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Abstract

This paper demonstrates that tractability gained from the Calvo pricing assumption is
costly in terms of aggregate dynamics. I derive a generalized New Keynesian Phillips curve
featuring a generalized hazard function, non-zero steady state in�ation and real rigidity. An-
alytically, I �nd that important dynamics in the NKPC are canceled out due to the restrictive
Calvo assumption. I also present a general result, showing that, under certain conditions,
this generalized Calvo pricing model generates the same aggregate dynamics as the gen-
eralized Taylor model with heterogeneous price durations. The richer dynamic structure
introduced by the non-constant hazards is also quantitatively important to the in�ation dy-
namics. Incorporation of real rigidity and trend in�ation strengthen this e¤ect even further.
With reasonable parameter values, the model accounts for hump-shaped impulse responses
of in�ation to the monetary shock, and the real e¤ects of monetary shocks are 2-3 times
higher than those in the Calvo model.
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1 Introduction

The Calvo pricing assumption (Calvo, 1983) has become predominant in the world of applied
monetary analysis under nominal rigidity. The main argument for using this approach, however,
is solely based on its tractability. In recent years, detailed micro-level data sets have become
available for researchers. Empirical work using these data sets1 generally reach the consensus
that, instead of having economy-wide uniform price stickiness, the frequency of price adjust-
ments di¤ers substantially within the economy. In addition, the Calvo assumption also implies
a constant hazard function of price setting, meaning that the probability of adjusting prices is
independent of the length of the time since last adjustment. Unfortunately, constant hazard
functions are also largely rejected by empirical evidence from the micro level data. Cecchetti
(1986) used newsstand prices of magazines in the U.S. and Goette et al. (2005) apply Swiss
restaurant prices. Both studies �nd strong support for increasing hazard functions. By con-
trast, recent studies using more comprehensive micro data �nd that hazard functions are �rst
downward sloping and then mostly �at, interrupted periodically by spikes (See, e.g.: Campbell
and Eden, 2005, Alvarez, 2007 and Nakamura and Steinsson, 2008).

Given this con�ict between theory and empirical evidence, it is important to understand to
which extent the constant hazard function is innocuous for the in�ation dynamics and implica-
tions of monetary policy.

To tackle this question, I construct a generalized time-dependent pricing model and derive
the New Keynesian Phillips curve (NKPC) featuring an arbitrary hazard function, non-zero
steady state in�ation and real rigidity. The resulting NKPC includes components, such as lagged
in�ation, future and lagged expectations of in�ation and real marginal costs. This version of the
Phillips curve nests the Calvo case in the sense that, under a constant hazard function, e¤ects
of lagged in�ation exactly cancel those of lagged expectations, so that, as in the Calvo NKPC,
only current real marginal cost and expected future in�ation remain in the expression. In the
general case, however, both lagged in�ation and in�ation expectations should be presented in the
dynamic structure of the Phillips curve. In light of this result, we learn that lagged in�ation and
lagged expectations are not extrinsic to the forward-looking pricing model. They are missing in
the Calvo setup, only because the restrictive pricing assumption has them canceled out.

Furthermore, I present a general result that, up to log linearization approximation, the gen-
eralized Calvo pricing model based on a �exible hazard function implies the same aggregate
dynamics as the general Taylor framework with heterogeneous price durations. In the litera-
ture, both frameworks have been commonly applied to study the e¤ects of heterogeneous price
stickiness on aggregate dynamics. Dixon and Kara (2005), for example, generalize the simple
Taylor-wage-contract model to explicitly account for the presence of varying contract lengths,
and Carvalho (2005) models heterogeneity in price stickiness by introducing continuous Calvo
sticky price sectors. Both of these works �nd that the presence of a small portion of highly
rigid sectors leads to more persistent in�ation and larger real e¤ects of monetary shocks. In this
paper, I show that under a certain condition regarding the relationship between the distribution
of price durations and the hazard function, these two frameworks imply the same aggregate
dynamics. This result has an important empirical implication that the aggregate data can be

1See: e.g. Bils and Klenow (2004), Alvarez et al. (2006), Midrigan (2007), Nakamura and Steinsson (2008)
among others.
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used to uniquely identify both hazard functions and the distribution of sticky prices from either
of these two frameworks.

When simulating the complete general equilibrium model, I combine the generalized NKPC
with a standard IS curve and an exogenous nominal money growth rule. The simulation results
show that, even without real rigidity and trend in�ation, the increasing hazard function helps
to increase both persistence of in�ation and output gap. When introducing some degree of real
rigidity, the generalized NKPC gives rise to substantially di¤erent in�ation dynamics, namely,
the impulse response of in�ation to a nominal money growth shock becomes hump-shaped.
Moreover, non-zero trend in�ation ampli�es this e¤ect even further. The economic intuition
behind these results is that, on the one hand, increasing hazard function postpones the timing
of the price adjustment. On the other hand, strategic complementary makes earlier adjusting
�rms choose a small size for the adjustment, while the later adjusting �rms make a larger price
adjustment. In another words, the increasing-hazard pricing together with some degree of real
rigidity not only a¤ect the timing of the price adjustment, but also the average magnitude of
�rms� adjustments, leading to a hump-shaped response. Trend in�ation ampli�es this e¤ect
even further, because high trend in�ation causes relative prices to disperse quickly. Last but not
least, when the real e¤ects of monetary policy shocks are measured by the accumulative impulse
responses of the real output gap, models with an increasing hazard function generate real e¤ects
of monetary policy which are 2-3 times larger than those in the corresponding Calvo model.

In the literature, some cases of this general hazard pricing model have been studied in
di¤erent contexts. Wolman (1999) presents preliminary results, showing that in�ation dynamics
are sensitive to hazard functions under di¤erent pricing rules. Mash (2003) constructed a general
pricing model that nests both the Calvo and Taylor models, and showed that implications
for optimal monetary policy based on those limiting cases are not robust to the change in
the hazard function. Whelan (2007) and Sheedy (2007) focus on the relationship between the
shape of hazard functions and in�ation persistence. The most closely related work is from
Carvalho and Schwartzman (2008), who study the relationship between the heterogeneity of
sticky prices (sticky information) and monetary non-neutrality. They �nd that heterogeneity in
price stickiness leads to roughly 3 times larger monetary non-neutrality.

The remainder of the paper is organized as follows: in section 2, I present the model with
the generalized time-dependent pricing and derive the New Keynesian Phillips curve; section
3 shows analytical results regarding new insights gained from relaxing the constant hazard
function underlying the Calvo assumption; in section 4, I simulate the complete DSGE model
with some commonly used parameter values in the literature and then present the simulation
results; section 5 contains some concluding remarks.
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2 The Model

In this section, I present a DSGE model of sticky prices based on both nominal and real rigidities.
The scheme of nominal rigidity in the model allows for a general shape of the hazard function.
A hazard function of price setting is de�ned as the probabilities of price adjustment conditional
on the spell of time elapsed since the price was last set. Real rigidity is introduced similarly
as in Sbordone (2002), who incorporates upward-sloping marginal cost as a source of strategic
complementarity.

2.1 Representative Household

The representative in�nitely-lived household deduces utilities from the composite consumption
good Ct, its labor supply and the real money holding Md

t =Pt, and it maximizes a discounted
sum of utilities of the form:

max
fCt;Md

t ;Lt;Bt+1g
E0

" 1X
t=0

�t
�
C1��t

1� � � �H
Lt
1+�

1 + �
+ �

M
log

�
Md
t

Pt

��#

Here Ct denotes an index of the households�s consumption of each of the individual goods Ct(i)
following a constant-elastisity-of-substitution aggregator (Dixit and Stiglitz, 1977).

Ct �
�Z 1

0
Ct(i)

��1
� di

� �
��1

; (1)

where � > 1, and it follows that the corresponding cost-minimizing demand for Ct(i) and the
welfare based price index Pt are given by

Ct(i) =

�
Pt(i)

Pt

���
Ct (2)

Pt =

�Z 1

0
Pt(i)

1��di

� 1
1��

(3)

For simplicity, I assume that household supplies homogeneous labor units (Lt) in an enocomy-
wide competitive labor market.

The �ow budget constraint of the household at the beginning of period t is

PtCt +M
d
t +

Bt
Rt
�Md

t�1 +WtLt +Bt�1 +

Z 1

0
�t(i)di: (4)

Where Bt is an Arrow-Debreu security of one-period bond and Rt denotes the gross nominal
return on the bond. �t(i) represents the nominal pro�ts of a �rm that sells the good i. I assume
that each household owns an equal share of all �rms. Finally this sequence of period budget
constraints is supplemented with a transversality condition of the form lim

T!1
Et

h
BT

�Ts=1Rs

i
> 0.

The solution to the household�s optimization problem can be expressed in three �rst order
necessary conditions:

�
H
Lt
�C�t =

Wt

Pt
; (5)
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This equation gives the optimal labor supply as a function of real wage.

1 = �Et

"�
Ct
Ct+1

��

RtPt
Pt+1

#
; (6)

The Euler equation tells us the relationship between the optimal consumption path and asset
prices.

�
M

Mt

Pt
=

C�t
1�R�1t

; (7)

Finally, the demand of real money balance is determined by weighting between the bene�ts and
costs of holding money.

2.2 Firms in the Economy

In the economy, there is a continuum of monopolistic competitive �rms, who use labor as the
single input to produce good i.

Yt(i) = ZtLt(i)
1�a (8)

where Zt denotes an aggregate productivity shock. Log deviations of the shock ẑt follow an
exogenous AR(1) process ẑt = �z ẑt�1 + "z;t, where "z;t is white noises and �z 2 [0; 1). Lt(i) is
the demand of labor by �rm i. Following equation (2), demand for intermediate goods is given
by:

Yt(i) =

�
Pt(i)

Pt

���
Yt (9)

2.2.1 Pricing Decisions under Real Rigidity

In Appendix (A), I derive the economy-wide optimal relative price, which is the ratio between
the average optimal price chosen by the adjusting �rms and aggregate price index. Note that
even through the individual optimal prices are not the same due to the fact that marginal costs
generally depend on the amount produced, we can still derive the aggregate optimal relative-price
ratio at period t from the average marginal cost in the economy.

P �t
Pt
=

�
�

� � 1
1

1� a

� 1�a
1�a+�a

Y
�+�(1�a)+a
1�a+�a

t Z
� 1+�
1�a+�a

t (10)

To show how real rigidity a¤ects price setting in this model, I log-linearize the relative price
equation (10). De�ne x̂t = logXt � log �X as the log deviation from the steady state, up to a log
linearization approximation, one can show that the log deviation of the relative price is equal
to the log deviation of the economy-wide marginal cost, which in turn is a linear function of log
deviations of output gap and the technology shock.
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Figure 1: Real Rigidity, when � = 1; � = 0:5 and � = 10

brpt = cmct = 
 (�1ŷt � �2ẑt)
where :


 =
1

1� a+ a�
�1 = a+ �+ �(1� a)
�2 = 1 + �

Parameters 
 and �1 have the economic interpretation as the measure of real rigidity. 
 is the
elasticity of relative prices to the change in real marginal cost, while �1 measures the sensitivity
of real marginal cost to the change in the output gap. Following Woodford (2003), price-setting
decisions are called strategic complementarity when 
�1 < 1. When we assume that the monetary
authority controls the growth rate of the nominal aggregate demand d̂t, then at equilibrium we
have ŷt = d̂t� p̂t. In this case, price adjustments are �sticky�even under a �exible price setting,
because relative price reacts less than one-to-one to a monetary shock. On the other hand, price
setting decisions can be dubbed strategic substitutes when 
�1 > 1, so that relative price reacts
strongly to monetary policy shocks.

Now we can discuss how changes in the labor share a a¤ect the magnitude of real rigidity of
price setting in the model. When setting a equal to zero, creating a linear production technology,
then 
 = 1 and �1 = �+�. Under the standard calibration values in the RBC literature ( � = 1
and � = 0:5 ), the real rigidity parameter 
�1 is equal to 1:5 and price decisions are strategic
substitutes. When the value of a rises, the real rigidity parameter becomes smaller, and price
decisions turn into strategic complementarity.

In Figure (1), I plot values of 
 and �1 against values of a, while setting � = 1; � = 0:5 and
� = 10. In this special case, the sensitivity of real marginal cost to the change in the output
gap �1 is not a¤ected by the labor share, while 
 decreases fairly quickly as a becomes larger.
This means that, given the parameter values, real rigidity is mainly driven by the sensitivity of
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the relative price to changes in real marginal cost, and the degree of real rigidity is decreasing
in a. Only with a modest value of the labor share (around 0:1), real rigidity drops below the
strategic neutrality threshold.

2.2.2 Pricing Decisions under Nominal Rigidity

In this section, I introduce a general form of nominal rigidity, which is characterized by an
arbitrary hazard function. Many well known price setting models in the literature can be shown
to have the incorporation of a hazard function of one form or another. The hazard function in
this price setting is de�ned as the probability of price adjustment conditional on the spell of
time elapsed since the price was last set. I assume that monopolistic competitive �rms cannot
adjust their price whenever they want. Instead, opportunities for re-optimizing prices depend
on the hazard function hj , where j denotes the time-since-last-adjustment and j 2 f0; Jg. J
is the maximum number of periods in which a �rm�s price can be �xed. To keep the model
general, I do not parameterize the hazard function, so that the relative magnitudes of hazard
rates are totally free. As a result, this model is able to nest a wide range of staggered pricing
New Keynesian models.

Dynamics of the vintage distribution In the economy, �rms�prices are heterogeneous with
respect to the time since their last price adjustment. I call them price vintages, while the vintage
label j indicates the age of each price group. Table (1) summarizes key notations concerning
the dynamics of vintages.

Vintage Hazard Rate Non-adj. Rate Survival Rate Distribution
j hj �j Sj �(j)

0 0 1 1 �(0)

1 h1 �1 = 1� h1 S1 = �1 �(1)
...

...
...

...
...

j hj �j = 1� hj Sj =
j

�
i=0
�i �(j)

...
...

...
...

...
J hJ = 1 �J = 0 SJ = 0 �(J)

Table 1: Notations of the dynamics of price-vintage-distribution.

Using the notation de�ned in Table (1), and also denoting the distribution of price durations
at the beginning of each period by �t = f�t(1); �t(2) � � � �t(J)g, we can derive the ex post
distribution of �rms after price adjustments (~�t)

~�t(j) =

8<:
JP
i=1
hj�t(i) , when j = 0

�j�t(j) , when j = 1 � � �J
(11)

Intuitively, those �rms that reoptimize their prices in period t are labeled as �vintage 0�, and
the proportion of those �rms is given by hazard rates from all vintages multiplied by their
corresponding densities. The �rm left in each vintage are the �rms that do not adjust their
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prices. When period t is over, this ex post distribution ~�t becomes the ex ante distribution for
the new period �t+1: All price vintages move to the next one, because all prices age by one
period.

As long as the hazard rates lie between zero and one, dynamics of the vintage distribution
can be viewed as a Markov process with an invariant distribution �, obtained by solving �t(j) =
�t+1(j) It yields the stationary vintage distribution �(j) as follows:

�(j) =

j

�
i=0
�i

J
�
j=0

j

�
i=0
�i

=
Sj
J
�
j=0
Sj

, for j = 0; 1 � � �J (12)

Let�s assume the economy converges to this invariant distribution fairly quickly, so that
regardless of the initial vintage distribution, I only consider the economy with the invariant
distribution of price durations.

The Optimal Pricing under Nominal Rigidity In a given period when a �rm is allowed
to reoptimize its price, the optimal price chosen should re�ect the possibility that it will not
be re-adjusted in the near future. Consequently, adjusting �rms choose optimal prices that
maximize the discounted sum of real pro�ts over the time horizon during which the new price
is expected to be �xed. The probability that the new price is �xed is given by the survival
function, Sj , de�ned in Table (1).

Here I setup the maximization problem of an average adjustor as follows:

max
P �t

Et
J�1P
j=0

SjQt;t+j

�
Y dt+jjt

P �t
Pt+j

� TCt+j
Pt+j

�
Where Et denotes the conditional expectation based on the information set in period t, and
Qt;t+j is the stochastic discount factor appropriate for discounting real pro�ts from t to t + j.
Note that here P �t is de�ned as the average optimal price chosen by the average adjusting �rm.
Therefore TCt denotes the average total costs of producing output Y dt . The representative
adjusting Firm maximizes pro�ts subject to demand for intermediate goods in period t+j given
that the �rm resets the price in period t, (Y dt+jjt).

Y dt+jjt =

�
P �t
Pt+j

���
Yt+j ;

It yields the following �rst order necessary condition for the optimal price:

P �t =
�

� � 1

J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j MCt+j ]

J�1P
j=0

SjEt[Qt;t+jYt+jP
��1
t+j ]

(13)

MCt denotes the average nominal marginal costs of adjusting �rms. The optimal price is equal
to the markup multiplied by a weighted sum of future marginal costs, where weights depend on
the survival rates. In the Calvo case, where Sj = �j , this equation reduces to the Calvo optimal
pricing condition.
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Finally, given the stationary distribution �(j), aggregate price can be written as a distributed
sum of all vintage prices. I de�ne the vintage price which was set j periods ago as P �t�j . Following
the aggregate price index equation (3), the aggregate price is then obtained by:

Pt =

 
J�1P
j=0

�(j)P �1��t�j

! 1
1��

(14)

2.2.3 Non-zero-in�ation Steady State

If I assume that the gross growth rate of nominal money stock is g, then the steady state is
characterized by constant real variables and a growing path of all nominal variables at the rate
g. Because the aggregate price level increases with trend in�ation in the steady state, �rms need
to adjust their prices so that the relative prices are close to the optimal ratio speci�ed below. If
we de�ne X as the steady state value of variable X, then the optimality condition (13) can be
rewritten as:

�p�t =
�

� � 1

JP
j=0

�jS(j) �Y �P �t+j

JP
j=0

�jS(j) �Y �P ��1t+j

mc =
�

� � 1

JP
j=0

�jS(j) �Y �P �t g
�j

JP
j=0

�jS(j) �Y �P ��1t g(��1)j
mc

�p�t
�Pt

=
�

� � 1mc

26664
JP
j=0

�jS(j)g�j

JP
j=0

�jS(j)g(��1)j

37775 (15)

As seen in Equation (15), the optimal relative price ratio is equal to the constant markup
multiplied by the real marginal cost along with an extra term, which re�ects how fast trend
in�ation erodes the relative prices in the economy. When the gross in�ation rate is equal to
one, this term is also equal one. In this case, we have the standard static price setting equation.
However, when trend in�ation is greater than one, it follows that the extra term is also greater
than one, meaning that the adjusting �rms want to �front-load�their price adjustments in order
to hedge the risk that they may not adjust again in the near future. As a result, they adjust
their prices more than those in the case of zero in�ation. The higher relative price, in turn, leads
to lower steady state output and hence, induces an additional welfare loss caused by the steady
state in�ation.

2.3 Derivation of the New Keynesian Phillips Curve

In this section, I derive the New Keynesian Phillips curve for this generalized model. To do that,
I �rst log-linearize equation (13) around the steady state with the trend in�ation (��). This is
motivated by King and Wolman (1996) and Ascari (2004), who show that trend in�ation plays
an important role in both the long-run and the short-run dynamics.
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The log-linearized optimal price equations are obtained by

p̂�t = Et

"
J�1P
j=0

(�g�)j S(j)



(cmct+j + p̂t+j)# ; (16)

where :


 =

J�1X
j=0

(�g�)j S(j) and cmct = a+ �+ �(1� a)
1� a+ a� ŷt �

1 + �

1� a+ a� ẑt

In a similar fashion, I derive the log deviation of the aggregate price by log linearizing equation
(14).

p̂t =
J�1P
k=0

�(k) p̂�t�k; where �(k) =
�(k)g(��1)k

J�1P
k=0

�(k)g(��1)k
(17)

2.3.1 New Keynesian Phillips Curve

To reveal implications of the general hazard function on the in�ation dynamics, I derive the
generalized NKPC from equations (16) and (17). To keep the equation as simple as possible, I
�rst derive it without trend in�ation, i.e. g = 1. After some tedious algebra, I obtain the New
Keynesian Phillips curve as follows2:

�̂t =
J�1P
k=0

�(k)

1� �(0)Et�k

 
J�1P
j=0

�jS(j)

	
cmct+j�k + J�1P

i=1

J�1P
j=i

�jS(j)

	
�̂t+i�k

!

�
J�1P
k=2

�(k)�̂t�k+1; where �(k) =

J�1P
j=k

S(j)

J�1P
j=1
S(j)

; 	 =
J�1P
k=0

�jS(j) (18)

At the �rst glance, this Phillips curve is quite di¤erent from the one in the Calvo model.
It involves not only lagged in�ation but also lagged expectations that were built into pricing
decisions in the past. All coe¢ cients in the NKPC are derived from structural parameters
which are either the hazard function parameters or the preference parameters. When J = 3, for
example, then the NKPC is of the following form:

2The detailed derivation of the NKPC can be found in the technical Appendix (B).
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�̂t =
1

(�1 + �1�2)	
cmct + �1

(�1 + �1�2)	
cmct�1 + �1�2

(�1 + �1�2)	
cmct�2

+
1

�1 + �1�2
Et

�
��1
	
cmct+1 + �2�1�2

	
cmct+2 + ��1 + �2�1�2

	
�̂t+1 +

�2�1�2
	

�̂t+2

�
+

�1
�1 + �1�2

Et�1

�
��1
	
cmct + �2�1�2

	
cmct+1 + ��1 + �2�1�2

	
�̂t +

�2�1�2
	

�̂t+1

�
+

�1�2
�1 + �1�2

Et�2

�
��1
	
cmct�1 + �2�1�2

	
cmct + ��1 + �2�1�2

	
�̂t�1 +

�2�1�2
	

�̂t

�
� �1�2
�1 + �1�2

�̂t�1

where : 	 = 1 + ��1 + �
2�1�2

In this example, we see more clearly how current in�ation depends on marginal costs, lagged
in�ation and a complex weighted sum of lagged expectations. All coe¢ cients are expressed in
terms of hazard rates (�j = 1� hj) and a preference parameter �:

2.3.2 The NKPC with Trend In�ation (g)

When I derive the NKPC by log-linearizing pricing equations around a steady state with non-zero
trend in�ation, it can be shown that the resulting Phillips curve has the exact same structure as
the one without trend in�ation. However, trend in�ation a¤ects the magnitude of all coe¢ cients
in the NKPC. Again, using the example where J = 3, we obtain

�̂t =
1

	
mct +

1

	
mct�1 +

1

	
mct�2

+
1Et

�
��1g

�

	
mct+1 +

�2�1�2g
2�

	
mct+2 +

	� 1
	

�̂t+1 +
�2�1�2g

2�

	
�̂t+2

�
+
2Et�1

�
��1g

�

	
mct +

�2�1�2g
2�

	
mct+1 +

	� 1
	

�̂t +
�2�1�2g

2�

	
�̂t+1

�
+
3Et�2

�
��1g

�

	
mct�1 +

�2�1�2g
2�

	
mct +

	� 1
	

�̂t�1 +
�2�1�2g

2�

	
�̂t

�
(19)

�
3�̂t�1 (20)

(21)


1 =
1

�1g��1 + �2�1g2��2
; 
2 =

�1g
��1

�1g��1 + �2�1g2��2


3 =
�1�2g

2��2

�1g��1 + �2�1g2��2
; 	 = 1 + ��1g

� + �2�1�2g
2�

In this case, trend in�ation (g) enters every coe¢ cient in the Phillips curve, and hence it
has not only a signi�cant impact on the steady state, but a¤ects the in�ation dynamics in a
complex way as well. In general, 
1 and 
2 are decreasing in g, while 
3 is increasing in g. So
the changes in trend in�ation alter the relative importance between the forward-looking and
backward-looking terms in the Phillips curve.
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3 Analytical Results

In this section, I explore the generalized NKPC (18) analytically to show which new insights we
can learn from relaxing the constant hazard function underlying the Calvo assumption.

3.1 Relationship between the Calvo and the Generalized NKPC

The �rst question I want to address is why these lagged dynamic terms are absent in the Calvo
NKPC? Are they new to the NKPC? The answer is No. Next, I use a proposition to illustrate
this point.

Proposition 1 : When assuming the hazard function is constant over the in�nite horizon, the
generalized NKPC (18) reduces to the standard Calvo NKPC and the following equation must
also hold:

�̂t = Et

�
(1� �)(1� ��)

1P
i=0
�i�imct+i + (1� �)

1P
i=0
�i�i�̂t+i

�
(22)

Proof : see Appendix (C).

By iterating equation (22) backwards, the following equations hold

�̂t�1 = Et�1

�
(1� �)(1� ��)

1P
i=0
�i�imct+i�1 + (1� �)

1P
i=0
�i�i�̂t+i�1

�
�̂t�2 = Et�2

�
(1� �)(1� ��)

1P
i=0
�i�imct+i�1 + (1� �)

1P
i=0
�i�i�̂t+i�1

�
...

In light of these results, we learn that the generalized NKPC nests the Calvo Phillips curve in
the sense that, given the constant hazard function, the e¤ects of lagged in�ation terms exactly
cancel the e¤ects of lagged expectations, leaving only current variables and forward-looking
expectations on in�ation in the expression. Moreover, lagged in�ation and lagged expectations
are not extrinsic to the time-dependent nominal rigidity model. They are missing in the Calvo
setup only because the constant hazard assumption causes them to be canceled out. Therefore,
the fully written NKPC of the Calvo model should be of the form:

�̂t = � �̂t+1 +
(1� �)(1� ��)

�
cmct

� ��̂t�1 � �2�̂t�2 � � � �

+�Et�1

�
(1� �)(1� ��)

1P
i=0
�i�icmct+i�1 + 1P

i=0
�i�i�̂t+i�1

�
+�2Et�2

�
(1� �)(1� ��)

1P
i=0
�i�icmct+i�2 + 1P

i=0
�i�i�̂t+i�2

�
...
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3.2 The Generalized Calvo Model and the Generalized Taylor Model

In the literature, modelers of nominal rigidity frequently use two mechanisms�the hazard func-
tion and the distribution of price durations� to characterize sticky prices or wages. One is
following the idea of Calvo (1983), assuming that probabilities of nominal price adjustments are
exogenously given, while the other modeling strategy has its origin from the staggered-contract
model of Taylor (1980), who assumes some forms of the distribution over price durations. De-
pending on the purpose, the generalized Calvo model (GCM) tends to use a �exible hazard
function (See, e.g. Wolman, 1999), while the generalized Taylor model (GTM) usually applies
a �exible distribution of price durations (See, e.g. Jadresic, 1999). Here I present a general
result, showing that, up to log linearization approximation, those two models generate the same
aggregate dynamics under a certain regularity condition regarding the relationship between the
distribution of price durations and the hazard function.

Proposition 2 : Up to log linearization approximation, the generalized Taylor model (GTM)
and the generalized Calvo model (GCM) imply the same aggregate dynamics, when �(J) the
distribution of price durations in the GTM and hj the hazard function in the GCM correspond
according to Equation (40).

Proof : see Appendix (D).

Here I prove that, given the same driving forces of in�ation in both models, the aggregate
price in the GCM is equal to the aggregate price in the GTM, so that these two models should
generate the same aggregate dynamics. In light of this result, models assuming an exogenous
distribution of price durations implies an aggregate hazard function, and vice versa. This result
is not only theoretically interesting, but also has important implications for empirical work that
uses those frameworks to study price stickiness (See: e.g. Coenen et al., 2007). It implies that the
aggregate data can be used to uniquely identify both hazard functions and the distribution from
either of these two frameworks. In another words, both models should extract same information
out of the data about the price stickiness. Therefore one can choose to work on one of those
models and safely draw conclusions about both distribution and hazard functions.

4 Numerical Results

4.1 The General Equilibrium Model

In the numerical experiment, I study the behavior of in�ation dynamics in a general equilibrium
setup. For this purpose, I close the model by adding a nominal money stock growth rule. The
log-linearized equilibrium equations are summarized here:
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�̂t =
J�1P
k=0

W1(k; g)Et�k

 
J�1P
j=0

W2(j; g)cmct+j�k + J�1P
i=1

W3(i; g)�̂t+i�k

!
�
J�1P
k=2

W4(k; g)�̂t�k+1

cmct =
�+ � + a

1 + ��+ �a
ŷt �

1 + �

1 + ��+ �a
ẑt

�Et [ŷt+1] = �ŷt + (̂{t � Et [�̂t+1])

m̂t = �ŷt �
�

1� � {̂t

m̂t = m̂t�1 � �̂t + gt
ẑt = �z � ẑt�1 + �t where �t v N(0; 0:0072)
gt = g + ut where ut v N(0; 0:00252)

Where all variable are expressed in terms of log deviations from the non-stochastic steady state.
The weights (W1;W2;W3;W4) in the NKPC are de�ned in the equation (18). m̂t is the real
money balance, and gt denotes the growth rate of the nominal money stock, which consists of
a constant g and a white-noise shock ut, representing the regular and irregular parts of the
standing monetary policy.

4.2 Calibration

In the calibration, instead of referring to any microeconometric evidence on the hazard function,
I parameterize the hazard function a parsimonious way. The reason is that, until now, there
is not yet consensus on the shape of hazard functions in the empirical literature. As discussed
in the introduction, it is evident that the shape of hazard functions is changing over time with
the underlying economic conditions. Since the main purpose of the paper is to demonstrate the
impact of varying hazard rates on the in�ation dynamics, I choose to calibrate it based on the
statistical theory of duration analysis. In particular, the functional form I apply is the hazard
function of the Weibull distribution, which has two parameters:

h(j) =
�

�

�
j

�

���1
(23)

� is the scale parameter, which controls the average duration of the price adjustment, while �
is the shape parameter to determine the monotonic property of the hazard function. It enables
the incorporation of a wide range of hazard functions by using various values for the shape
parameter. In fact, any value of the shape parameter that is greater than one corresponds to
an increasing hazard function, while values ranging between zero and one lead to a decreasing
hazard function. By setting the shape parameter to one, we can retrieve the Poisson process
from the Weibull distribution.

In this numerical experiment, I choose �, such that it implies an average price duration
of 3 quarters, which is largely consistent with the median price durations of 7 - 9 months
documented by Nakamura and Steinsson (2008). The shape parameter is set in the interval
between one and three, which covers a wide range of shapes of the hazard function3. As for

3This range only covers increasing hazard functions because it makes the maximum number of price duration
J well de�ned.
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the rest of the structural parameters, I use some common values in the literature to facilitate
comparison the results. In the calibration of the preference parameters, I assume � = 0:9902,
which implies a steady state real return on �nancial assets of about four percent per annum. I also
assume the intertemporal elasticity of substitution � = 1, implying log utility of consumption.
I choose the Frisch elasticity of the labor supply to equal 0:5, an estimate commonly found in
microeconometric studies (See: e.g. Blundell and Macurdy). As for the technology parameters,
I set labor�s share to be either 0 or 0:36 to show the e¤ect of real rigidity. The elasticity
of substitution between intermediate goods � = 10, which implies the desired markup over
marginal cost should be about 11%. Finally, I set the standard deviation of the innovation to
the nominal money growth rate to be 25 basic points per quarter. For the aggregate technology
shock, I choose �z = 0:95 and the standard deviation of 0.007, in line with commonly used values
in the RBC literature, for example King and Rebelo (2000).

4.3 Simulation Results

To evaluate the quantitative implication for the aggregate dynamics, I apply the standard algo-
rithm to solve for the log-linearized rational expectation model.

4.3.1 E¤ects of Increasing Hazard Functions

In the �rst experiment, I study the e¤ects of varying the shape parameter on the equilibrium
dynamics without any real rigidity and the trend in�ation. In Table (2), I report second moments
generated by the theoretical models, which are di¤erent with respect to the shape of the hazard
function. Because I use the Weibull hazard function to calibrate the model, I can change the
shape of the hazard function by varying the value of the shape parameter � . In this experiment, I
focus on the comparison between the baseline Calvo case, with a corresponding shape parameter
of � = 1, and the increasing hazard models, where � falls in the range between 1.6 and 3. In
all cases, the moments are for a Hodrick-Prescott �ltered time series. For each of these hazard
functions, two sets of statistics are reported: �rst, the �rst-order autocorrelation coe¢ cient of
deviations on in�ation, real marginal cost and output; and second, contemporaneous correlation
coe¢ cients between in�ation and real marginal cost. In all models, I use a persistent technology
shock and a transitory monetary shock, whose stochastic properties are speci�ed above.
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Figure 2: Comparing impulse responses functions

Calvo Model Increasing Hazard Models
� 1 1.6 1.8 2 2.5 3

AR(1) �̂ 0.166 0.524 0.537 0.549 0.567 0.576
AR(1) ŷ 0.811 0.876 0.874 0.873 0.870 0.868
AR(1) cmc 0.169 0.362 0.338 0.318 0.280 0.264

Corr(�̂; cmc) 0.998 0.977 0.965 0.950 0.915 0.891

Table 2: Second moments of the simulated data (HP �ltered, lambda=1600)

The �rst noteworthy result from the table is that models with increasing hazard rates gen-
erate much higher persistence in in�ation than in the Calvo model, ceteris paribus. Secondly,
increases in the shape parameter reduces the persistence of real marginal cost and output. In the
Calvo case, because in�ation persistence is solely determined by the dynamics of real marginal
cost, in�ation persistence cannot exceed persistence of real marginal cost. In the increasing
hazard model, however, the autoregressive terms of real marginal cost are brought into the
Phillips curve through lagged expectations, and thus, in comparison to the Calvo model, this
new transmission mechanism propagates more in�ation persistence. Fuhrer (2006) presented
empirical evidence showing that it is di¢ cult to have a sizable coe¢ cient on the driving process
in the Calvo NKPC and that a reduced form shock in the NKPC explains a signi�cant portion
of the in�ation persistence. We can understand this evidence through the lens of the general-
ized NKPC. The problem of the conventional NKPC is essentially caused by ignoring terms like
lagged in�ations and lagged expectations. As I show in the analytical result, this is not the case
in the more general time-dependent pricing model. The misspeci�ed Phillips curve fails to ex-
plain in�ation persistence with its limited structure. Consequently, we either need to introduce
the ad hoc backward-looking behavior or a persistent reduced-form shock to achieve a good �t
to the data. Last but not least, as shown in the �nal row of the table, the increasing-hazard
pricing model also helps to reduce the correlation between in�ation and current real marginal
cost, a rather robust feature of the data (See: e.g. Hornstein, 2007).

Figure 2 shows the impulse responses of the Calvo model compared to the increasing-hazard
model with the shape parameter of 2. The left panel depicts the impulse responses of in�ation
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Figure 3: Impulse responses of in�ation with real rigidity

while the right panel shows those of the output gap to a 1% increase in the annual nominal
money growth rate. Without real rigidity and trend in�ation, we observe that, even though
the impulse response function of the increasing-hazard model is somewhat more persistent,
the general pattern of the impulse responses are the same in both cases, namely, they drop
monotonically back to the steady state.

4.3.2 E¤ects of Real Rigidity

As in�uentially argued in Woodford (2003), real price rigidity plays an important role in in�ation
dynamics in addition to nominal rigidity. In this model I introduce real rigidity in a parsimonious
way, following Sbordone (2002). I now set the labor share parameter equal to 0:36. Combining
this with other parameter values in the model, it implies that the real rigidity parameter (
�1 =
a+�+�(1�a)
1�a+a� ) equals 0.35, representing a modest level of strategic complementarity.
In Figure (3), I compare the impulse responses of in�ation to a transitory money growth

shock with and without real rigidity. The left panel shows the comparison in the Calvo model.
Incorporation of real rigidity makes the impulse responses more long-lasting, but still monotonic.
By contrast, in the right panel, impulse responses of in�ation in the increasing hazard model
change substantially with real rigidity. One can see that not only the persistence of the impulse
response function gets improved, but, more importantly, the shape of it as well. In this case,
the IRF becomes hump-shaped with a peak at around the second quarter.

The economic intuition behind this result is that, on the one hand, increasing hazard function
postpones the timing of the price adjustment, i.e. only a few �rms adjust their prices immediately
after a shock, and more and more adjust later on. On the other hand, real rigidity helps to
amplify this postponing e¤ect even further. Because price decisions are strategic complementary,
when fewer �rms adjust their prices at the beginning phase of the IRF, even the adjusting
�rms choose a small size of the adjustment. Afterwards, however, when more �rms reset their
prices, the size of the price adjustment becomes also larger. In another words, the increasing-
hazard pricing together with some degree of real rigidity not only a¤ect the timing of the price
adjustment, but also the average magnitude of �rms�adjustments, leading to a hump-shaped
response.
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Figure 4: Impulse response functions with real rigidity and trend in�ation

4.3.3 E¤ects of Trend In�ation

In his seminal paper, Ascari (2004) has shown that trend in�ation has important implications
for the model�s dynamics when the Calvo pricing model is log-linearized around non-zero trend
in�ation. Here I analyze the dynamic e¤ects of trend in�ation in the increasing hazard pricing
model. Combining these features is an interesting exercise, because, as I have shown in the
previous section, introducing trend in�ation a¤ects all coe¢ cients in the generalized NKPC (See
Equation 19), and hence it changes the relative importance between the forward-looking and
backward-looking terms in the Phillips curve. As a result, trend in�ation exerts a larger impact
on the dynamics of in�ation in the increasing-hazard pricing model than in the Calvo case.

In Figure (4), I show the impulse responses of in�ation and of the output gap to a transitory
money growth shock in the increasing hazard model. In the left panel, in�ation without real
rigidity and trend in�ation reacts to monetary shock monotonically (solid blue line), while the
dashed green line depicts the impulse response of in�ation when real rigidity is present. As shown
earlier, this line becomes hump-shaped. Furthermore, when I add a non-zero trend in�ation into
the dynamic structure, the hump becomes even more salient and peaks later (red circled line).
On the right panel, impulse responses of the output gap show that the real e¤ect of the monetary
shock is more persistent in the case when real rigidity and trend in�ation are presented.

The reason why high trend in�ation ampli�es the e¤ect of increasing hazard functions is, for
one, that �rms in the increasing hazard model are more likely to adjust when their prices are
old. When presenting trend in�ation, relative prices disperse quickly over time and, as a result,
high trend in�ation causes the size of a �rm�s �rst adjustment is increasing in the time since the
shock occurred.

4.3.4 Real E¤ects of the Monetary Shock

In the previous sections, I have informally shown that the real e¤ects of the monetary shock is
larger in the increasing hazard model than in the Calvo case. Here I introduce a quantitative
measure of the real e¤ects of money. In Table (3), I report the accumulative IRF of the real
output gap to a transitory 1% increase in the annual nominal money growth rate. The accumu-
lative IRF is the area below the impulse response function over the whole horizon, and it is in
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the unit of percentage of the steady state level of real output.

Real E¤ects Calvo Model Increasing Hazard Model (� = 2)
a=0 a=0.36 a=0, g=1 a=0.36, g=1 a=0.36, g=1.2

Acc:IRF (%) 0.09 0.26 0.22 0.48 0.56

Table 3: Real E¤ects of A Transitory Monetary Shock) with varying trend in�ation

In the Calvo model without any real rigidity, the real e¤ect of money is only about 0:09% of
real output in the steady state, while this �gure rises by a factor of 3 when a modest level of real
rigidity is present. On the other hand, the increasing hazard model can generate this level of real
e¤ects of the monetary shock even without any helping features. When adding real rigidity into
the increasing hazard model, however, real e¤ects rise to 0:48% of steady state real output, and
presenting trend in�ation reinforces real e¤ects even further. All in all, the increasing hazard
model implies 2-3 times more real e¤ects of the monetary shock than the constant-hazard Calvo
model.
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5 Conclusion

The central theme of this study is to show that non-constant hazard functions underlying a
pricing assumption implies very di¤erent aggregate dynamics. To illustrate this point, I derive
a general New Keynesian Phillips curve, re�ecting an arbitrary hazard function, trend in�ation
and real rigidity.

My main analytical results show that, �rst, the generalized NKPC involves components in-
cluding lagged in�ation, forward-looking and lagged expectations of in�ations and real marginal
cost, which nests the standard Calvo Phillips curve as a limiting case. When the hazard function
is constant, the e¤ect of lagged in�ation exactly cancels the e¤ects of the lagged expectation
terms, so that only current variables and forward-looking expectations remain in the expression.
Furthermore, I present a general result, showing that under a certain condition regarding the
relationship between the distribution of price durations and the hazard function, the log devi-
ation of the aggregate price in the GCM is equal to that in the GTM. In light of this result,
hazard functions and random distribution of price durations are closely related concepts, and
when setting them up accordingly, both models imply the same aggregate dynamics.

In the numerical exercise, I show that in�ation and output are more persistent in the in-
creasing hazard model than in the Calvo case. Introducing real rigidity and trend in�ation
strengthens the dynamic e¤ects of the increasing hazard function on in�ation even further. The
model can account for hump-shaped impulse responses of in�ation to the monetary shock. The
real e¤ects of the monetary shock implied by the increasing hazard model are 2-3 times higher
than those in the Calvo model. However, due to the calibration strategy I choose in my paper,
the numerical results are limited in the class of the monotonic shape of hazard functions. For
future research, microfounded hazard functions of price setting behavior is clearly a favorable
extension for further exploration of the topic.
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A Deviation of the Marginal Cost

I assume that there is an economy-wide competitive labor market, and hence intermediate �rms
are price takers in this market. In each period, �rms choose optimal demands for labor inputs
to maximize their real pro�ts given wage and the production technology (8).

max
Lt(i)

�t(i) =
Pt(i)

Pt
Yt(i)�

Wt

Pt
Lt(i) (24)

Real marginal cost can be derived from this maximization problem in the form:

mct(i) =
Wt=Pt

(1� a)ZtLt(i)�a

Using the production function (8), output demand equation (9), the labor supply condition (5)
and the fact that at the equilibrium Ct = Yt, we obtain the real marginal cost as follows:

mct(i) =
1

1� aY
�+�(1�a)+a

1�a
t Z

� 1+�
1�a

t

�
Pt(i)

Pt

���a
1�a

(25)

Because marginal costs depend on the demand of the individual good, the price set by the �rm
also a¤ects the marginal costs of the �rm. Next, �rms determine their optimal prices given
marginal costs and the market demand for their goods (9)

max
Pt(i)

�t(i) = Yt(i)

�
Pt(i)

Pt
�mct(i)

�
The �rst order condition for Pt(i) yields:

P �t (i)

Pt
=

�

� � 1mct(i)

The optimal relative price is equal to the markup multiplied by real marginal cost. By substi-
tuting the real marginal cost with equation (25), we get the economy-wide average relative price
in the form:

P �t
Pt
=

�
�

� � 1
1

1� a

� 1�a
1�a+�a

Y
�+�(1�a)+a
1�a+�a

t Z
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1�a+�a

t (26)
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B Deviation of the New Keynesian Phillips Curve

Here I derive the NKPC for g = 1, Starting from 16

p̂�t = Et

24J�1X
j=0

�jSj
	

(cmct+j + p̂t+j)
35 (27)

= Et

24J�1X
j=0

�jSj
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35+ Et
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�jSj
	

p̂t+j

35 (28)

The last term can be further expressed in terms of future rates of in�ation
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The optimal price can be expressed in terms of in�ation rates, real marginal cost and aggre-
gate prices.
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Next, I derive the aggregate price equation as the sum of past optimal prices. I lag equation
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29 and substitute it for each p̂�t�j into equation ??
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Where Ft summarizes all current and lagged expectations formed at period t.
Finally, we derive the New Keynesian Phillips curve from equation 30.
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The generalized New Keynesian Phillips curve is:
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C Proof for Proposition 1

In the Calvo pricing case, all hazards are equal to a constant between zero and one. Let�s denote
the constant hazard as h = 1� � . We can rearrange the NKPC 18 in the following way:
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Then iterating this equation one period forward,
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Substitute equation ?? for the term in the brackets on the left hand side of this equation,
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After canceling out equal terms from both sides of the equation, we obtain the following
equation:
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Iterate this equation backwards and rearrange it, we get the familiar NKPC of the Calvo
model.
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Proof done
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D Proof for Proposition 2

D.1 The Generalized Calvo model (GCM)

Firstly, I denote j as the time-since-last-adjustment, which is the vintage label used in the
generalized Calvo model. Furthermore, I de�ne �J as the maximum duration, in which a price
can be �xed. As a result, in general prices di¤er across vintages (j 2 f0; �Jg), but, in each vintage,
the average price shown in the paper is following the equation (13). After log-linearization, it
yields:

p̂GCMt =

�J�1X
j=0

�jSj
�JP

j=0
�jSj

Et

�dMCt+j� (34)

Next, the log-linearized aggregate price in the GCM
�
p̂Ct
�
is obtained by summing over all

vintage prices, weighted by the stationary distribution �(k),
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D.2 The Generalized Taylor model (GTM)

In the GTM, there are �J di¤erent price sectors in which prices are set exactly for J periods. As
in the GCM, �J is de�ned as the maximum duration in which a price can be �xed. As a result,
J should range between 1 and �J . In addition, I denote the distribution of price sectors by �(J);
with J 2 f1; �Jg:

In each price sector, the price choice is made to maximize the real pro�t over the next J � 1
periods

max
PJt
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���
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in the GCM.
It yields the following �rst order necessary condition for the optimal price in price sector J :
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After log-linearization, it yields:

p̂Jt =
J�1X
j=0

�j

J�1P
j=0

�j
Et

�dMCt+j� (37)

Within each price sector J , there is exactly a 1=J fraction of �rms that adjust to the new price
p̂Jt . And there is also exactly a 1=J fraction of �rms that still use the one-period-old price, p̂

J
t�1,

and so on. Therefore the average price in each sector can be expressed as follows:

�pJt =
1
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Next, the aggregate price in the GTM can be obtained by summing over all average prices across
sectors, weighted by the distribution of price sectors �(J),
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When the aggregate dynamics in the GCM are the same as in the GTM, then the aggregate
price obtained from both models should be equal,

p̂Tt = p̂ct
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Given the same driving forces of in�ation (dMCt) in both models, we have the same aggregate
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prices when the weights to the corresponding marginal costs are equal. This yields
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where : �(k) =
Sk

J�1
�
k=0
Sk

SJ =
J
�
j=0

(1� hj) , for j = 0; 1 � � � �J

Equation (40) gives the exact correspondence between the distribution of price sector �(J)
in the GTM and the hazard function hj in the GCM. In principle, one can solve these �J � 1

number of equations of corresponding weights, plus the regularity condition that
�JP

J=1

�(J) = 1,

for �(J), then we get the expression of �(J) in terms of hj : Proof done
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