from HAC, AC and Gaussian copula with normal margins, then
apply simulated residuals to the estimated ARMA(1,1)-GARCH(1,1) model and calculate

it based on the values of the Profit and Loss L̂ with w = (1, 1, 1)⊤. The V̂ aR(α) is then
an empirical α-quantile from the L̂. In Figure 10 we represent the series of estimated
Value-at-Risk with α = 0.1 and the P&L function. Afterwards backtesting is used to
evaluate the performance of the specified copula family C. The estimated values for the
VaR are compared with the true realisations {Lt} of the P&L function, an exceedance

occuring for each Lt smaller than V̂ aRt(α). The ratio of the number of exceedances to
the number of observations gives the exceedances ratio α̂:

α̂ =
1

T

T∑
t=1

I{Lt < V̂ aRt(α)}.

The backtesting results are provided in Table 7. From them we see that the Gaussian
copula usually underestimates the VaR. This is natural because this copula does not have
nor upper nor a lower tail dependence. The simple Archimedean copula overestimates
the VaR. Results provided by HAC are the closest to the true ones, but this copula
underestimates the true VaR in all levels of significance. This is also natural because
Gumbel copula describes wins rather than losses best. In general these results were
expected due to the fact, that HAC is the only copula that was accepted by both tests
under a high level of significance.

9 Conclusions

In this chapter we gave a short survey on copulae. We discussed different copula classes,
methods of simulation and estimation and several goodness-of-fit tests. We provided an
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α α̂HAC α̂AC α̂Gauss

0.10 0.091 0.122 0.081
0.05 0.040 0.061 0.031
0.01 0.000 0.010 0.000

Table 7: Backtesting for the estimation of VaR under different alternatives.
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Figure 10: V̂ aR(α), P&L (dots) and exceedances (crosses), estimated with 3-dimensional
HAC with Gumbel generator (top), simple Gumbel copula (middle) and Gaussian copula
(bottom) with α = 0.1.
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extensive simulation study in which two goodness-of-fit tests and two estimation tech-
niques were considered. Afterwards, copulae were applied to de-GARCHed real world
time-series. From the empirical study we conclude that, in some cases, even if margins
are normal, the dependency is certainly not linearly normal, and more flexible dependency
models are asked for.
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Genest, C., Ghoudi, K. and Rivest, L.-P. (1995). A semi-parametric estimation proce-
dure of dependence parameters in multivariate families of distributions, Biometrika
82: 543–552.

Genest, C., Quessy, J.-F. and Rémillard, B. (2006). Goodness-of-fit procedures for copula
models based on the probability integral transformation, Scandinavian Journal of
Statistics 33: 337–366.

Genest, C. and Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-
of-fit testing in semiparametric models, Annales de l’Institut Henri Poincaré. Prob-
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