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Abstract:

There is increasing demand for models of time-varying and non-Gaussian dependencies for mul-

tivariate time-series. Available models suffer from the curse of dimensionality or restrictive

assumptions on the parameters and the distribution. A promising class of models are the

hierarchical Archimedean copulae (HAC) that allow for non-exchangeable and non-Gaussian

dependency structures with a small number of parameters. In this paper we develop a novel

adaptive estimation technique of the parameters and of the structure of HAC for time-series.

The approach relies on a local change point detection procedure and a locally constant HAC

approximation. Typical applications are in the financial area but also recently in the spatial

analysis of weather parameters. We analyse the time varying dependency structure of stock

indices and exchange rates. We find that for stock indices the copula parameter changes dynam-

ically but the hierarchical structure is constant over time. Interestingly in our exchange rate

example both structure and parameters vary dynamically.
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1 Introduction

The key difference between univariate and multivariate time series analysis is the fact

that the future dynamics is affected not only by the univariate past but also by cross-

sectional dependencies. These dependencies are not constant and vary in time. Their

dynamics, form and strength are important in many applications. Risk diversification,

asset allocation, financial spillovers illustrate this importance. The most straightforward

and therefore well established approach to modeling dependencies is via the correlation

(or covariance) matrix. The correlation matrix uniquely characterises the dependency, if

the data is driven, for example, by a multivariate normal distribution. Similar arguments

also hold for arbitrary elliptical distributions (as the multivariate t). Due to its simplic-

ity the covariance matrix became the standard parametrisation of dependency. In many

applications the dependency structure varies over time. Time varying conditional volatil-

ities are modeled using e.g. GARCH-type processes. For a recent review of multivariate

GARCH processes, including DCC, CCC, BEKK, among others, we refer to Silvennoinen

and Teräsvirta (2009). These models though still assume parameters of the process that

are constant over an entire estimation period. Such approach has been challenged even

in the univariate case as the growing literature demonstrates, see Lamoureux and Las-

trapes (1990). In practice, however, it is likely that the parameters characterising the

dependency change with time in possibly a nonstationary manner.

Another disadvantage of covariance-based dependency modeling is the fact that it fails

to capture important types of data features. First, covariances are measures of linear

dependence and therefore fail to represent nonlinear relationships. As an alternative

approach one may consider other measures such as Kendall’s ¿ or Spearman’s ½, see Joe

(1997). However, the extensions of these measures to higher dimensions is problematic,

see e.g. Schmid and Schmidt (2006). Second, elliptical distributions postulate symmetric

dependency, i.e. the strength of the relationship is the same for high and low values.

This is, however, in some applications a too restrictive assumption. Third, the covariance

matrix – used as a parameter of the multivariate normal distribution – fails to fit heavy

tails typical for asset returns. An approach which, partially solves these problems, is based

on copulae, proposed by Sklar and reviewed in Joe (1997) and Nelsen (2006). Copulae

allow us to model dependency separately from marginal distributions and provide better

fit for heavy tails, asymmetries, etc.

Time-varying copulae were considered recently by Patton (2004), Rodriguez (2007) and

Giacomini, Härdle and Spokoiny (2009). Patton (2004) considers an asset-allocation prob-
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lem with a time-varying parameter of bivariate copulae. Rodriguez (2007) studies financial

contagion using switching-parameter bivariate copulae. In contrary to these papers Gi-

acomini et al. (2009) use a novel method based on local adaptive estimation discussed

in Spokoiny (2010). The idea of that approach is to determine a period of homogeneity

where the parameter of a low-dimensional Archimedean copula can be approximated by

a constant.

The online instantaneous selection of high dimensional dependency structures via mul-

tivariate copulae is still an open problem. Here we tackle this problem via multivari-

ate hierarchical Archimedean copulae. Detailed analysis of this copula class is given in

Okhrin, Okhrin and Schmid (2009). In contrary to simple Archimedean copulae, the HAC

is characterised not only by its parameters, but also by the structure. The time-varying

dependency therefore affects structure and parameters simultaneously. The variability of

the parameters implies that the dependency becomes stronger or weaker; variability of

the structure implies that there is a change not only in the strength of the dependency,

but also in its form. The proposed technique allows us to determine the periods with

local constant structure and parameters. It is based on the selection of an appropriate

interval out of a set of candidate intervals. The procedure requires the calculation of a

sequence of critical values (by simulations) that are used in testing local homogeneity.

Local homogeneity is checked via a test against a change point alternative.

To assess the performance of the developed methodology we perform extensive simulations

and empirical studies. Within the simulation study we show that this novel technique

quickly reacts to shifts in the structure and in the parameters. The varying estimation

window allows to increase the precision of the estimators in stable periods, but simultane-

ously to react quickly to changes if they occur. The detection delay clearly demonstrates

the effectiveness of the procedure compared to a rolling window estimation. In the empir-

ical study we demonstrate one example with changes only in parameters and the second

example with changes both in parameters and in structure.

The paper is structured as follows. In the next section we give a short theoretical back-

ground of HAC with estimation and grouping techniques. Section 3 extends the local

adaptive estimation procedures to copulae. Sections 4 and 5 deal with applications to

simulated and real data.

3



2 Hierarchical Archimedean Copulae

The advantage of the copula is that it allows to split the multivariate distribution into

the margins and a pure dependency component: it captures the dependency between

variables eliminating the impact of the marginal distributions. Formally copulae where

introduced in Sklar (1959). The main result states that if F is an arbitrary d-dimensional

continuous distribution function of the random variables X1, . . . , Xd, then the associated

copula is unique and defined as a continuous function C : [0, 1]d → [0, 1] which satisfies

the equality

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
d (ud)}, u1, . . . , ud ∈ [0, 1],

where F−1
1 (⋅), . . . , F−1

d (⋅) are the quantile functions of the corresponding marginal dis-

tributions F1(x1), . . . , Fd(xd). If F belongs to the class of elliptical distributions, then

this results in a so called elliptical copula. Note, however, that this copula cannot be

given explicitly, because the distribution function F and the inverse marginal distribu-

tions Fi usually have only integral representations. One of the classes that overcomes this

drawback of elliptical copulae is the class of Archimedean copulae

C(u1, . . . , uk) = Á{Á−1(u1) + ⋅ ⋅ ⋅+ Á−1(ud)}, u1, . . . , ud ∈ [0, 1], (1)

where Á ∈ L = {Á : [0;∞) → [0, 1] ∣Á(0) = 1, Á(∞) = 0; (−1)jÁ(j) ≥ 0; j = 1, . . . ,∞}.
The function Á is called the generator of the copula and commonly depends on a single

parameter µ. For example, the Gumbel generator is given by Á = exp(−x1/µ) for 0 ≤
x < ∞, 1 ≤ µ < ∞. The generator Á is required to be d-monotone, i.e. differentiable up

to the order d − 2, with (−1)jÁ(j)(x) ≥ 0, j = 0, . . . , d − 2 for any x ∈ [0,∞) and with

(−1)d−2Á(d−2)(x) being nondecreasing and convex on [0,∞) (e.g. McNeil and Nešlehová

(2009)). For simplicity we make a stronger assumption that Á is a completely monotone

function, i.e. (−1)jÁ(j)(x) ≥ 0 for all j ≥ 0. A detailed review of the properties of

Archimedean copulae can be found in McNeil and Nešlehová (2009) and Joe (1996).

A disadvantage of Archimedean copulae is the fact that the rendered dependency is sym-

metric with respect to the permutation of variables, i.e. the distribution is exchangeable.

Moreover, the multivariate dependency structure is somewhat stiff, since it depends on

a single parameter of the generator function Á. The Hierarchical Archimedean Copulae

(HAC) overcome this problem by considering the compositions of simple Archimedean
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θ1

θ2 u4

θ3 u3

u1 u2

θ1

θ2 θ3

u1 u2 u3 u4

Figure 1: Fully and partially nested copulae of dimension d = 4 with structures s =

(((12)3)4) on the left and s = ((12)(34)) on the right

copulae. For example, the special case of HAC fully nested copula can be given by

C(u1, . . . , ud) = C1{C2(u1, . . . , ud−1), ud} = Á1{Á−1
1 ∘ C2(u1, . . . , ud−1) + Á−1

1 (ud)}
= Á1{Á−1

1 ∘ Á2(Á
−1
2 (C3(u1, . . . , ud−2)) + Á−1

2 (ud−1)) + Á−1
1 (ud)}. (2)

The composition can be applied recursively using different segmentations of variables

leading to more complex HACs. For notational convenience let the expression s =

{(. . . (i1 . . . ij1) . . . (. . . ) . . . )} denote the structure of a HAC, where iℓ ∈ {1, . . . , d} is

a reordering of the indices of the variables. sj denotes the structure of subcopulae with

sd = s. Further let the d-dimensional hierarchical Archimedean copula be denoted by

C(u1, . . . , ud; s,µµµ), where µµµ the set of copula parameters. For example the fully nested

HAC (2) can be expressed as

C(u1, . . . , ud; s = sd, µµµ) = C{u1, . . . , ud; ((sd−1)d), (µ1, . . . , µd−1)
⊤}

= Ád−1,µd−1
(Á−1

d−1,µd−1
∘ C{u1, . . . , ud−1; ((sd−2)(d− 1)), (µ1, . . . , µd−2)

⊤}
+ Á−1

d−1,µd−1
(ud)),

where s = {(. . . (12)3) . . . )d)}. In Figure 1 we present the fully nested HAC with structure

s = (((12)3)4) and partially nested with s = ((12)(34)) in dimension d = 4.

HAC are thoroughly analysed in Joe (1997), Whelan (2004), Savu and Trede (2006),

Embrechts, Lindskog and McNeil (2003).

Note that generators Ái within a HAC can come either from a single generator family or

from different generator families. If Ái’s belong to the same family, then the complete

monotonicity of Ái ∘ Ái+1 imposes some constraints on the parameters µ1, . . . , µd−1. The-

orem 4.4 of McNeil (2008) provides sufficient conditions on the generator functions to
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guarantee that C is a copula. It holds that if Ái ∈ L for i = 1, . . . , d − 1 and Ái ∘ Ái+1

has a completely monotone derivative for i = 1, . . . , d − 2 then C is a copula. For the

majority of the generators a feasible HAC requires decreasing parameters from the lowest

to the highest level. However, in the case of different families within a single HAC, the

condition of complete monotonicity is not always fulfilled.

In general the structure s of the HAC can be arbitrary. On the one hand this makes it

a very flexible and simultaneously parsimonious distribution model. If we use the same

single-parameter generator function on each level, but with a different value of µ, we

may specify the whole distribution with d − 1 parameters. From this point of view, the

HAC approach can be seen as a alternative to covariance driven models. On the other

hand for each HAC not only the parameters are unknown, but also the structure has

to be determined. One possible procedure is to enumerate and to estimate all possible

HACs. Using a suitable goodness-of-fit test we then determine the optimal structure.

This approach is however unrealistic in practice even in moderate dimensions. Okhrin,

Okhrin and Schmid (2009) suggest a computationally efficient procedure, which allows to

estimate the HAC recursively.

We constrain the discussion to binary copulae, i.e. at each level of the hierarchy only

two variables are joined together. Joining more than two variables dramatically increases

the number of formal candidate distributions and the needed computational power. At

the lowest level we fit a bivariate copula to every couple of the variables. The estimation

procedure is discussed below. We select the couple of variables with strongest fit and

denote the respective estimator of the parameter at the first level by µ̂1 and the set of

indices of the variables by I1. The selected couple is joined together to define the pseudo-

variables C{(I1); µ̂1, Á1}. At the next level we proceed in the same way by considering the

remaining variables and the new pseudo-variable. The considered procedure allows us to

determine the estimated structure of the copula.

The multi-stage maximum-likelihood estimation is a convenient tool for recursive estima-

tion. At the first stage we estimate the marginal distributions either parametrically or

nonparametrically. At the next stage we estimate the parameter of the copula at the first

level assuming that the marginal distributions are known. At further stages the next level

copula parameter is estimated assuming that the margins as well as the copula parameters

at lower levels are known.

Let µµµ = (µ1, . . . , µp)
⊤ be the parameters of copulae starting with the lowest up to the
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highest level. The multistage ML estimator ˆ́ of ´ = (®®®⊤, µµµ⊤)⊤ solves the system

(
∂ℒ1

∂®®®⊤
1

, . . . ,
∂ℒd

∂®®®⊤
d

,
∂ℒd+1

∂µ1
, . . . ,

∂ℒd+p

∂µp

)⊤
= 0, (3)

where ℒj =
n∑

i=1

lj(Xi), for j = 1, . . . , d+ p,

lj(Xi) = log fj(xij,®®®j), for j = 1, . . . , d, i = 1, . . . , n,

lj+d(Xi) = log
(
c
[{Fm(xim,®®®m)}m∈sj ; sj, {µℓ}ℓ=1,...,p

] ∏
m∈sj

fm(xim,®®®m)
)

for j = 1, . . . , p, i = 1, . . . , n.

where F̂i(⋅) is an estimator of the marginal cdf Fi. If we estimate the margins paramet-

rically then F̂i(⋅) = Fi(⋅, ®̂®®i). The marginal density f̂(⋅) is estimated accordingly. Chen

and Fan (2006) and Okhrin et al. (2009) provide asymptotic behavior of the estimates.

3 Inhomogeneous Dependence

Numerous models were proposed for time-varying correlation structure, with the multi-

variate GARCH model among the most popular. In these models the correlations are

defined as functions of (lagged) explanatory variables which may influence the variation

in the current dependency structure (measured via correlation). This implies that the

conditional correlation changes at each moment of time, but the parameters of the condi-

tioning functions are assumed to be constant. This approach suffers from two important

drawbacks. First, the estimation of this type of the models is tedious because of the large

number of parameters to be estimated. Second, there is evidence that the parameters do

change with time, see e.g. Lamoureux and Lastrapes (1990). Neglecting this fact may

lead to inconsistent estimators.

In order to cope with the time varying dependency structure we propose a parsimonious

alternative that is based on a local constant HAC approximation. With a once and for all

calculated set of critical values we determine periods of homogeneity instantaneously at

each time point. Corresponding theory and applications may be found in Č̀ıžek, Härdle

and Spokoiny (2009), Mercurio and Spokoiny (2004) and Chen, Härdle and Jeong (2008).

The method can be virtually applied to any dependency model. However, applied to

HACs, it allows us to control not only for the periods with constant parameters, but

also for the periods with constant structure. Moreover, the method is applicable not
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only to abrupt changes in the dependency, but also to smooth transitions in the model

parameters.

Let st and µµµt denote the time varying but unknown copula structure and parameters.

The idea is to select for each time point t0 an interval I at which µµµt and st can be well

approximated by constant µµµ∗ and s∗. The discrepancy between two copulae C(⋅; s,µµµ) and
C(⋅; s′, µµµ′) is measured by the Kullback-Leibler divergence K:

K{C(⋅; s′, µµµ′), C(⋅; s,µµµ)} = E s′,µµµ′ log
c(⋅; s′, µµµ′)
c(⋅; s,µµµ)

where c is the copula density, see Nelsen (2006). The aim is to select I as close as possible

to the so-called “oracle” choice interval. Define the “oracle” choice Ik∗ of the interval as

the largest interval I = [t0−mk∗ ; t0], for which the small modelling bias condition (SMB)

is fulfilled

△I(s,µµµ) =
∑
t∈I

K{C(⋅; st, µµµt), C(⋅; s,µµµ)} ≤ △, for some △ ≥ 0, s, µµµ. (4)

The unknown local constant copula parameter (at point t0) can be best estimated on

the largest interval argmaxI△I(s,µµµ) = [t0 − mk∗ ; t0] fulfilling (4). This means, that the

model st, µµµt can be well approximated by locally constant s, µµµ on interval I. Methods of

estimation of the HAC discussed in Okhrin et al. (2009) maximise the ML with respect to

the structure s and parameters µµµ, what leads to the best parametric fit to the underlying

model on I, defined by s̃I , µ̃µµI . Recall that the Kullback-Leibler divergence plays a par-

ticular role in the analysis and estimation of misspecified models, see White (1982). In

the case of minimising △I(s,µµµ) with respect to the length of the interval I, we minimise

the loss caused by the ignorance of the time variation in the copula.

Note, that the true time-varying parameters µµµt and st are unknown. Therefore also the

“oracle” choice mk∗ is unknown. In a data-driven algorithm based on the Local Change

Point (LCP) detection procedure, see Spokoiny (2010), we sequentially test whether µµµt =

µµµ∗ and the structure of the HAC st = s∗ is constant within some interval I. Here the

aim of the LCP technique is not to detect a change point, but rather to conveniently

determine the period of constant dependency. Alternative techniques can be found in e.g.

Č̀ıžek et al. (2009).

The risk arising in the estimation of locally constant copulae under the SMB is bounded.

Let ℒ(s,µµµ) denote the log-likelihood function based on the HAC with the parameters s

and µµµ. Following Č̀ıžek et al. (2009) let µ̃µµI and s̃I be any estimators on an interval I. If
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the SMB holds for some I, s and µµµ then

E st,µµµt log

{
1 +

∣ℒ(s̃I , µ̃µµI)− ℒ(s,µµµ)∣r
ℜr(s,µµµ)

}
≤ 1 +△, (5)

where ℜr(s,µµµ) is an upper bound satisfying

E s∗,µµµ∗∣ℒ(s̃I , µ̃µµI)− ℒ(s∗, µµµ∗)∣r ≤ ℜr(s
∗, µµµ∗)

which is called a “propagation condition”. We set r = 0.5 since this choice is also proposed

in the literature. The bound given in (5) tells us that the risk in an estimated local

constant model (under SMB) differs from the risk in the true constant model by an

amount of △.

The LCP is based on sequentially testing the hypotheses of homogeneity on intervals Ik.

We select Ik with k = −1, 0, 1, . . . as the sequence of intervals Ik ⊂ Ik+1, starting with

k = 1. If there are no change points in Tk ⊂ Ik ∖ Ik−1 then we accept Ik as an interval

with constant copula parameter and structure. At the next step we take Tk+1 and test it

for homogeneity. We repeat the steps until rejection or the largest possible interval IK is

accepted, leading to an interval Ik̂.

Two sources of errors occur in practical applications. Let Ik∗ denote the oracle choice.

This implies that for Ik (k < k∗) the SMB holds. The first type of error (“false alarm”)

occurs if k̂ < k∗. In this case the estimation is based on a shorter data period and therefore

implies higher variability. Let ŝk and µ̂µµk be the respective estimators and s̃k and µ̃µµk denote

the corresponding fixed-sample estimators on Ik. Under the SMB condition on Ik∗ and

assuming that maxk≤k∗ Es,µµµ ∣ℒ(s̃k, µ̃µµk)−ℒ(s,µµµ)∣r ≤ ℜr(s,µµµ), we obtain by Theorem 4.2 of

Č̀ıžek et al. (2009)

E st,µµµt log

{
1 +

∣ℒ(s̃k̂, µ̃µµk̂)− ℒ(s,µµµ)∣r
ℜr(s,µµµ)

}
≤ 1 +△, (6)

E st,µµµt log

{
1 +

∣ℒ(s̃k̂, µ̃µµk̂)− ℒ(ŝk̂, µ̂µµk̂)∣r
ℜr(s,µµµ)

}
≤ 1 +△.

The inequalities (6) say, that if we observe a false alarm at the step k̂ < k∗, then the

estimation risk measured by ∣ℒ(s̃k̂, µ̃µµk̂) − ℒ(ŝk̂, µ̂µµk̂)∣r is of the same order as the risk of a

pure parametric estimation with fixed interval given by Ik̂.

The second type of the error arises if k̂ > k∗. Outside the oracle interval we are exploiting

data which does not support the SMB condition. This implies that the bounds in (6)
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increase. Theorem 4.3 of Č̀ıžek et al. (2009) provides general bounds for the adaptive

estimator, showing that

E st,µµµt log

{
1 +

∣ℒ(s̃k∗ , µ̃µµk∗)− ℒ(ŝk̂, µ̂µµk̂)∣r
ℜr(s,µµµ)

}
≤ 1 +△+ log

{
1 +

zrk∗

ℜr(s,µµµ)

}
, (7)

where zk̂ are the critical values of the test for homogeneity and are defined below. This

statement implies that the copula based on ŝk̂ and µ̂µµk̂ belongs with high probability to

the confidence interval of the oracle copula with s̃k∗ and µ̃µµk∗ .

3.1 Local test of homogeneity

A local homogeneity test can now be performed. Let us fix some t0 and let I = [t0−m, t0]

be an interval candidate and TI be a set of interval points within I. We estimate the copula

parameter µµµ and the structure s from observations in I, assuming the homogeneous model

within I, i.e. using the notation from the previous section µ̂µµt0 = µ̃µµI and ŝt0 = s̃I . The

null hypothesis H0 means that ∀¿ ∈ TI : µµµ¿ = µµµ, s¿ = s i.e. the observations in I follow

the model with the dependence parameter µµµ and the structure s. The alternative (change

point) hypothesis H1 claims that ∃¿ ∈ TI : µµµt = µµµ1 and st = s1 for t ∈ J = [¿, t0] and

µµµt = µµµ2 ∕= µµµ1 or st = s2 ∕= s1 for t ∈ J c = [t0 −m, ¿), i.e. either the parameter µµµ or the

whole structure s changed spontaneously at some intermediate point ¿ of the interval I.

In other words

H0 : ∀¿ ∈ TI , µµµt = µµµ, st = s, ∀t ∈ I = J ∪ J c = [¿, t0] ∪ [t0 −m, ¿)

H1 : ∃¿ ∈ TI , µµµt = µµµ1, st = s1; ∀t ∈ J = [¿, t0],

and µµµt = µµµ2 ∕= µµµ1 or st = s2 ∕= s1,∀t ∈ J c = [t0 −m, ¿).

If ℒI(s,µµµ) and ℒJ(s1, µµµ1) + ℒJc(s2, µµµ2) are the log-likelihood functions corresponding to

H0 and H1 respectively, the likelihood ratio test for the single change point with known

fixed location ¿ is given by

TI,¿ = max
s1,µµµ1,s2,µµµ2

{ℒJ(s1, µµµ1) + ℒJc(s2, µµµ2)} −max
s,µµµ

ℒI(s,µµµ)

= MLJ +MLJc −MLI .

Since the point ¿ is unknown, one defines the test statistics:

TI = max
¿∈TI

TI,¿ .

10
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Figure 2: Interval Selection

It tests the homogeneity hypothesis in I against a change point alternative with unknown

location ¿ (in the set TI). The decision rule of the test requires to compare TI with the

critical value zI . The critical value depends on the interval I, the dimension and the

parameter of the copula. We reject the hypothesis of homogeneity if TI > zI . To run

the test several parameters have to be specified. This includes the choice of the interval

candidates (Ik) and internal points Tk = TIk for each of this intervals and the choice of

the critical values zk = zIk . One possible example of the implementation is based on the

choice of the interval candidates (Ik) in form of a geometric grid. If the length of the

interval I1 if fixed at m1, then we define m0 = a1m1 and m−1 = a2m1 for a1 > a2 ∈ (0, 1)

and mk = [m1c
k−1] for k = 1, 2, . . . , K and c > 1, where [x] means the integer part of x.

Further we set Ik = [t0 −mk, t0] and Tk = [t0 −mk−1, t0 −mk−2] for k = 1, 2, . . . , K, see

Figure 2.

For each particular copula model and for each sequence of intervals the critical values zk

are determined from simulations. Under the null hypothesis of homogeneous dependence,

the adaptive estimator should coincide with the largest allowed interval IK . However, if

the estimated interval is Ik̂ with k̂ < K then the test rejects a correct null hypothesis. The

critical values are therefore determined not from the classical level condition, but relying

on the precision of the parameter estimators. If k̂ is small the volatility of the parameter

estimator is high. This implies that false decisions with small k̂ stronger deteriorate the

impact of the test of homogeneity. To overcome this problem we select the critical values

zk to ensure that

E s∗,µ∗∣ℒ(s̃k, µ̃µµk)− ℒ(ŝk, µ̂µµk)∣r ≤ ½kℜr(s
∗, µµµ∗),

where ½k = ½ k/K ≤ ½ and ℜr(s
∗, µµµ∗) = maxk ∣ℒ(s̃k, µ̃µµk) − ℒ(s∗, µµµ∗)∣r. The parameter ½

plays the role of the level of significance and influences the sensitivity of the procedure to

inhomogeneity. This means, that large values of ½ lead to larger critical values, and small

½ to smaller.

11



In this paper we used the sequential choice of critical values zk discussed in Spokoiny

(2009). Assuming situation after k steps of the algorithm we distinguish between two

cases. In the first, change point is detected at some step ℓ ≤ k and in the other case

no change point is detected. Following notation in Spokoiny (2009), let ℬℓ be the event

meaning the rejection of the null hypothesis at step ℓ

ℬℓ = {T1 ≤ z1, . . . , Tℓ−1 ≤ zℓ−1, Tℓ > zℓ},

and (ŝk, µ̂µµk) = (s̃ℓ−1, µ̃µµℓ−1) on ℬℓ for ℓ = 1, . . . , k. By Monte-Carlo simulations from some

fixed parametric models discussed in Section 4 we found sequentially such a minimal value

of zl that ensures the following inequality

max
k=l,...,K

E s∗,µ∗∣ℒ(s̃k, µ̃µµk)− ℒ(s̃ℓ−1, µ̃µµℓ−1)∣rI(ℬℓ) ≤ ½ℜr(s
∗, µµµ∗)k/K,

where I is the indicator function. For ℓ = 1 this inequality depends only on z1 in ℬ1 =

{T1 > z1}. For every ℓ ≥ 2 we take z1, . . . , zℓ−1 being fixed from previous step, what means,

that ℬℓ is controlled only by zℓ. r is fixed throughout the study and equals r = 0.5.

4 Simulation Study

How fast reacts the LCP to shifts in the parameters and/or in the structure? We consider

a 3-dimensional HAC with Gumbel generators and uniform margins. To simulate from

a HAC we used the algorithm of McNeil (2008). We consider samples of size 400, where

a change in parameters and structure occurs at t = 200. The parameter changes are

modeled as:

Ct(u1, u2, u3; s,µµµ) =

⎧
⎨
⎩

C{u1, C(u2, u3; µ1 = 3.33); µ2 = 1.43} for 1 ≤ t ≤ 200,

C{u1, C(u2, u3; µ1 = 2.00); µ2 = 1.43} for 200 < t ≤ 400;

(8)

Ct(u1, u2, u3; s,µµµ) =

⎧
⎨
⎩

C{u1, C(u2, u3; µ1 = 3.33); µ2 = 1.43} for 1 ≤ t ≤ 200,

C{u1, C(u2, u3; µ1 = 3.33); µ2 = 2.00} for 200 < t ≤ 400.

(9)

Via model (8) we investigate the sensitivity of a downward jump in µ1, while (9) is designed

for study of an upward jump in µ2. The initial parameters µ1 = 3.33 and µ2 = 1.43

correspond to the Kendall ¿ ’s equal to 0.7 and 0.3 respectively. In (8) ¿1 decreases to 0.5

12
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Figure 3: Simulated critical values of the 3-dimensional HAC as a function of k with the

parameters of the geometric grid set to m0 = 20 (left) and m0 = 40 (right). ½ and ¿1

are fixed and equal 0.5 and 0.1 respectively, while ¿2 varies with ¿2 = 0.1 (solid black),

¿2 = 0.3 (dashed black), ¿2 = 0.5 (dotted black), ¿2 = 0.7 (solid grey), ¿2 = 0.9 (dashed

grey).

from 0.7, while in (9) ¿2 increases to 0.5 from 0.3. Note, that in both cases the difference

between the parameters becomes smaller.

The change point in the structure is modeled in a similar way

Ct(u1, u2, u3; s,µµµ) =

⎧
⎨
⎩

C{u1, C(u2, u3; µ1 = 3.33); µ2 = 1.43} for 1 ≤ t ≤ 200,

C{C(u1, u2; µ1 = 3.33), u3; µ2 = 1.43} for 200 < t ≤ 400.
(10)

Our technique is implemented with a family of interval candidates of a geometric grid

form defined by m0 = 20, 40 and c = 1.25. The values of m0 and c have turned out to

provide stable results, which is confirmed in the literature cited earlier. Note that the

simulated critical values are indifferent to the form of the initial structure s1 = ((12)3)

or s2 = (1(23)), but depend on the parameters. Using the fact that for the Gumbel

copula the parameter µ ∈ [1;∞) is unbounded from above, we define the grid based on

the Kendall’s ¿ by

µµµ = (µ1, µ2)
⊤ = {µ(¿1), µ(¿2)}⊤,

where

{¿1, ¿2} ∈ {0.1, 0.3, 0.5, 0.7, 0.9}2, ¿1 ≥ ¿2.

This grid in correlation space corresponds to the grid in parameter space given by {µ1, µ2} ∈
{1.11, 1.43, 2, 3.33, 10}2, µ1 ≥ µ2. Thus, we simulate from copulae C{u1, C(u2, u3; µ1 =

13



3.33); µ2 = 1.43}, C{u1, C(u2, u3; µ1 = 2.00); µ2 = 1.43}, etc. The case µ1 = µ2 corre-

sponds to the simple 3-dimensional Archimedean copula C(u1, u2, u3, µ1). To estimate

zk k = 1, . . . , K = 10 we simulate N = 10000 samples of size n = [m0c
K ] + 1 using the

same geometric grid of the intervals. Figure 3 shows the behavior of the critical values as

a function k for different values of ¿2.

In each change point model we simulate n = [m0c
K ] + 400 observations, where the first

[m0c
K ] values are used as a prerun for model estimation. For each t = t0 starting from

[m0c
K ] + 1 we apply the LCP to the recent observations, i.e. we determine the interval

with constant dependency and estimate the corresponding HAC. The results are shown

in Figures 5, 6 and 7. m0 is set to 20 in the left column and to 40 in the rights column, ½

is set to 0.5. The solid lines show the average values, the dashed line the median values

and the grey areas show the interval containing 95 of 100 replications.

The shifts in the first parameter for (8) and in the second parameter for (9) are plotted

in the first rows of Figures 5 and 6 respectively. The Figure 7 illustrates the application

of LCP to the change-point model (10), where in the first row we show the changes in

the structure and in the second row the changes in the parameters. For all three types of

the shift, we observe that the average estimated parameter or structure smoothly moves

from the value before the shift to the value after the shift. The delay reaction naturally

depends on m0. Smaller m0 value let our procedure react more quickly to changes. On

the other hand the precision of the estimation decreases with decreasing sample size.

The last two rows of all three figures show the dynamics of the average length of the

estimated interval of homogeneity and the behavior of the maximum-likelihood. The

estimation is initiated with the shortest available interval of homogeneity. Since the copula

is stable and more observations become available, the length of the interval increases to

the largest allowed value. After the shift the length of the interval decreases and increases

only after the change-point leaves the smallest allowed interval.

The detection ability of the proposed procedure is conveniently characterized by the de-

tection delay. Denote by °i the size of the jump at time t = 200, i.e. °i = µit − µi,t−1 with

i = 1 for the model (8) and i = 2 for the model (9) The detection delay ± at rule r ∈ [0, 1]

is defined by

±(t, °i, r) = min{u ≥ t : µ̂iu ≥ µi,t−1 + r°i} − t

and shows the number of steps needed to detect the fraction r of the jump in the true

µ. For the model (10) we just look for the time point after t = 200 where the structure

14



m0 = 20 m0 = 40

model r Q1 Med. Mean Q3 SD Q1 Med. Mean Q3 SD

(8)

0.25 0.00 9.0 13.20 20.00 14.23 8.00 28.5 30.87 50.25 24.14

0.50 8.75 25.0 25.02 35.00 19.41 36.75 50.0 52.58 63.25 26.47

0.75 19.00 31.0 35.19 47.00 25.77 50.00 63.5 72.71 87.00 35.18

(9)

0.25 2.00 8.0 11.74 19.25 12.00 8.00 21.0 22.65 31.25 18.59

0.50 12.00 18.0 20.86 28.00 13.52 28.00 37.0 39.83 46.25 20.09

0.75 16.75 27.0 30.75 39.00 22.51 37.00 52.5 59.53 73.75 31.83

(10) 15.00 18.0 17.78 21.00 5.23 28.00 32.0 32.45 37.00 5.90

Table 1: Detection delay statistics for LCP, ½ = 0.5.

rolling window

model r Q1 Med. Mean Q3 SD

(8)

0.25 6.25 35.5 39.57 64.50 34.52

0.50 51.00 75.5 76.64 103.00 38.16

0.75 85.25 113.0 109.70 128.20 35.90

(9)

0.25 10.00 26.0 26.69 40.25 19.12

0.50 36.75 57.5 55.90 74.75 24.38

0.75 77.00 95.5 95.53 112.50 29.82

(10) 0.25 68.00 75.5 75.53 84.25 11.40

Table 2: Detection delay statistics for rolling window.
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s2 = (1(23)) is obtained for the first time

±(t) = min{u ≥ t : ŝu = st−1} − t.

Spokoiny (2010) argued that the detection delays are proportional to the probability of

the error of type II. Table 1 represents the descriptive statistics of the detection delay for

different models (8), (9) and (10), r ∈ {0.25, 0.5, 0.75} and m0 ∈ {20, 40}. To detect half

of the shift in the parameters, the procedure needs 20 to 25 observations for m0 = 20 and

40 to 50 observations for m0 = 40. The detection ability of the procedure for the changes

in the structure is similar. Additionally we observe that the mean of detection delay is

higher for upward jumps than for downward jumps. The mathematical reason for this is

explained below. Table 2 contains the detection delays for the rolling window estimation.

To make the comparison fair we set the length of the estimation window equal to the

average length of the intervals of homogeneity in the LCP procedure. We observe that

the flexible choice of the interval of homogeneity leads to substantially shorter detection

delays, compared to the rolling estimation.

To get more insight into the detection delay we consider the difference

K[C{s0; µ(0.1, 0.2)⊤}, C{s0; µ(¿1, ¿2)⊤}]−K[C{s0; µ(¿1, ¿2)⊤}, C{s0; µ(0.1, 0.2)⊤}], (11)

where µ(¿1, ¿2) denotes the vector of parameters corresponding to the Kendall ¿ ’s given

by ¿1 and ¿2. The first term in (11) denotes the KL divergence between the true copula

with µ(¿1, ¿2) and the misspecified copula with the same structure s0 but with µ(0.1, 0.2).

¿1 and ¿2 take values between zero and one. Thus we observe in general an increase

in the parameters from the true values µ(0.1; 0.2) to the misspecified values µ(¿1; ¿2).

In the second term in (11) the situation is opposite and we observe a decrease of the

copula parameters from the true values µ(¿1, ¿2) to the misspecified values µ(0.1, 0.2).

The difference in (11) is plotted in Figure 4. The KL divergence is larger for increasing

parameters and the difference becomes larger with increasing ¿1 and ¿2. This explains why

the adaptive detection procedure based on the KL divergence reacts faster to an increase

in parameters than to a decrease.
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5 Empirical Study

We now apply the developed local estimation procedure to multivariate data on stock

indices and exchange rates. The data on indices contains the daily returns values for Dow

Jones (DJ), DAX and NIKKEI, while the second data set consists of the daily values for

the exchange rates JPN/EUR, GBP/EUR and USD/EUR. Both data sets are taken from

DataStream. The indices are obtained for the period [31.12.1986; 14.09.2009] resulting in

5903 observations, where exchange rates cover the period [4.1.1999; 14.8.2009], resulting

in 2771 observations.

To eliminate the intertemporal conditional heteroscedasticity we fit to each marginal time

series of log-returns a univariate GARCH(1,1) process

Xj,t = ¹j,t + ¾j,t"j,t with ¾2
j,t = !j + ®j¾

2
j,t−1 + ¯j(Xj,t−1 − ¹j,t−1)

2 (12)

and ! > 0, ®j ≥ 0, ¯j ≥ 0, ®j + ¯j < 1. The estimates of the parameters are given

in Table 3. The parameters in (12) are significant. The table contains the p-values of

the Box-Ljung test with 12 lags and Kolmogorov-Smirnov test applied to the residuals.

The residuals exhibit the typical behavior: they are not normally distributed, which

motivates nonparametric estimation of the margins. From the results of the Box-Ljung

test we conclude that the autocorrelation of the residuals is strongly significant only

for GBP/EUR rate and DJ. After this intertemporal correction we work only with the

residuals.

5.1 Rolling Window Estimation

The dependency variation is measured by Kendall and Pearson’s correlation coefficients:

Figure 8 shows the behavior both coefficients calculated in a rolling window of width

r = 250. Their dynamic behavior is similar, but not identical. This opens the door for

a time varying copula based model. A key difference between the plots for indices and

the exchange rates, it that the correlation paths do not intersect for the indices, but do

intersect for the exchange rates. This implies that there is a change in the order of the

bivariate dependencies at the intersection points of the lines for the exchange rates. Thus

we may expect that the structure of HAC stays constant for the indices, but varies for

the exchange rates.

To give a justification for the use of a copula-based distribution to model the residuals,

we estimate additionally alternative parametric models using rolling window of the same
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¹̂j !̂j ®̂j
ˆ̄
j BL KS

DAX 6.94e-04 4.17e-06 0.11 0.87 0.23 3.35e-05

(1.39e-04) (5.29e-07) (8.90e-03) (9.39e-03)

DJ 5.96e-04 3.09e-06 0.11 0.87 0.02 1.58e-07

(1.11e-04) (3.38e-07) (8.50e-03) (9.40e-03)

NIKKEI 5.62e-04 3.01e-06 0.11 0.88 0.78 2.45e-13

(1.45e-04) (5.18e-07) (8.90e-03) (8.71e-03)

JPY 4.85e-05 2.99e-07 0.06 0.94 0.73 1.70e-05

(1.15e-04) (1.02e-07) (7.49e-03) (7.64e-03)

GBP 6.34e-05 1.44e-07 0.06 0.93 0.01 2.10e-04

(7.39e-05) (5.11e-08) (8.75e-03) (9.12e-03)

USD 1.76e-04 1.19e-07 0.03 0.97 0.87 1.65e-03

(1.10e-04) (5.92e-08) (4.14e-03) (4.28e-03)

Table 3: Results of the fitting of univariate GARCH(1,1) to exchange rates and to indices.

The standard deviation of the parameters are given in parentheses. The last two columns

provide the p-values of the Box-Ljung test (BL) for autocorrelations with 12 lags and

Kolmogorov-Smirnov test (KS) for normality applied to the residuals.

width. We consider the binary HAC with Gumbel generator; the 3-dimensional Gaussian

and 3-dimensional simple Archimedean copula. The maximum-likelihood (ML) and the

Bayes information criterion are used as goodness-of-fit measures.

The BIC criterion is computed by BIC = −2ML + 2 log(m), where m is the number of

the parameters to be estimated and ML is the corresponding maximum-likelihood criteria.

Since the number of unknown parameters in the nonparametric case is unknown, it is

incorrect to compare the models with nonparametrically and parametrically estimated

margins using BIC. In such cases we consider only the parameters of the copula function.

Figure 9 illustrates the dynamics of BIC for three multivariate models.

We verify if the variation in the dependency can be linked to some characteristics of the

distribution. The dots in Figure 9 depict the time-points of changes in the bivariate HAC

estimated using rolling window procedure. There is no visible relationship between the

dynamics of the model fit measured by BIC and the changes in the structures. The thin

grey line shows the dynamics of the ∣∣Θ̂ΘΘt− Θ̂ΘΘt−1∣∣2, where Θ̂ΘΘt denotes the matrix of copula

parameters estimated at the time point t and ∣∣ ⋅ ∣∣2 denotes the L2 matrix norm. It is

defined as ∣∣A∣∣2 =
√

¸max(A⊤A), where ¸max is the largest eigenvalue of the matrix
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Figure 8: Rolling window estimators of Pearson’s (left) and Kendall’s (right) correlation

coefficients between the GARCH(1,1) residuals of indices (top) and exchange rates (bot-

tom). For the indices: DAX and NIKKEI (solid line), DAX and DJ (dashed line), DJ

and NIKKEI (dotted line). For the exchange rates: JPY and USD (solid line), JPY and

GBP (dashed line), GBP and USD (dotted line). The width of the rolling window is set

to 250 observations.

A⊤A. Similarly as for BIC, there is no clear relationship between the changes in the

structure and the variation in copula parameters. This implies that there is no obvious

way how can we exploit the results from rolling window estimation to determine the

intervals with homogeneous dependency.

5.2 Local window estimation

The previous section provided evidence on two important issues. First, the univariate

marginal distributions are not normal and the joint distribution can be better modelled

using a HAC based distribution. Second, the dependency is not constant and varies with

time. Since we model the dependency by HAC, this implies that either the structure of
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Figure 9: Rolling window estimator of BIC for HAC-based, based on simple Archimedean

copula and multivariate normal distributions for indices (top) and exchange rates (bot-

tom). The width of the rolling window is 250 observations. The grey line shows the

variation of L2 norm of the difference in the parameter matrices of the copulae. The dots

mark the changes in the structure of binary copula using rolling window estimation.
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HAC or the copula parameters are time-dependent. In this section we apply the local

window procedure to compute a robust estimator of HAC.

The setup of our procedure is chosen as follows. The set of mk’s defining the length of

Ik and Tk is determined by a geometric grid with mk = [m0c
k] for k = 1, 2, . . . , K. The

starting value are set to m0 = 40, ½ = 0.5 and c = 1.25, where [x] denotes the integer part

of x. The critical values z are taken from the simulation study. The structure estimated

from the whole data sample is given for the indices by s∗ = (DAX DJ)2.954 NIKKEI1.222

and for the exchange rates s∗ = (JPY USD)1.588 GBP1.418.

Figure 10 and Figure 11 illustrate the results of the application. The upper plots show the

changes in the structure. The structure ((1.2).3) is very robust for the indices, showing

no shifts over the whole period. This fact is supported by the rolling window estimation

of the correlation coefficients in the previous section. Moreover, this structure coincides

with the structure estimated from the full sample. In the analysis of exchange rates

we observe numerous shifts in the structure. There are intervals with stable structure

and with frequently changing structure. The latter periods correspond to the intervals

where the dependencies between different pairs of variables are similar. In this case the

procedure can hardly distinguish between different, but similar structures. The second

two pictures show the parameters estimators over the intervals of homogeneity. The grey

line depicts the larger parameter, while the black line depicts the smaller parameter. The

intersection point of two lines imply a change in the structure. We see that the algorithm

captures even relatively small changes in parameters. The figure for the indices exhibits

that the parameters become more distant with time. However, for the exchange rates the

parameters show a stable comovement over the whole sample with minor drifts.

The third pictures indicate the dynamics of the ML criteria over the intervals of homogene-

ity. Recall that the local window procedure is based on the stability of the fit measured

by maximum-likelihood. The overall fit of the HAC increases in time for the indices, but

decreases for the exchange rates. Note, that neither the changes in the structure nor

changes in the parameters can explain the variation in the ML. However, the overlapping

of both shifts closely follows the drift in the ML criteria. The bottom figures present the

length of the intervals of homogeneity. For the indices the intervals drops to m0 = 40 after

a larger drift in the parameters, but steadily increases to the maximum of mK = 300 over

stable periods. For the exchange rates the intervals of homogeneity are shorter. This is

due to the fact that the decreases of the intervals of homogeneity are caused both by the

changes in the structure and the shifts in the parameters. This renders shorter intervals,
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but with similar steady increases over stable periods.

The analysis of the figures reveals two different behaviors of the distribution for indices

and the exchange rates. For the indices the LCP procedure detects a clear transition in

the parameters under virtually constant structure. However, for the exchange rates the

local window estimation detects numerous changes in the structure keeping the variation

in parameters low. Thus the suggested procedure is successful in both estimation of the

structure and estimation of the parameters. Additionally this implies that the change in

the distribution is substantial and cannot be neglected.

6 Conclusions

We propose a method of estimating the time-varying dependencies. The joint distribution

of multivariate observations is modeled by a Hierarchical Archimedean copula. Using the

Local Change Point detection procedure we determine the intervals with homogeneous

dependency structure and homogeneous copula parameters. In contrary to non-copula-

based distributions, where the functional form of the dependency is fixed, the adaptive

estimation procedure allows for variations in the form of the copula. The procedure was

evaluated in an extensive simulation study and compared to the classical rolling window

estimation. Application to real data disclosed interesting features of the dynamics of

dependencies.
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