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CHARACTERISING EQUILIBRIUM SELECTION
IN GLOBAL GAMES WITH STRATEGIC COMPLEMENTARITIES

CHRISTIAN BASTECK TIJMEN R. DANIËLS* FRANK HEINEMANN

TECHNISCHE UNIVERSITÄT BERLIN

Abstract. Global games are widely used for equilibrium selection to predict behaviour
in complete information games with strategic complementarities. We establish two res-
ults on the global game selection. First, we show that it is independent of the payoff
functions of the global game embedding, though it may depend on the noise distribution.
Second, we give a simple sufficient criterion for noise independence in many action games.
A many action game may be noise independent if it can be suitably decomposed into
smaller (say, binary action) games, for which there are simple criteria guaranteeing noise
independence. We delineate the games where noise independence may be established by
counting the number of players or actions. In addition, we give an elementary proof that
robustness to incomplete information implies noise independence.

Keywords: global games, equilibrium selection, strategic complementarities.
JEL codes: C72, D82.

1. Introduction

Games with strategic complementarities typically have multiple equilibria that give rise
to coordination problems. Economic applications cover a wide range of topics, including
poverty traps and underdevelopment (see for example Ray [24]) or financial crises (see
for example Diamond and Dybvig [9], Obstfeld [20]). A widely used approach to predict
behaviour in such games is by embedding them in a “global game”. A global game extends
a complete information game g by a payoff function u that depends on an additional state
parameter θ not directly observable by agents. The payoff function u coincides with the
payoff function g at the true state, say θ∗, but agents have to rely on noisy private signals
about the true state. This leads to uncertainty not just about their own relevant payoff
function, but also—and more importantly—about the beliefs of opponents.

Frankel, Morris and Pauzner [10] (henceforth “FMP”) show that as the noise in private
signals vanishes, agents coordinate on some action profile that is a Nash equilibrium of
the complete information game g. This global game selection of g may be used as an
equilibrium prediction and to derive comparative statics results in games with multiple
equilibria. Applications include Morris and Shin [17]; Cukierman, Goldstein and Spiegel

Date: First version: December 2009. This slightly revised version: January 2010.
*Corresponding author: tijmen.daniels@tu-berlin.de.
Support from Deutsche Forschungsgemeinschaft through SFB649 is gratefully acknowledged.
We thank Satoru Takahashi and participants at DGL09 for their helpful comments.

1



2 CHRISTIAN BASTECK TIJMEN R. DANIËLS FRANK HEINEMANN

[7]; Rochet and Vives [25]; Coresetti, Dasgupta, Morris and Shin [5]; Goldstein [11];
Corsetti, Guimarães and Roubini [6]; Guimarães and Morris [12], among others. The
theory has also been corroborated by experimental evidence, see Heinemann, Nagel and
Ockenfels [13] and [14].

Unfortunately, the global game selection in g may depend on the fine details of the global
game. A well known problem is that it may depend on the signals’ noise distribution.
FMP discuss the robustness of the global game selection with respect to the signals’ noise
distribution, and provide some conditions under which the global game selection is noise
independent, that is, independent of this distribution.

In this paper, we establish two additional positive results on the robustness of global
games. First, we show that the global game selection, though it may depend on the noise
distribution, is always independent of the embedding payoff function u. This may come
as a surprise, since the process of global game selection is often described informally as
“infection” from high and low parameter regions.

Second, we provide new and simple conditions for noise independence in many-action
games. We show that the global game selection in g may be noise independent if g can be
suitably decomposed into smaller noise independent games. For example, we may split up
a n-action game into many binary action games for which there are simple criteria that
guarantee noise independence.

This approach is useful, since the simplest known criteria to establish noise independ-
ence are through counting the number of players and actions. Carlsson and Van Damme
[4] show that two player, binary action games are noise independent. The global game
selection is the risk dominant action profile. Morris and Shin [18] show how to find the
global game selection in many player, symmetric, binary action games. Here, the global
game selection is the best reply to the belief that the fraction of players choosing either
action is uniformly distributed. Up to now, most applications of global games use these
heuristics in binary action environments. Our result gives a simple tool to extend them
to many action games.

But other criteria in terms of players and actions may also be applied. In this pa-
per, we establish that all two player 2 × n action games are noise independent. Oyama
and Takahashi [22] show that two player, symmetric 3× 3 games are noise independent.
Conversely, FMP show that symmetric 4 × 4 games may not be noise independent. An
example by Carlsson [3] shows that noise independence may fail in three player, binary
action games. In this paper, we establish that it may also fail in two player, asymmetric
3 × 3 games. As far as we know, it is the first 3 × 3 example in the literature. It com-
pletes the characterisation of games where noise independence can be established simply
by counting the number of players or actions.

Another useful criterion that guarantees the noise independence of g is the existence
of an equilibrium that is “robust to incomplete information”, as defined by Kajii and
Morris [15]. A heuristic argument may be found in Morris and Shin [18], but in this
paper we give a formalisation. It allows one to make use of various known conditions
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for robustness to incomplete information when trying to determine whether some game is
noise independent. Our result is closely related to a similar theorem of Oury and Tercieux,
who use a somewhat stronger, slightly non-standard, notion of robustness to incomplete
information to exploit a link with so-called “contagious” equilibria [21]. Instead, we use
the standard notion and give a direct proof.

Our paper is organised as follows. Section 2 contains preliminary definitions and results.
In section 3, we set out by giving a simple characterisation of the global game selection
process. Instead of analysing the limit of a series of global games with shrinking noise,
we show that a single incomplete information game with a fixed noise structure allows
one to determine the global game selection in g. Moreover, this incomplete information
game does not incorporate the whole range of the payoff function u of the global game,
but depends on the payoff structure of g alone. Hence, it establishes that the global game
selection in g is independent of the embedding payoff function u. In section 4 we use this
characterisation of the global game selection to establish our results on noise independence
in many-action games. Section 5 contains the proof that robustness noise independence,
based on our characterisation of the global game selection.

2. Setting and Definitions

In this paper we consider games with a finite set of players I, who have finite action
sets Ai∈I = {0, 1, . . . ,mi} which we endow with the natural ordering inherited from N.
We define the joint action space A as

∏
i∈I Ai and write A−i for

∏
j 6=iAj. We say that

a = (ai)i∈I ∈ A is weakly greater than a′ = (a′i)i∈I if ai ≥ a′i for all i ∈ I and write
a ≥ a′. A complete information game g is specified by its real-valued payoff functions
gi∈I(ai, a−i), where ai denotes i’s action and a−i denotes the opposing action profile. A
game g is a game of strategic complementarities1 if greater opposing action profiles make
greater actions more appealing, or more precisely, if for all i, ai ≥ a′i, a−i ≥ a′−i,

gi(ai, a−i)− gi(a′i, a−i) ≥ gi(ai, a
′
−i)− gi(a′i, a′−i).

§2.1. Global Games

Following FMP, we define a global game Gv(u, φ, f) as follows. It is an incomplete
information game where payoffs depend on a real-valued random variable θ, called the
state parameter, which is distributed according to a continuous density φ, called the prior
distribution. For the most part, we will use θ to denote both the random variable and
a specific value it assumes, but we denote the latter by θ∗ if confusion could arise. The
individual payoffs in the incomplete information game are given by ui(ai, a−i, θ). f is
a tuple of densities, whose support is a subset of [−1

2
, 1

2
], that we refer to as the noise

structure. Each player i ∈ I observes a private signal xi = θ + vηi about θ, where v > 0

is a scale factor and ηi an error that is distributed according to the density fi. We use

1Strictly speaking, it would be more correct to say that g is a supermodular game [26, 27]. However,
FMP use the term strategic complementarities in this context, so we stick to it.
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xi to denote both the random variable and the specific value it assumes, but sometimes
denote the former by Xi to avoid confusion. The random variables {θ, η1, . . . , ηI} are
independently distributed.

Moreover, FMP define four conditions that the payoff function u needs to fulfil.

A1 Strategic complementarities: For every value of θ, the complete information game
specified by ui∈I(·, θ) is a game of strategic complementarities.
A2 Dominance regions: Extreme values of θ make the extreme actions dominant

choices. That is, there exist thresholds θ < θ such that [θ − v, θ + v] is contained in
the interior of the support of φ and for all players i and all opposing action profiles a−i
we have

ui(0, a−i, θ) > ui(ai, a−i, θ) for all ai > 0 and θ ≤ θ,

and

ui(mi, a−i, θ) > ui(ai, a−i, θ) for all ai < mi and θ ≥ θ.

A3 State monotonicity: Greater states make greater actions more appealing. More
precisely, there exists K > 0 such that for all ai ≥ a′i and θ ≤ θ′ ≤ θ ≤ θ we have

(ui(ai, a−i, θ)− ui(a′i, a−i, θ))− (ui(ai, a−i, θ
′)− ui(a′i, a−i, θ′))

≥ K(ai − a′i)(θ − θ′) ≥ 0.

A4 Payoff continuity: Each ui(ai, a−i, θ) is continuous in the state parameter.

§2.2. Strategies in Global Games

A (pure) strategy for player i is a (measurable) function si : R → Ai and a (pure)
strategy profile s is a tuple of such strategies, s = (si)i∈I . If x is a tuple of signals (xi)i∈I ,
then s(x) denotes the action profile (si(xi))i∈I . Slightly abusing notation, for x ∈ R we
also denote the action profile given by (si(x))i∈I by s(x). A strategy profile s is increasing
if each component si is weakly increasing and left (right) continuous if each si is left
(right) continuous. We say that the strategy profile s is weakly greater than the strategy
profile s′ if s(x) ≥ s′(x) for all x ∈ R and write s ≥ s′.

The joint density of Xi and θ is given by fi
(
xi−θ
v

)
φ(θ), so players can use Bayes rule to

derive the conditional density of θ:

fXi=xi(θ
∗) =

fi(
xi−θ∗
v

)φ(θ∗)´
R
fi(

xi−θ
v

)φ(θ)dθ
.

Since all error terms are independent, the conditional density of X−i given Xi = xi can
be calculated as

πi(x−i|xi) :=

ˆ
R

π−i(x−i|θ)fXi=xi(θ)dθ,

where
π−i(x−i|θ) :=

∏
j 6=i

fj

(
xj − θ
v

)
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denotes the conditional density of X−i given θ. We will also use the notation

P(X−i ∈ E|Xi = xi) :=

ˆ
E

πi(x−i|xi)dx−i

to refer to probabilities conditional on the null set {Xi = xi}. In the special case where
θ is distributed uniformly, the conditional densities πi(x−i|xi) satisfy the following very
useful symmetry property. (We give a derivation in the appendix.)

Lemma 1. If θ is uniformly distributed over the interval [L,R], then we have, for any
x ∈ [L+ 1

2
, R− 1

2
]I , and any i, j ∈ I, that πi(x−i|xi) = πj(x−j|xj).

Given xi and assuming that opponents j 6= i follow the strategies sj given by some
strategy profile s, the action ai ∈ Ai yields an expected payoff of

ui(ai|s, xi) :=

ˆ
R

ˆ
x−i∈R|I|−1

ui(ai, s−i(x−i), θ)π−i(x−i|θ)dx−ifXi=xi(θ)dθ.

against the induced opposing action distribution. Let β(s)i(xi) denote the set of best
replies of player i conditional on the signal xi, viz the set of actions that maximise the
expected payoff:

β(s)i(xi) = arg max
ai∈Ai

ui(ai|s, xi).

A strategy profile s is a (Bayes-Nash) equilibrium strategy profile, if it is a best reply to
itself, i.e.

∀i∀xi, si(xi) ∈ β(s)i(xi).

The upper-best reply is defined as

β̂(s)i(xi) = max β(s)i(xi)

and determines the strategy profile β̂(s). The strategic complementarities imply that if
one opposing action distribution dominates another, the upper-best reply to the former
is weakly greater than to the latter. In particular, β̂ is monotonic, i.e., β̂(s) ≥ β̂(s′) if
s ≥ s′ (see Topkis [26, 27] and Vives [28]). We can do upper-best reply iterations

s, β̂(s), β̂(β̂(s)), β̂(β̂(β̂(s))), . . .

starting at some strategy profile s. If β̂(s) is weakly greater (smaller) than s, the resulting
sequence of strategy profiles will be monotonically increasing (decreasing). As the action
space is bounded, the resulting sequence will then converge pointwise to an equilibrium
strategy profile. In particular, choosing the greatest strategy profile given by

∀i∀xi, s0
i (xi) = mi,

as a starting point, the best reply to the strategy profile s0 can only be weakly smaller, so
that the iteration will converge pointwise to the (necessarily) greatest equilibrium strategy
profile (see figure 1).

As is usual when dealing with games of strategic complementarities, virtually all of
our results are order-theoretic in nature. By standard order-theoretic duality, each result
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lower upper

dominance dominance

region region

mi

s0
i

s1
i

s2
i

s∗
i

xi0

1

Figure 1. The strategy of player i in an upper-best reply iteration leading
to the greatest equilibrium strategy profile s∗.

implies a dual result with all order-theoretic notions reversed (see Davey and Priestley
[8], p. 15). We will invoke this duality throughout the text.

§2.3. Summary of FMP’s Results

FMP showed that in a global game the least and greatest equilibrium strategy profile
converge to each other as the noise vanishes.

Theorem. (Theorem 1 in FMP) The global game Gv(u, φ, f) has an essentially unique
equilibrium strategy profile in the limit as v → 0. More precisely, there exists an increasing
pure strategy profile sf such that if, for each v > 0, sv is an equilibrium strategy profile
of Gv(u, φ, f), then limv→0sv,i(xi) = sfi (xi) for all xi, except possibly at the finitely many
discontinuities of sf .

Moreover, FMP’s proof implies that sf is independent of the prior distribution φ (cf. their
lemma A3).

Since sf is determined up to its points of discontinuity, we will work with the left and
right continuous versions of sf , which we denote by sf and sf respectively.

To prove the theorem, FMP introduce the notion of a simplified global game Gv(u, f)

that differs from Gv(u, φ, f) in that θ is uniformly distributed over a large interval that
contains [θ − v, θ + v] and individual payoffs depend directly on the private signal xi
rather than on the true state θ. A simplified global game is much easier to analyse, as
the uncertainty about the relevant individual payoff function vanishes, and for signals xi
within [θ, θ] the conditional densities of opponents’ signals can be calculated easily as

πi(x−i|xi) =

ˆ
R

∏
j∈I

fj

(
xj − θ
v

)
dθ.

Theorem. (Lemma A1, A3, and A4 in FMP) The simplified global game Gv(u, f) has an
essentially unique, monotonically increasing equilibrium strategy profile sfv . In the limit
as v → 0, sfv converges towards sf in horizontal distance, that is

for all ε > 0 there is v > 0 such that for v satisfying 0 < v < v, we have:

∀i∀xi, sfv,i(xi + ε) ≥ sfi (xi) ≥ sfv,i(xi − ε)

See figure 2.
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mi
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sf
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εε
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Figure 2. sfi and sfv,i for v < v

3. Equilibrium Selection in Global Games

Let g be a game of strategic complementarities. For a given global game Gv(u, φ, f),
we define the embedded game g(θ∗) as the complete information game that has the same
set of players and actions as the global game, and which has the payoff function given by
u(·, θ∗).

For g(θ∗), the global game can be viewed as an equilibrium refinement. The limit
strategy profile of the global game, sf , determines an action profile sf (θ∗), which is in
fact an equilibrium of the embedded game. Thus the global game approach generically
selects a unique equilibrium of the game g, to which we refer as the global game selection
(following Heinemann et al. [14]). In this section, we provide a conceptually simple char-
acterisation of this selection process which shows that the selection depends only on the
payoff structure of g(θ∗) and on the noise structure f .

§3.1. Global Games as an Equilibrium Refinement

Our first aim in this section is to show that this approach can by applied to any game
with strategic complementarities. Let Gv(u, φ, f) be a given global game, and let g be
some game of strategic complementarities. We say that Gv(u, φ, f) embeds the complete
information game g if there is there is a θ∗ such that g = g(θ∗).

Lemma 2. For any game of strategic complementarities g, there exists a global game
Gv(u, φ, f) that embeds g.

We prove this by constructing a global game Gv(u, φ, f) such that g = g(0).

Proof. Let u be given by ui(ai, a−i, θ) := gi(ai, a−i)+θai, for i ∈ I, ai ∈ Ai and a−i ∈ A−i.
Clearly, each ui is continuous in θ, so u satisfies A4. For any fixed θ and ai ≥ a′i, a−i ≥ a′−i
we have

ui(ai, a−i, θ)− ui(a′i, a−i, θ) = gi(ai, a−i)− gi(a′i, a−i) + θ(ai − a′i)
≥ gi(ai, a

′
−i)− gi(a′i, a′−i) + θ(ai − a′i)

= ui(ai, a
′
−i, θ)− ui(a′i, a′−i, θ),
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as g is a game of strategic complementarities. So u exhibits strategic complementarities
as well and satisfies A1. For ai ≥ a′i and θ ≥ θ′ we have that

(ui(ai, a−i, θ)− ui(a′i, a−i, θ))− (ui(ai, a−i, θ
′)− ui(a′i, a−i, θ′))

= gi(ai, a−i)− gi(a′i, a−i) + θ(ai − a′i)− gi(ai, a−i) + gi(a
′
i, a−i)− θ′(ai − a′i)

= (θ − θ′)(ai − a′i),

that is, u satisfies the state monotonicity assumption A3. For all ai < mi and sufficiently
large θi ≥ 0 we have

u(mi, a−i, θi)− u(ai, a−i, θi) = gi(mi, a−i)− gi(ai, a−i) + θi(mi − ai) > 0,

so mi is the dominant action for θ ≥ θi. Analogously, there exists θi ≤ 0 such that ai = 0

is the dominant action for θ ≤ θi. Choosing θ = max{θi} and θ = min{θi}, u satisfies A2.
As we let θ be distributed over a large interval containing [θ, θ] and choose f arbitrarily,
we have constructed a global game Gv(u, φ, f) in which g is the embedded game g(0). �

FMP show that generically, the limit profile of a global game determines a unique
equilibrium of an embedded game. The following lemma slightly strengthens FMP’s
theorem 2 for games with finite action sets. It shows, in addition, that these equilibria
are generically strict.

Lemma 3. Let Gv(u, φ, f) be a global game and sf its essentially unique limit strategy
profile. Then for any state parameter θ∗, sf (θ∗) and sf (θ∗) are Nash equilibria of the
embedded game g(θ∗). Moreover, if sf is continuous at θ, then sf (θ∗) = sf (θ∗) = a∗ is a
strict Nash equilibrium of the embedded game g(θ∗).

Proof. Let θ∗ be given, and first consider the case where sf is continuous at θ∗. Since
the joint action space A is finite, there is δ > 0 such that sf is constant on the interval
[θ∗ − δ, θ∗ + δ]. Now consider the family of simplified global games Gv(u, f) as v tends
to 0. Recall that each Gv(u, f) has an essentially unique equilibrium strategy profile sfv ,
and that sfv converges towards sf in horizontal distance as v tends to zero. Since sf is
constant on the interval [θ∗− δ, θ∗+ δ], there must be some v > 0 such that if v < v then
sfv is equal to sf (θ∗) on the interval [θ∗− δ

2
, θ∗+ δ

2
], and hence constant on this subinterval.

Choose some v∗ < min{δ/2, v}. and assume that in the simplified global game Gv∗(u, f)

all players follow the strategy profile sfv∗ . Now suppose that in this game some player
i receives the signal xi = θ∗. Then i knows that all other players receive signals in the
interval [θ∗ − δ

2
, θ∗ + δ

2
]. As sfv∗ is constant and equal to sf (θ∗) = a∗ on this interval,

i’s opponents play the action profile a∗−i that is determined by sf (θ∗). As sfv∗ is an
equilibrium strategy profile, we know that sfi (θ∗) = a∗i must be a best reply to a∗−i for
player i. Moreover, since player i receives the signal xi = θ∗, she believes her payoff
function is exactly like in g(θ∗). Thus a∗i is in fact a best reply to a∗−i in the complete
information game g(θ∗). Since this is true for any player i that receives the signal θ∗, a∗i
is a best reply to a∗−i in the game g(θ∗) for all i ∈ I, viz. a Nash equilibrium.

If sf is continuous at θ∗ then it is constant and continuous on the interval [θ∗−δ, θ∗+δ].
By the above argument, for any θ′ ∈ (θ∗ − δ, θ∗ + δ), sf (θ′) = sf (θ∗) = a∗ is a Nash
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equilibrium of any game g(θ
′
). Now suppose a∗ is not a strict equilibrium of g(θ∗),

i.e. there are i ∈ I and ai 6= a∗i ∈ Ai such that ai is a best reply to a∗−i in the game
g(θ∗). Then, by the state monotonicity assumption A3, for either θ′ < θ∗ or θ′ > θ∗,
u(ai, a

∗
−i, θ

′) > u(a∗i , a
∗
−i, θ

′). Yet this contradicts that a∗ is a Nash equilibrium for all
games g(θ

′
), θ′ ∈ (θ∗− δ, θ∗+ δ). Hence, a∗ must be a strict equilibrium of g(θ∗) after all.

If sf is discontinuous at θ∗, we know it is at least constant and continuous on the open
interval (θ∗, θ∗+δ′) for some δ′ > 0. By the above argument, for any strictly positive ε < δ′,
sf (θ∗ + ε) = a∗ is a Nash equilibrium of the game g(θ∗ + ε). Hence for all i ∈ I, ai ∈ Ai,
and all ε satisfying 0 < ε < δ′ we have:

ui(a
∗
i , a
∗
−i, θ

∗ + ε) ≥ ui(ai, a
∗
−i, θ

∗ + ε).

The continuity of u in θ (assumption A4) implies that for all i ∈ I, ai ∈ Ai,

lim
ε↘0

ui(a
∗
i , a
∗
−i, θ

∗ + ε) = ui(a
∗
i , a
∗
−i, θ

∗) ≥ ui(ai, a
∗
−i, θ

∗) = lim
ε↘0

ui(ai, a
∗
−i, θ

∗ + ε).

So a∗ = limε↘0 s
f (θ∗ + ε) = sf (θ∗) is a Nash equilibrium of g(θ∗). By a dual argument,

sf (θ) is also a Nash equilibrium of g(θ∗). �

Combined, lemmas 2 and 3 show that, at least technically, global games can be viewed
as equilibrium refinement for all games of strategic complementarities. By embedding
such a game g into a global game Gv(u, φ, f), and taking v → 0, we find two distinguished
equilibria of g = g(θ∗), namely sf (θ∗) and sf (θ∗) ∈ A, which generically coincide. FMP
proved that this equilibrium selection is independent of the prior distribution φ, but may
depend on the noise structure f . In the following subsection, we will show that it is also
independent of the choice of payoff functions u(·, θ) of the global game that embeds g.

§3.2. Attainability

Let g be a complete information game of strategic complementarities. The following
incomplete information game, constructed around g, will be central to the rest of our
results.

Definition. A lower-f -elaboration, e(g, f), of g, is defined as the following incomplete
information game. The state parameter θ is uniformly distributed over an interval [−1

2
, R],

with R ≥ R∗ :=
∑

i∈I(mi + 1). All individuals receive a noisy signal xi = θ + ηi about
the true state, with each ηi drawn according to the density fi, the support of which is
a subset of [−1

2
, 1

2
]. The random variables {θ, η1, ..., ηI} are independently distributed.

Players’ payoffs ui are given by

ui(ai, a−i, xi) =

ũi(ai, a−i) if xi < 0,

gi(ai, a−i) if xi ≥ 0,

with ũi being an arbitrary payoff function that makes the least action dominant, e.g. for
all a−i, ũi(0, a−i) = 1 and ũi(ai, a−i) = 0 when ai 6= 0. An upper-f -elaboration, e(g, f), is
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Figure 3. A lower-f -elaboration such that the greatest equilibrium
strategy profile, s∗, attains a(g, f).

defined dually: θ is distributed over [L, 1
2
], where L ≤ L∗ := −R∗, and for each player i

the greatest action is dominant for all signals xi > 0. �

Just as for global games, we define strategy profiles, expected payoffs ui(ai|s, xi), upper-
best reply strategy profiles β̂(s), and equilibrium strategy profiles in e(g, f). In any
equilibrium strategy profile s of e(g, f) we must have s(x) = 0 for signals x < 0. In
equilibrium, the behaviour of players receiving signals smaller than 0 affects the choices
of players receiving signals greater than 0 by the usual “infection” argument (cf. Morris
et al. [16]). As a consequence, even if the action profile a ∈ A is a Nash equilibrium of
the complete information game g, the action profile a is not necessarily played in any
equilibrium strategy profile s of e(g, f). We say an equilibrium strategy profile s of the
lower-f -elaboration e(g, f) attains a if s(x) ≥ a for some x ∈ [−1

2
, R] (and, dually, an

equilibrium strategy profile s of an upper-f -elaboration e(g, f) attains a if s(x) ≤ a for
some x ∈ [L, 1

2
]).

We can use standard results (e.g. Vives [28]) on games with strategic complementarities
to analyse lower-f -elaborations. The upper-best reply function β̂(s) is monotonic, and
hence there is a greatest equilibrium strategy profile s∗, which is increasing. The greatest
action profile that s∗ attains is s∗(R + 1

2
).

Definition. An action profile a ∈ A is attained from below under f if in some lower-
f -elaboration of g, the greatest equilibrium strategy profile attains a (see figure 3). In
particular, we denote the greatest action profile that is attained from below under f
by a(g, f). We define attained from above under f dually, and in particular we define
a(g, f) as the least action profile used in the least equilibrium strategy profile of some
upper-f -elaboration. �

In the remainder of this section we will prove that in order to determine the global game
selection in g, it suffices to look at a(g, f) and a(g, f). A first easy but useful observation
is that to determine a(g, f) it actually suffices to look at any one lower-f -elaboration. (Of
course, a dual observation holds for a(g, f)).

Lemma 4. Let e(g, f) be any lower-f -elaboration, and s∗ its greatest equilibrium strategy
profile. Then s∗(R∗) = a(g, f).



CHARACTERISING EQUILIBRIUM SELECTION IN GLOBAL GAMES 11

Proof. Consider any lower-f -elaboration e′(g, f) of g with a greatest equilibrium strategy
profile s∗∗ that attains a(g, f). Since s∗∗ is increasing and the joint action space A is finite,
we can identify s∗∗ with a finite sequence z1, z2, . . . , zk, with k ≤ R∗, of jump points, at
which players switch to greater action profiles. If players follow the strategy profile s∗∗,
a small change in the jump point zn would influence their expected payoffs compared
with s∗∗ only at signals in the interval [zn−1, zn+1]. Thus the maximum distance between
any two adjacent jump points zn and zn+1 must be less then 1. Otherwise, if s∗∗ is an
equilibrium strategy profile then, for sufficiently small ε, the similarly increasing strategy
profile determined by the jump points

z1, z2, . . . , zn−1, zn − ε, . . . , zk − ε

would be an equilibrium strategy profile as well, contradicting the maximality of s∗∗. But
if the distance between any two adjacent jump points is less then 1, then zk ≤ R∗. Or,
equivalently, s∗∗ attains a ∈ A if and only if a ≤ s∗∗(R∗) = a(g, f).

Now we may verify that the strategy profile given by the jump points z1, z2, . . . , zk can
also be interpreted as the greatest equilibrium strategy profile s∗ of e(g, f). �

Our first main result is an immediate consequence of our characterisation of the global
game selection process in terms of a(g, f) and a(g, f).

Theorem 5. Let Gv(u, φ, f) be any global game. The global game selection at any state
parameter θ depends solely on the noise structure f and on the complete information game
g(θ), and is independent of u and φ.

More precisely, if sf is the essentially unique limit strategy profile of Gv(u, φ, f), and
g = g(θ∗) then sf (θ∗) = a(g, f) and sf (θ∗) = a(g, f).

The irrelevance of the prior distribution φ for the global game selection was already
shown by FMP. It may be surprising that the choice of payoff functions surrounding g(θ)

is irrelevant as well. After all, the global game selection process is often described as an
infection process, starting from the high and low parameter regions. Thus, one might
think that choosing to embed g at θ close to the lower dominance threshold θ might
influence the global game selection so that it selects a lower equilibrium compared to an
embedding of g close to θ. However, theorem 5 tells us that will not be the case.

Another way to think about theorem 5 is the following. In economic applications,
the state parameter θ is typically interpreted as an economic fundamental affecting the
decision problem of players. But there may be several economic variables that are can-
didates for the parameter θ. Theorem 5 tells us that the choice of the fundamental used
to perturb the decision problem is irrelevant: the global game selection will be the same.
It is determined by the payoff structure of the unperturbed game.

The theorem is an immediate consequence of the following three lemmas. The first lemma
is inspired by a construction in the proof of theorem 4 in FMP.
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Lemma 6. Let Gv(u, φ, f) be any global game that embeds g and sf its essentially unique
limit strategy profile. Let g = g(θ∗). We have:

sf (θ∗) ≥ a(g, f), and dually, sf (θ∗) ≤ a(g, f).

Proof. We prove the first inequality. Without loss of generality assume that θ∗ = 0.
For the moment, fix some v∗ such that 0 < v∗ ≤ 1. Consider the simplified global game

Gv∗(u, f). We will want to assume that its random state parameter θ is distributed over
an interval [L,R] where L ≤ min{θ− 1,−1

2
} and R ≥ max{θ+ 1, R∗}. This will allow us

to compare the simplified global game with a lower-f -elaboration of g later in the proof.
For Gv∗(u, f), this might mean extending the range over which θ is distributed further
into the dominance regions. But that will not change its essentially unique equilibrium
profile sfv∗ , other than enlarging the range in which dominant actions are prescribed. So
this is without loss of generality.

Consider the lower-f -elaboration e(g, f), with θ distributed on [1
2
, R∗]. Its greatest

equilibrium strategy profile s∗ is increasing and satisfies s∗(x) = a(g, f) for x ≥ R∗. We
define the profile sv∗ as follows:

for all i ∈ I, sv∗,i(x) :=


0 if L ≤ x < −1

2
v∗,

s∗i (x/v
∗) if − 1

2
v∗ ≤ x ≤ v∗R∗,

a(g, f) if v∗R∗ < x ≤ R.

Next, we will compare the simplified global game with a “compressed” version of e(g, f),
where all individual noise variables ηi have been scaled by the factor v∗, and θ is distrib-
uted uniformly on [−1

2
v∗, v∗R∗]. We denote this compressed lower-f -elaboration of g by

ev∗(g, f). Compressing the elaboration amounts merely to a relabeling of signals. There-
fore, the restriction of sv∗ to the signal space of ev∗(g, f) is an equilibrium strategy profile
of ev∗(g, f). Note also that in the games Gv∗(u, f) and ev∗(g, f) the distributions of op-
ponents’ signals conditional on a player’s own signal are identical, for all signals in the
interval [−1

2
v∗, v∗R∗].

Now suppose that players follow the strategy profile sv∗ in the simplified global game
Gv∗(u, f). For any player i, and any signal xi < 0, 0 is a dominant action in ev∗(g, f), so
that sv∗,i(xi) = 0 ≤ β̂(sv∗)i(xi) in Gv∗(u, f).

For xi = 0, we have sv∗,i(xi) ≤ β̂(sv∗)i(xi), since sv∗ is an equilibrium of ev∗(g, f), and
therefore sv∗,i(0) is a best reply to sv∗,i under the payoff function u(·, 0) = g. In particular,
this means sv∗,i(xi) must be weakly smaller than the greatest best reply under the payoff
function u(·, 0).

For xi > 0, sv∗,i(xi) ≤ β̂(sv∗)i(xi), since sv∗,i(xi) is the best reply to sv∗,i under the
payoff function u(·, 0) = g, and hence the greatest best reply under the payoff function
u(·, xi) must be weakly greater than sv∗,i(xi) by assumption A3.

In sum, sv∗ ≤ β̂(sv∗), and therefore an upper-best reply iteration starting at sv∗ yields
a monotonically increasing sequence of strategy profiles that converges to the essentially
unique, increasing equilibrium strategy profile sfv∗ of Gv∗(u, f). This shows sfv∗ ≥ sv∗ . For
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the right continuous version of sfv∗ we find that

sfv∗(v
∗R) ≥ sv∗(v

∗R∗) = s∗(R∗) = a(g, f).

Since sfv∗ is increasing, it follows that for all x ≥ v∗R∗, sfv∗(x) ≥ a(g, f).

Since the choice of v∗ was arbitrary, the above argument shows that for all ε > 0, there
is v > 0 such that sfv(ε) ≥ sfv(vR

∗) ≥ a(g, f) for all v ≤ v (just take v = ε/R∗). Hence:

for all ε > 0, lim
v↘0

sfv(ε) ≥ a(g, f)

implying
sf (0) = limε↘0(limv↘0s

f
v(ε)) ≥ a(g, f)

as claimed. �

The next two lemmas establish that the converse of lemma 6 also holds.

Lemma 7. Let Gv(u, φ, f) be any global game that embeds g and sf its essentially unique
limit strategy profile. Let g = g(θ∗), and assume that sf is continuous at θ∗. Then we
have:

sf (θ∗) ≤ a(g, f), and dually, sf (θ∗) ≥ a(g, f).

Proof. We will prove the first inequality. Consider again the simplified global game
Gv(u, f). By (A2) there is some θ such that for signals smaller than θ, the action 0

is dominant for all players. Without loss of generality we will assume that θ = 0. Since
the joint action space is finite, continuity at the point θ∗ implies that, for some δ > 0, sf

is constant, and equal to some a∗ ∈ A, on the interval [θ∗ − δ, θ∗ + δ]. Since sfv , the right
continuous equilibrium strategy profile of the simplified global game Gv(u, f), converges
towards sf in horizontal distance, there must be v > 0 such that for v < v, sf equals sfv
on the subinterval [θ∗ − δ/2, θ∗ + δ/2].

Fix some v∗ < min{δ/2, v}. Consider the “compressed” lower-f -elaboration ev∗(g, f),
where all individual noise variables ηi have been scaled by the factor v∗, and θ is distributed
uniformly on the interval [−1

2
, R], with R the same as in the simplified global game.

Assume that in this game players use the strategy profile s given by:

for all i ∈ I, si(x) =

s
f
v∗,i(xi) if xi ≤ θ∗,

sfv∗,i(θ
∗) if xi > θ∗.

For any player i, and any signal xi < 0, 0 is a dominant action for i both in ev∗(g, f) and
in Gv∗(u, f). So in the game ev∗(g, f), we have

for xi < 0, β̂(s)i(xi) = 0 = sfv∗,i(xi) = si(xi).

For xi ∈ [0, θ∗], player i’s opponents receive signals smaller than θ∗ + δ
2
, since v∗ < δ

2
.

So i’s opponents behave as if they were following sfv∗,i(xi). Since the distributions of the
state parameter and of the signals are identical in Gv∗(u, f) and ev∗(g, f), but i’s payoff
function is given by ui(·, θ∗) in ev∗(g, f) and by ui(·, xi) in Gv∗(u, f), in the game ev∗(g, f)
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we have
for 0 ≤ xi ≤ θ∗, β̂(s)i(xi) = β̂(sfv∗)i(xi) ≥ sfv∗,i(xi) = si(xi),

where the inequality follows from the state monotonicity assumption A3 and the fact that
sfv∗ is the greatest equilibrium profile of Gv∗(u, f).

For xi > θ∗, player i’s opponents receive signals greater than θ∗ − δ
2
. Since for such

signals s is constant and equal to sfv∗(θ∗) = a∗, player i’s opponents will use the action
profile a∗−i. By lemma 3, a∗ is a Nash equilibrium under the payoff functions of the game
g. This means that in ev∗(g, f) we have

for xi > θ∗, β̂(s)i(xi) ≥ ai = sfv∗,i(xi) = si(xi).

In sum, β̂(s) ≥ s. Therefore an upper-best reply iteration in the game ev∗(g, f) starting
from s yields a monotonically increasing sequence of strategy profiles that converge to an
equilibrium profile s∗ ≥ s. It follows that s∗(θ∗) ≥ s(θ∗) = sf (θ∗). Since compressing
an elaboration amounts to a relabelling of signals, in the equivalent uncompressed lower-
f -elaboration there is an equilibrium strategy profile s∗∗ such that s∗∗(θ∗/v∗) ≥ sf (θ∗),
Thus sf (θ∗) is attained from below under f , implying the inequality sf (θ∗) ≤ a(g, f). �

Lemma 8. Let Gv(u, φ, f) be any global game that embeds g and sf its essentially unique
limit strategy profile. Let g = g(θ∗), and assume that sf is not continuous at θ∗. Then we
have:

sf (θ∗) ≤ a(g, f), and dually, sf (θ∗) ≥ a(g, f).

Proof. We will again prove the first inequality. Let {θn}n∈N be a sequence that converges
to θ∗ from above. By lemma 7, for any θn, the greatest equilibrium profile sθn of every
lower-f -elaboration e(g(θn), f) attains sf (θn), and hence attains sf (θ∗). Moreover, by
the state monotonicity assumption (A3), the sequence of profiles sθn converges to s∗ =

inf{sθn|n ∈ N} in monotonically decreasing fashion. Since the joint action space A is
finite, for each x there is nx such that sθnx (x) = s∗(x).

Denote by ui(ai|s, xi ; θn) the expected payoff of player i when she plays the action ai
against the strategy profile s in the lower-f -elaboration e(g(θn), f). We claim that for all
ε > 0 and all signal tuples x ≥ 0, there is an n such that θ∗ < θn < θ∗ + ε and such that

∀i∀ai, ui(s
∗
i (xi)|s∗, xi ; θn) ≥ ui(ai|s∗, xi ; θn).

But then, from the continuity of u in the state parameter (assumption A4), we deduce
that for all xi ≥ 0 we must have

∀i∀ai, ui(s
∗
i (xi)|s∗, xi ; θ∗) ≥ ui(ai|s∗, xi ; θ∗),

viz. s∗ is an equilibrium strategy profile of e(g, f). Clearly s∗ attains sf (θ∗).

To prove the claim, fix some x ≥ 0 and note that for all n > nx we have:

∀i∀ai, ui(s
∗
i (xi)|sθn , xi ; θn) ≥ ui(ai|sθn , xi ; θn),
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since sθn is an equilibrium profile of e(g(θn), f). In particular we may choose n > nx such
that θn < θ∗ + ε. In that case we find, for all n > n,

∀i and ∀ai ≤ s∗i (xi), 0 ≥ ui(ai|sθn , xi ; θn)− ui(s∗i (xi)|sθn , xi ; θn)

≥ ui(ai|sθn , xi ; θn)− ui(s∗i (xi)|sθn , xi ; θn) by (A3),

∀i and ∀ai ≥ s∗i (xi), 0 ≥ ui(ai|sθn , xi ; θn)− ui(s∗i (xi)|sθn , xi ; θn)

≥ ui(ai|sθn , xi ; θn)− ui(s∗i (xi)|sθn , xi ; θn) by (A1).

So we conclude that for all n > n

∀i∀ai, ui(s
∗
i (xi)|sθn , xi ; θn) ≥ ui(ai|sθn , xi ; θn).

Since {sθn}n∈N converges to s∗, by the monotone convergence theorem we now find

∀i∀ai, ui(s
∗
i (xi)|s∗, xi ; θn) ≥ ui(ai|s∗, xi ; θn). �

4. Noise Independence

A game g embedded at state parameter θ∗ in a global game Gv(u, φ, f) is called noise
independent if its limit strategy profile sf takes on the same values at θ∗ regardless of
the choice of f . Theorem 5 says that noise independence is a property of the complete
information game g: a game of strategic complementarities is noise independent under
one global game embedding if and only if it is noise independent under every other global
game embedding.

In this section, we will use attainability to analyse how the global game selection may
depend on the noise structure. Whether some action profile a can be attained from below
in a lower-f -elaboration is in essence a coordination problem among the players. For each
player i, there must be thresholds z0

i , z
1
i , . . . , z

k
i at which she is willing to switch to a greater

action, given the action distribution of opponents’ actions. The players’ thresholds need
to be mutually consistent under the noise structure f . This problem takes the simplest
form—and may be solvable independent of f—if there are few players or few actions, or
if some actions are very appealing for wide range of opposing action distributions.

The simplest non-trivial games with multiple equilibria are 2 player, 2 action games.
For such 2 × 2 games it is known that the global game selection is noise independent;
it selects the risk dominant equilibrium (Carlsson and Van Damme [4]). In a symmetric
2×2 game this means it selects the best replies to the conjecture that the opponent mixes
over both actions with equal probability. If both the least and greatest actions are best
replies to this conjecture, then the least is prescribed by the left continuous version of the
limit strategy sf while the right continuous version prescribes the greatest.

But noise independence may fail quickly when the player set or the action sets of players
are enlarged beyond size 2. An example of Carlsson [3] shows that noise independence
may already fail in an (asymmetric) 3 player, binary action game. Oyama and Takahashi
[22] show that symmetric 2 player 3 × 3 games are noise independent, but FMP present
an example where noise independence fails in a symmetric 2 player 4 × 4 game. Below,
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Figure 4. Top: The thresholds zi, at which players believe that the op-
ponent will receive a signal x−i ≥ z−i with probability 1

2
.

Bottom: The starting point for the upper-best reply iteration.

we provide two further results on how many players or actions it takes to violate noise
independence. We show that any 2 player game in which one player’s action space is
binary (i.e., every 2× n game) is noise independent. We will also give an example where
it fails in an asymmetric 2 player 3× 3 game. This gives a full characterisation of games
where noise independence can be established simply by counting the number of players
or actions.

A well known, yet restrictive, criterion that guarantees noise dependence even in many
player and many action games is the “p-dominance” criterion.

Definition. Let p = (pi)i∈I and 4(A−i) be the set of all probability distributions over
A−i. An action profile a∗ in g is p-dominant if for each player i and any opposing action
distribution µ ∈ 4(A−i) that assigns weight µ(a∗−i) ≥ pi we find that

∀ai,
∑

a−i∈A−i

µ(a−i)gi(a
∗
i , a−i) ≥

∑
a−i∈A−i

µ(a−i)gi(ai, a−i),

i.e. a∗i is a best response. �

If a∗ is p-dominant for some p with
∑

i∈I pi < 1, then a∗ is the global game selection (see
FMP). It follows that, independent of the noise structure, a∗ is the global game selection
in a two player symmetric payoff game if it is a best reply on the conjecture that the
opponent will play a∗−i with probability less than 1

2
. The concept of attainability in a

lower-f -elaboration enables us to see why. For any f we find thresholds zi ∈ [0, 1] such
that P(x−i > zi|xi = zi) = 1

2
(see the top panel of figure 4). Now, consider the strategy

profile s0 where each player i switches from her lowest action to a∗i at zi (see the bottom
panel of figure 4). As each player receiving the signal xi = zi assigns a probability of
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Figure 5. Attaining a∗ by exploiting noise independence of restricted games.

1
2
≥ pi to the event that his opponent plays a∗, p-dominance guarantees that the best

reply to s0 is weakly greater than s0. Thus, an upper-best reply iteration starting at s0

converges towards an equilibrium strategy profile s that attains a∗.
Looking at the strategy profile s0, it becomes clear that it is unnecessarily strict to

require that players are willing to switch from 0 to a∗ immediately. Allowing them to
reach a∗ in many steps considerably weakens the criterion.

§4.1. A Decomposition Approach to Noise Independence

Elaborating on this idea, we will show that if there exists a suitable decomposition of
a game of strategic complementarities g into smaller, noise independent games, this may
be a sufficient condition for noise independence of g itself. Figure 5 illustrates the idea. If
we can show that certain action profiles are attained in certain lower-f -elaborations that
we obtain by restricting the strategy space of g, we can “patch” these strategy profiles
together to obtain a strategy profile for a lower-f -elaboration of the full game g. In this
case, simple known criteria for games with small action spaces may prove to be extremely
useful to analyse games with bigger action spaces.

Definition. Consider a game of strategic complementarities g with joint action set A.
The greatest and least action profiles in A are denoted by m and 0. For action profiles
a ≤ a′, we define [a, a′] := {ã ∈ A | a ≤ ã ≤ a′}. The restricted game g�[a,a′] is defined by
the restriction of the payoff functions of g to the set [a, a′]. We write a g→ a′ if and only if
a′ is the unique noise independent global game selection in g�[a,a′], and conversely a g← a′

if and only if a is the unique noise independent global game selection in g�[a,a′]. �

We write 0
g7−→ a∗ if there exists an increasing sequence 0 < a1 < · · · < ak < a∗ in A

such that 0
g→ a1 g→ . . .

g→ ak
g→ a∗ and a∗ g←− [ m if there exists an increasing sequence

a∗ < ak+1 < · · · < m in A such that a∗ g← ak+1 g← . . .
g← m.

Now we may prove the following sufficient condition for noise independence.

Theorem 9. If 0
g7−→ a∗

g←− [ m, then a∗ is the unique noise independent global game
selection in g. More precisely, let Gv(u, φ, f) be any global game that embeds g, and sf its
essentially unique limit strategy profile. Let g = g(θ∗). Then:

sf (θ∗) = a∗ = sf (θ∗).
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Theorem 9 reveals a first connection with the literature on robustness to incomplete
information. Proposition 2.7 and 3.8 in Oyama and Tercieux [23] together imply that
if game with strategic complementarities can be decomposed—as above—into restriced
games, each of which has a strict p-dominant equilibrium with sufficiently small p (rather
than “just” a unique global game selection), then a∗ is the unique equilibrium of g that is
“robust to incomplete information”. The formal link to our theorem runs via the observa-
tion that if an equilibrium is robust to incomplete information, then it is also the unique
global game selection (at least generically; cf. our theorem 11 and corollary 12 below), so
that the conclusion of theorem 9 follows.

However, theorem 9 allows application of wide range of known criteria for noise in-
dependence besides p-dominance, such as the fact that all symmetric 3 × 3 games, all
symmetric n-player binary games, and (as we show shortly) all 2 × n games are noise
independent, or indeed the robustness to incomplete information of some equilibrium
of the restricted game. None of these are equivalent to the p-dominance criterion—the
conditions under which our theorem may be applied are strictly more general. Also, its
conclusion does not hinge on the fact that a∗ is a robust equilibrium. Thus theorem 9
establishes a more direct and more elementary result about noise independent global game
selection.

Proof. In view of theorem 5, it suffices to prove that for any noise structure f , a(g, f) =

a∗ = a(g, f). We will prove the first equality, the second follows by duality.
Fix some arbitrary noise structure f . By definition, there exists an increasing sequence

0 < a1 < a2 < · · · < ak < a∗, such that for each adjacent pair a, a′ in the sequence, the
unique noise independent selection in the restricted game g�[a,a′] is a′. Consequently, for
each adjacent pair a, a′ there is a corresponding lower-f -elaboration e(g�[a,a′], f) with a
corresponding equilibrium strategy profile s that attains a′.

We claim that if s1 attains a1 in e(g�[0,a1], f) and s2 attains a2 in e(g�[a1,a2], f), then there
is a lower-f -elaboration e(g�[0,a2], f) of g�[0,a2] with a corresponding equilibrium strategy
profile s∗ such that s∗ attains a2. Consequently, there is a strictly shorter increasing
sequence 0 < a2 < · · · < ak < a∗ with the property that for each adjacent pair a, a′ in
the sequence there is a corresponding lower elaboration e(g�[a,a′], f) and a corresponding
equilibrium strategy profile s that attains a′. By induction, it follows that a∗ is attained
from below under f in g�[0,a∗].

To prove the claim, assume that in e(g�[a0,a1], f), θ is distributed on the interval [−1
2
, R1]

and that in e(g�[a1,a2], f) θ is distributed on [−1
2
, R2]. Now consider the lower-f -elaboration

e(g�[0,a2], f) such that θ takes values in the interval [−1
2
, R1 + 1 + R2], and consider the

strategy profile defined by:

si(xi) =


s1
i (xi) if x ≤ R1,

a1
i if R1 < x < R1 + 1,

s2
i (xi − (R1 + 1)) if R1 + 1 ≤ x.
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For xi ≤ R1, the opposing action distribution in e(g�[a0,a2], f) conditional on xi is just like
that in e(g�[0,a1], f). Since s1 is an equilibrium strategy profile of e(g�[0,a1], f), we know
that s1

i (xi) is the best reply to s1
−i among the actions {ai ∈ Ai | ai ≤ a1

i }. So it must be
that β̂(s)i(xi) ≥ s1

i (xi) = si(xi) in the game e(g�[a0,a2], f).
For xi ∈ [R1, R1 +1], the opposing action distribution in e(g�[a0,a2], f) conditional on the

signal xi (weakly) dominates the opposing action distribution conditional on the signal R1,
since s is increasing. By strategic complementarities, β̂(s)i(xi) ≥ β̂(s)i(R

1) = a1
i = si(xi).

For xi ≥ R1 + 1, the opposing action distribution in e(g �[0,a2], f) conditional on the
signal xi is just like in that e(g�[a1,a2], f) conditional on the signal xi− (R1 +1). Moreover,
the opposing action distribution given the signal xi (weakly) dominates the opposing
action distribution given the signal R1, since s is increasing. This implies β̂(s)i(xi) ≥ a1

i .
Furthermore, we know that s2

i (xi) is the best reply to s2
i among the actions {ai ∈ Ai | a1

i ≤
ai ≤ a2

i }, since s2 is an equilibrium strategy profile of e(g�[a1,a2], f). Combining, we must
have β̂(s)i(xi) ≥ s2

i (xi − (R1 + 1)) = si(xi) in the game e(g�[a0,a2], f).
In sum, β̂(s) ≥ s. Hence an upper-best reply iteration converges monotonically to an

equilibrium strategy profile s∗ ≥ s. Since, by construction, s(R1 + 1 +R2) = a2, certainly
s∗ attains a2. This proves the claim.

Conclude there is a lower-f -elaboration e(g�[0,a∗], f) with an equilibrium strategy profile
s that attains a∗. Since s is an equilibrium strategy profile, enlarging the joint action set
from [0, a∗] to [0,m] cannot make players want to switch to smaller actions when they
follow the strategy profile s. Hence a∗ is attained from below under f given the original
game g, implying a(g, f) ≥ a∗.

It remains to be shown that a∗ is the greatest action profile that is attained from below
under f . Towards a contradiction, suppose there is a lower-f -elaboration e(g, f) of g with
a greatest equilibrium strategy profile s∗ that attains some a∗∗ > a∗. Let θ be distributed
on [−1

2
, R] in e(g, f) and, without loss of generality, let a∗∗ be the greatest action profile

that s∗ attains. Recall that s∗ is increasing.
By assumption, there is a restricted game g�[a,a′] with a

g← a′ and such that a < a∗∗ ≤ a′.
Consider the lower-f -elaboration of g�[a,a′] with θ be distributed on [−1

2
, R], and consider

the strategy profile given by:

for all i ∈ I, si(xi) =

ai if s∗i (xi) < ai,

s∗i (xi) if s∗i (xi) ≥ ai.

For all signals xi < 0, si(xi) = ai is the dominant action in e(g�[a,a′], f). For all signals
xi ≥ 0, the opposing action distribution in e(g�[a,a′], f), conditional on xi and when players
follow the strategy profile s, weakly dominates the opposing action distribution at xi in
e(g, f) when players follow s∗. Since s∗ is an equilibrium strategy profile of e(g, f), it
follows that β̂(xi)i(s) ≥ si(xi) in both lower-f -elaborations.

In sum, β̂(s) ≥ s in e(g�[a,a′], f). Thus an upper best-reply iteration converges to an
equilibrium strategy profile s∗∗ that attains a∗∗. Conclude that a(g�[a,a′], f) ≥ a∗∗ > a.
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Yet this contradicts that a g← a′. So it must be that a(g, f) = a∗ after all. As f was
arbitrary, this proves the theorem. �

§4.2. Applications

Consider the global game game where payoffs depend on θ as in figure 6. The p-
dominance criterion tells us that (c, c) is the unique noise independent selection for θ > 3,
as c is a best reply if one expects the opponent to chose c with probability one half. If
θ < −2, (a, a) is selected for the same reason, yet we cannot tell which action profile will
be chosen if θ ∈ [−2, 3] or whether the selection will be noise independent at all. However,
by looking at 2 × 2 restricted games, and applying the risk-dominance criterion, we find
that a

g(θ)−→ b and b
g(θ)−→ c for θ > 0 so (c, c) is the unique noise independent selection. If

θ < 0, (a, a) is uniquely selected as c
g(θ)−→ b and b

g(θ)−→ a.

player 1

player 2
a b c

a 4− θ −θ −4− θ
b 2 2 0
c θ − 6 θ 2 + θ

Figure 6. Symmetric two player three action game

As indicated, theorem 9 allows the application of more general criteria. For instance,
FMP find that symmetric binary action games are noise independent and give the follow-
ing simple criterion to determine which action profile will be selected. Let I = {1, ..., I},
Ai∈I = {0, 1} and suppose that gi∈I(ai, a−i) depends only on ai and the number of op-
ponents that play 1 (this is always true if payoffs are symmetric). Furthermore, let ∆n

denote the payoff difference on playing 1 rather than zero if n opponents play 1. Then
(1)i∈I is the unique noise independent selection if

∑I−1
n=0 ∆n > 0 and (0)i∈I is the uniquely

noise independent selection if
∑I−1

n=0 ∆n < 0. In other words, the global game approach
selects the best reply on the conjecture that the number of opponents using action 1 is
uniformly distributed between 0 and |I| − 1. Theorem 9 allows us to apply this criterion
to games with more than two actions.

player i

players −i
(a, a) (a, b) (b, b) (b, c) (c, c)

a 2 −1 −2 −3 −4
b 0 0 0 0 0
c −15 −10 −2 1 2

Figure 7. Symmetric three player game

Consider the three player, symmetric payoff game g in figure 7. As b is a best reply
if one expects his opponents to play (a, a), (a, b) or (b, b) with equal probability, we find
that b is the unique noise independent selection in g�[a,b], so a

g→ b. Analogously we find



CHARACTERISING EQUILIBRIUM SELECTION IN GLOBAL GAMES 21

b
g→ c, so a g7−→ c. Then theorem 9 implies that (c, c, c) is selected uniquely and noise

independently by the global game approach. Note that this result holds irrespective of
the payoffs against (a, c). Also, we could set the payoffs of playing c versus (a, a) or (a, b)

arbitrarily low without deterring players to play c.

§4.3. Two player, 2 × n action games

Obviously, in order to fruitfully apply theorem 9, we need as many basic conditions as
possible that guarantee noise independent selection for restricted games. Just counting
the number of players and actions is certainly one of the most simple conditions to check.
One possible extension of a two player 2×2 game is enlarging the action space of just one
of the players. We will show that such games are always noise independent. Let g be any
game of strategic complementarities with I = {1, 2}, A1 = {0, 1}, A2 = {0, 1, . . . ,m2}.
For example, figure 8 shows a 2×3 game. Note that this game does not have a p-dominant
action profile.

player 1

player 2
0 1 2

0 0, 4 0, 3 0, 0
1 −1, 0 0, 3 1, 5

Figure 8. A 2× 3 game with no p-dominant action profile

For any a∗2 ∈ A2, if (0, a∗2) is attained from below for some noise structure, a∗2 is simply
player 2’s greatest best reply to player 1’s action 0, and can be attained from below under
any noise structure. Now suppose the action profile (1, a∗2) is attained from below under
f . Then there exists a lower-f -elaboration e(g, f) of g with an equilibrium strategy profile
s∗ that attains (1, a∗2), and s∗ may be identified with the thresholds z0

1 and z0
2 , z

1
2 , . . . , z

k
2 ,

where players switch to greater actions. Without loss of generality, we may assume all
thresholds are below R − 1

2
(since we can always increase R, extending the region of the

signal space where players play the action profile (1, a∗2)). The opposing action distribution
faced by player 1 at x1 = z0

1 is determined by the probabilities

P(x2 < zj2|x1 = z0
1) =

ˆ zj2

−∞
π1(x2|z0

1) dx2, j ∈ {0, ..., k}.

The opposing action distribution that player 2 faces at each of her thresholds zj2 is

P(x1 > z0
1 |x2 = zj2) = P(x2 < zj2|x1 = z0

1) := pj, j ∈ {0, ..., k},

where the equalities follow from lemma 1 stated in section 2.2.
Let z = min{z0

1 , z
0
2 , z

1
2 , . . . , z

k
2} be the smallest of the thresholds used in the strategy

profile s∗, and let i∗ be the associated player switching at z (that is, z = z0
i∗). Now, if

we consider a different noise structure f ′, we can construct a similarly increasing strategy
profile s∗∗ by again putting i∗’s smallest threshold z̃0

i∗ to z, and then simply rearranging
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the k + 1 remaining thresholds {z̃0
1 , z̃

0
2 , z̃

1
2 , . . . , z̃

k
2} − {z̃0

i∗} such that the k + 1 equations

P(x2 < z̃0
2 |x1 = z̃0

1) = pj, for j ∈ {0, ..., k}

hold under the new noise structure. In this way, the action distributions of both players
at all of their thresholds remains unchanged. Hence, since s∗ is an equilibrium strategy
in e(g, f), it must be the case that s∗∗ is an equilibrium strategy in e(g, f ′), and clearly
s∗∗ attains (1, a∗2). So (1, a∗2) is attained from below under f ′, and we may conclude that
a(g, f ′) ≥ a(g, f). By a symmetric argument, a(g, f) ≥ a(g, f ′). Thus a(g, f) = a(g, f ′),
and by duality we may conclude that a(g, f) = a(g, f ′). Since f and f ′ were arbitrary, g
is noise independent. This establishes

Proposition 10. Any 2× n game of strategic complementarities is noise independent.

§4.4. Examples of Noise Dependence

For an example where theorem 9 is of no help, turn to the game in figure 9. It is the
2 player, 4 action counterexample to noise independence that was discovered by FMP.
Using the attainability criterion, we find that b g7−→ a and b g7−→ d, so we lack a unique
focal point. All we can say is that either (a, a) or (d, d) will be selected.

player 1

player 2
a b c d

a 2000 1936 1144 391
b 1656 2000 1600 1245
c 1056 1800 2000 1660
d 254 1000 2160 2000

Figure 9. FMP’s counterexample

However, FMP’s counterexample is not the smallest possible counterexample to noise
independence. We conclude this section with two minimal examples. These examples
show how the idea of attainability may be applied to establish the noise dependence of a
game.

The first example is a noise dependent two player 3 × 3 game. This is a minimal
counterexample to noise independence, since we have seen that all smaller two player
games are noise independent. The second example is a noise dependent three player binary
action game. It is minimal since all smaller binary action games are noise independent.
As noted before, an analysis of this second type of game that establishes their noise
dependence can already be found in Carlsson [3]. However, Carlsson’s analysis does not
fit well with the usual definition of a global game, since in his setup the players’ signals
are not conditionally independent, which is required to apply the theory of FMP. In our
example this assumption is satisfied.

Let g be the two player 3 × 3 game given by I = {1, 2}, Ai∈I = {a, b, c} and payoffs as
in figure 10. First suppose η1 is distributed uniformly over [−1

2
, 1

2
] while η2 is distributed
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player 1

player 2
a b c

a 30, 10 −15, 0 −15,−15
b 0, 0 0, 0 0, 0
c −10,−40 −10, 0 10, 10

Figure 10. Asymmetric two player three action game

xia

b

c

action c

is dominant

za
1 = −1

3
za
2 = −1

6
zb
1 = zb

2 = 0

4

Figure 11. (a, a) is attained from above under f in e(g, f).

uniformly over [− 1
10
, 1

10
]. Then (a, a) will be a global game selection. To see this, consider

the upper-f -elaboration of g, in which the action c is dominant for strictly positive signals.
The state parameter θ is distributed uniformly over some interval [L, 1

2
], and given a signal

xi ∈ [L+ 1
2
, 0] the conditional distribution that each player holds over his opponent’s signal

is given by the density

πi(x−i|xi) =

1, 0 ≤ |x−i − xi| ≤ 0.4,

3− 5 |x−i − xi| , 0.4 < |x−i − xi| ≤ 0.6.

Now, consider the strategy profile in which player 1 switches to action b at zb1 = 0 and to
the lowest action a at za1 = −1

6
—see figure 11. Player 2 switches at thresholds zb2 = 0 and

za2 = −1
3
.

If player 1 receives signal x1 = 0, she assigns probabilities 1
6
, 1

3
and 1

2
to the events

that his opponent chooses actions a, b and c respectively. Her expected payoff of playing
c is 0 and she is willing to switch from action c to action b. Similarly, we find that
P(x2 ≤ za2 |x1 = za1) = P(za2 < x2 ≤ zb2|x1 = za1) = P(x2 > zb2|x1 = za1) = 1

3
and conclude

that player 1 is willing to switch to the lowest action a given a signal x1 = za1 .
For player 2, we find that P(x1 ≤ za1 |x2 = zb2) = 1

3
and P(x1 > zb1|x2 = zb2) = 1

2
, implying

that the expected payoff of playing c is zero at zb2, hence equal to the payoff of playing b.
Finally, we find that P(x1 ≤ za1 |x2 = za2) = 2

3
and P(x1 > zb1|x2 = za2) = 1

6
, implying that

the expected payoff of playing a given the signal x2 = ta2 is zero and equal to the payoff
of playing b. Thus there exists an equilibrium profile in the upper-f -elaboration of g in
which the action profile (a, a) is used, so the equilibrium (a, a) of g is selected by the left
continuous version of the limit strategy profile.

However, if η1 follows the density f1(x) = 1 − 2x with support [−1
2
, 1

2
], while η2 is

distributed uniformly over [−ε, ε] the global game approach uniquely selects (c, c) for
sufficiently small ε. Consider a lower-f -elaboration of g and a strategy profile specified
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by the four thresholds zbi , zci (i ∈ {1, 2}) at which the players switch to greater actions.
Let ∆a,b

i (xi) denote player i’s difference in payoff of playing b rather than a when given
a signal xi, and define ∆b,c

i (xi) analogously. We first examine the limit ε = 0, so that
player 2 is informed about the true state θ. We find that for zb1 = 0, zc1 = 0.15, zb2 = 0.07,
zc2 = 0.34

∆a,b
1 (0) =

759

2000
≈ 0.38, ∆b,c

1 (0.15) = 239
500
≈ 0.48,

∆a,b
2 (0.07) =

61

200
≈ 0.31, ∆b,c

2 (0.34) = 69
200
≈ 0.35,

so players strictly prefer to switch to greater actions at the thresholds and (conducting
an upper-best reply iteration) we see that (c, c) is attained from below under this noise
structure. Indeed, since players strictly prefer to switch at the thresholds, the same must
be true if we draw x2 from [θ−ε, θ+ε] and choose ε very small—this only slightly perturbs
expected payoffs. And even as we very slightly perturb the payoffs of the game g, the
expected payoff differences at the thresholds remain positive. Thus (c, c) is a global game
selection for all games in some neighbourhood of the game g. This implies that (c, c) is the
unique noise independent global game selection in g for both the left and right continuous
versions of the limit strategy profile sf .

i ∈ {1, 2} plays

3 plays
0 1

0 0 0
1 −1 1

1 and 2’s payoff

3 plays

1 and 2 play
(0, 0) (0, 1) (1, 0) (1, 1)

0 0 0 0 0
1 −5 2 2 2

player 3’s payoff

Figure 12. Three player Soros game

Finally, consider the 3 player binary action game g given by I = {1, 2, 3}, Ai∈I = {0, 1}
and the payoffs given in figure 12. It is similar to the “Soros” game of Corsetti et al. [5].
We may think of player 3 as a large trader who can tip the balance, guaranteeing the
success of a speculative attack, if she is joined by at least one of the small traders 1 or 2.
The game has two Nash equilibria, (0, 0, 0) and (1, 1, 1).

To determine which action profile will be selected by the global game approach, we turn
to a lower-f -elaboration. Consider the noise structure f such that for each i ∈ I, ηi is
distributed uniformly on [−1

2
, 1

2
]. Then (0, 0, 0) will be the global game selection. To see

this, assume for the sake of argument that there is an equilibrium strategy profile where
players 1 and 2 switch to action 1 at thresholds z1 and z2. As both players have the same
payoff function and as f1 = f2 we can assume without loss of generality that z1 = z2.
Moreover, as they are willing to switch at this threshold, they must assign a probability
weakly greater than 1

2
to the event that the third player plays 1, i.e. they assume that

player 3 switches to action 1 at some threshold z3 ≤ z1 = z2. Yet, if player 3 receives
the critical signal x∗3 = z1,2, she faces the opposing action profiles (0, 0), (0, 1), and (1, 1)

with equal probability (the “Laplacian” belief, see Morris and Shin [18]). So she cannot
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be willing to switch at z3, as she would assign probability no less than 1
3
to the event

that opponents play (0, 0). We conclude that, under this noise structure, there can be no
equilibrium strategy profile that attains (1, 1, 1).

Now, consider the alternative noise structure f ′, in which η′1,2 are still uniformly dis-
tributed over [−1

2
, 1

2
], but η′3 is distributed over [−ε, ε] for some ε > 0. As ε→ 0, (1, 1, 1)

becomes the global game selection. For ease of presentation, let us assume that player 3

is informed about perfectly the true state θ, viz ε = 0; it will be clear from our argument
that the result remains valid for small ε. Fix z1 = z2 = z3 = 0. When receiving signal
x∗i = 0, players 1 and 2 assign probability 1

2
to the event that player 3 plays 1, so they

switch to action 1 at their threshold. Player 3 assigns probability 1
4
to (0, 0) and to (1, 1),

and probability 1
2
to (0, 1). She, too, will switch to action 1, since the expected payoff

of playing 1, which is −5(1
4
) + 2(3

4
) = 1

4
, is strictly greater than the expected payoff of

playing 0, which yields 0. Since this holds strictly, the argument remains valid if we draw
her signal from [−ε, ε] for sufficiently small ε.

5. Robustness to Incomplete Information

A lower(upper)-f -elaboration e(g, f) of g is “close” to g in the sense that conditional
payoffs in e(g, f) coincide with the payoffs in g with high ex ante probability. Kajii
and Morris [15] examine incomplete information games that are close to some complete
information game g in this sense. Specifically, they look for a Nash equilibrium a∗ of
g for which, in every incomplete information game sufficiently close to g, there exists
an equilibrium strategy profile s in which players use the action profile a∗ with high
probability. Such equilibria are called robust to incomplete information. We will show
that if a∗ is robust to incomplete information, then a∗ is attained both from below and
from above under any noise structure f . Thus, robustness to incomplete information
implies noise independence. Morris and Ui [19] provide a large number of criteria that
establish robustness to incomplete information. These conditions may be helpful for
analysing global games, especially since the LP-maximiser condition in FMP—which was
thought to guarantee noise independence—has recently been shown to be insufficient by
Oyama and Takahashi [22].

The main conceptual problem that we need to solve in order to use all these known
criteria for robustness to incomplete information is that Kajii and Morris only look at
discrete incomplete information games.

Definition. A discrete incomplete information game u consist of a finite player set I, finite
action sets Ai∈I , a countable probability space Ω and state dependent payoff functions
ui : A× Ω→ R. Each player receives a measurable signal Pi(ω) = pi, where Pi can take
on finitely many values and P(pi) > 0 for each pi ∈ Pi[Ω]. Under these assumptions,
the conditional probabilities P(·|pi) are well defined, so that players have well defined
posteriors over the true state ω and their payoff function ui(·, ω). �
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Let4(Ai) denote the set of all probability measures onAi. A (mixed) strategy for player
i is a function σi : Pi[Ω] → 4(Ai). When player i uses the strategy σi, the probability
that she chooses action ai given the signal pi is denoted by σi(ai|pi). A strategy profile
σ = (σi)i is a tuple of mixed strategies. The probability that the action profile a = (ai)i∈I
is played given the strategy profile σ and given ω is denoted by σ(a|ω). The domain of
ui extends to mixed strategies as follows:

ui(σ(ω), ω) =
∑
a∈A

ui(a, ω)σ(a|ω).

A strategy profile is a (Bayes-Nash) equilibrium strategy profile of a discrete incomplete
information game u if for all i ∈ I, pi ∈ Pi(Ω) and ai ∈ Ai∑

ω∈P−1[{pi}]
ui(σ(ω), ω)P(ω|pi) ≥

∑
ω∈P−1[{pi}]

ui(ai, σ−i(ω), ω)P(ω|pi)

i.e. if it is a best reply to follow σi on any signal pi against the opposing action distribution
induced by σ−i.

Now let g be a complete information game of strategic complementarities. For an incom-
plete information game u, we define

Ωg = {ω|ui(·, ω′) = gi(·) for all i ∈ I, ω′ ∈ P−1
i (Pi(ω))}

as the set of states where each player i receives a signal pi telling her that her payoff
function is gi. A discrete incomplete information game u said to be an ε-elaboration2 of
g if P(Ωg) ≥ 1− ε, following Kajii and Morris [15]. Although in the event Ωg each player
i knows that payoffs are the same as in g, there will still be uncertainty about the signals
that opponents receive, and this uncertainty affects higher order beliefs in u.

Definition. A Nash equilibrium a∗ of g is said to be robust to incomplete information
(Kajii and Morris [15]), or more succinctly, a robust equilibrium of g, if for every γ > 0,
there exists ε > 0, such that in any ε-elaboration u of g, there exists an equilibrium
strategy profile σ such that a∗ is played with ex ante probability at least 1 − γ, i.e.∑

ω∈Ω σ(a∗|ω)P(ω) ≥ 1− γ. �

The next theorem gives the formal link between robustness and noise independence, show-
ing that every robust equilibrium is “sandwiched” between sf and sf .

Theorem 11. Let Gv(u, φ, f) be any global game that embeds g and sf its essentially
unique limit strategy profile. Let g = g(θ∗). If a∗ is a robust equilibrium of g, then
sf (θ∗) ≤ a∗ ≤ sf (θ∗), for any noise structure f .

This theorem slightly generalises a similar result by Oury and Tercieux [21], who use a
more restrictive notion of robustness to incomplete information. They require that a∗ is
robust not only in g itself but in all complete information games in a neighbourhood of
g, and then exploit a link with so-called “contagious” equilibria to show that their notion
2ε-elaborations should not be confused with the notion of lower(upper)-f -elaborations, where f denotes
the noise structure instead of the size of the event Ω− Ωg.
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implies that a∗ is the unique noise independent global game selection. We can connect
our theorem to their result as follows:

Corollary 12. Let Gv(u, φ, f) be any global game and sf its essentially unique limit
strategy profile. Suppose g(θ1) = g and g(θ2) = g′ for some θ1 < θ2. If a∗ is a robust
equilibrium of both g and g′, then it is the unique noise independent global game selection
at any state parameter θ∗ ∈ (θ1, θ2). More precisely, sf (θ∗) = a∗ = sf (θ∗) for any noise
structure f .

Proof. Fix f and some θ∗ ∈ (θ1, θ2). Recall that the joint action space A is finite. Since
sf is increasing, it is discontinuous at finitely many points, implying

sf (θ1) ≤ sf (θ∗) ≤ sf (θ∗) ≤ sf (θ2).

From theorem 11 we infer sf (θ2) ≤ a∗ ≤ sf (θ1). Thus,

sf (θ∗) = a∗ = sf (θ∗). �

We will prove theorem 11 in the obvious way, by showing that a∗ is attained from below
(and dually, from above) under any noise structure f . So let us fix some f .

We start by discretising the information structure of lower-f -elaborations in order for
them to fit the definition of a discrete incomplete information game. Let e(g, f) be a
lower-f -elaboration of g and, for δ > 0, let the signal space [−1

2
, R] of e(g, f) be covered

by a partition of intervals of length δ:

P δ = {pn|n ∈ {`, `+ 1, ..., r}, }
where pn = [nδ, (n+ 1)δ),

and `, r ∈ Z, ` < r,

and the partition P δ covers [−1

2
, R].

Now, for each δ > 0, we may consider a discrete incomplete information game eδ(g, f)

based on e(g, f), in which instead of receiving their signal xi, players are only informed
about the interval p ∈ P δ that contains xi. A pure strategy profile s in the e(g, f) is said
to be an equilibrium under δ-discretised information if and only if it is constant on every
p ∈ P δ and maximises expected payoff under this constraint, assuming that opponents
follow the same strategy. More precisely:

∀i∀ai∀p,
ˆ
xi∈p

ui(si(p)|s, xi) dxi ≥
ˆ
xi∈p

ui(ai|s, xi) dxi,

where, as before, ui(ai|s, xi) denotes the expected payoff of playing ai ∈ Ai.

Theorem 11 is proved if we can show that some lower-f -elaboration e(g, f) has an equi-
librium profile s∗ that attains a∗. The main step in our argument is given by the following
lemma, which retrieves the robust equilibria of g in our continuous lower-f -elaborations
via the discrete incomplete information games eδ(g, f).
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Lemma 13. If a∗ is a robust equilibrium of g, then for any δ, 0 < δ < 1
2
, there exists a

lower-f -elaboration e(g, f) and a pure strategy profile s∗ in e(g, f) that is an equilibrium
under δ-discretised information and that attains a∗. Moreover, s∗ is increasing, right
continuous, and is constant for signals greater than 2R∗.

Proof. Recall that in any lower-f -elaboration, the state parameter θ is distributed uni-
formly over some interval [−1

2
, R]. For θ > 1

2
, it is guaranteed that each player i will

receive a positive signal xi = θ + ηi that informs her that the relevant individual payoff
function ui(·, xi) is given by gi(·). Now fix some δ, 0 < δ < 1

2
. In any δ-discretised

lower-f -elaboration eδ(g, f), a realisation θ > 1
2
guarantees that each player i knows that

her payoff function is gi, so

P(Ωg) ≥ P(θ >
1

2
) =

R− 1
2

R + 1
2

.

Since a∗ is a robust equilibrium of g, if we choose R sufficiently large, there exists (by
definition) a (mixed) equilibrium strategy profile σ in eδ(g, f), such that a∗ is played in
some interval p∗ ∈ P δ with strictly positive probability. So let us choose R > 2R∗ + 2

accordingly, thus fixing eδ(g, f).
Conducting an upper-best reply iteration in eδ(g, f) starting at σ will give a pure

equilibrium strategy profile s that prescribes actions weakly greater than a∗ on the interval
p∗.

Similarly, if we conduct an upper-best reply iteration in eδ(g, f) starting at

∀i∀p, s0
i (p) = mi,

we find the greatest (pure) strategy profile s∗ ≥ s that is an equilibrium under δ-discretised
information (see figure 13). As s∗ is increasing, we can identify it with k ≤ R∗ jump
points z1, z2, . . . , zk, at each of which players switch to strictly greater actions. Under δ-
discretised information, each jump point zn influences the expected payoff on all intervals
p contained in [z−1−2δ, z+ 1 + 2δ], so the maximum distance between any two adjacent
jump points zn, zn+1 is 1 + 2δ < 2. Otherwise, the similarly increasing strategy profile
given by the jump-points:

z1, z2, . . . , zn − δ, zn+1 − δ, . . . , zk − δ

would also be an equilibrium, contradicting the maximality of s∗. Therefore, s∗ ≥ s is
constant for signals greater than 2R∗. If we interpret s∗ as an strategy in e(g, f), i.e.

for all i, s∗i (xi) = s∗i (p
k) for xi ∈ pk,

it is an equilibrium under δ-discretised information, right continuous and increasing, and
satisfies s∗(x) ≥ a∗ for x ≥ 2R∗. �

Thus, if a∗ is a robust equilibrium, then for each sufficiently small δ there is some
elaboration e(g, f) of g with a strategy profile s that attains a∗ such that s is an equilibrium
strategy profile under δ-discretised information. As we choose δ smaller and smaller, the
discretised information structures start resembling the continuous information structures
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s∗
i

σi

si

a∗
i

p p∗
2R∗

8

Figure 13. Robustness implies existence of a mixed strategy profile σ that
prescribes a∗ with positive probability. An upper-best reply iteration from
the mixed strategy profile σ yields the pure strategy profile s. The greatest
equilibrium s∗ ≥ s is constant for signals greater than 2R∗.

ever more closely. Intuitively, there should be an equilibrium strategy profile in some
lower-f -elaboration e(g, f) that attains a∗, which is all we need to show. To take this
final step, we need two new concepts.

Definition. Consider the lower-f -elaboration e(g, f) with θ distributed over the interval
[−1

2
, 2R∗+ 2]. Every right continuous, increasing strategy si in e(g, f) can be represented

as an (mi + 1)-tuple of jump points, viz. an element of

Mi := {si = (y0
i , y

1
i , y

2
i ..., y

mi
i ) ∈ RAi | − 1

2
≤ y0

i ≤ y1
i ≤ y2

i ≤ · · · ≤ ymi
i ≤ 2R∗ + 3},

where yaii denotes the least signal at which player i plays some action a′i ≥ ai. The joint
strategy space M :=

∏
i∈I Mi contains all such strategy profiles. We will be interested

in the subset of strategy profiles which use actions weakly greater than a∗ for signals
xi ≥ 2R∗ and the least action 0 for signals xi < 0. We denote it by:

Ma∗ := {(y0
i , . . . y

mi
i )i∈I ∈M | ∀i, ya

∗
i
i ≤ 2R∗, and ∀i∀ai, yai ≥ 0}.

Note that Ma∗ is a closed subset of the compact set [0, 2R∗ + 3]A, hence compact. �

Definition. A player’s relative loss function in e(g, f) is defined as

ri(s)(xi) := ui(β̂(s)i(xi)|s, xi)− ui(si(xi)|s, xi).

Moreover, we define

ri(s) :=

ˆ
Xi

ri(s)(xi)dxi

where X i = [L− 1
2
, 2R∗ + 2 + 1

2
] denotes the set of possible signals. Finally, we set

r(s) := max
i∈I

ri(s)

refer to it as relative loss of the strategy profile s. �

Intuitively, r(s) measures the distance between a strategy profile and its best reply; if
r(s) = 0, si(xi) is a best reply to s for almost all xi, which means (after adjusting s on a
null set if necessary) that we have found an equilibrium strategy profile.
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By identifying increasing, right continuous strategies with elements of M we can regard
r as a function on M . To prove theorem 11, it suffices to establish that r(s) = 0 somewhere
on the compact set Ma∗ . To this end, the next lemma establishes a crucial property of r.

Lemma 14. The function r : Ma∗ → R is continuous.

Proof. We will first show that ri(s)(xi) is continuous for each xi. For each s ∈ Ma∗ and
for each player i, the payoff function is bounded, and the difference in payoff between
playing s(xi) and playing a best reply at xi is 0 if xi < 0 and less than

Ti := max{gi(a)|a ∈ A} −min{gi(a)|a ∈ A} ≥ ui(β̂(s)i(xi)|s, xi)− ui(si(xi)|s, xi).

otherwise. Let sn be an arbitrary sequence converging to s in the (compact metric) space
Ma∗ . Observe that convergence in Ma∗ is equivalent to the sn converging to s pointwise
almost everywhere when the sn are regarded, as usual, as measurable functions on the
space [−1

2
, 2R + 3]I . Thus, by the dominated convergence theorem, for any i, xi, and ai,

ui(ai|sn, xi) converges to ui(ai|s, xi). Hence, for each i, xi and ai, ui is continuous on Ma∗ .
Since Ma∗ is compact, ui is continuous, and Ai is finite, Berge’s maximum theorem [1,
p. 116] then implies that vi(s)(xi) = ui(β̂(s)i(xi)|s, xi) is continuous on Ma∗ for all i, xi.
It follows that

ri(s)(xi) := vi(s)(xi)− ui(si(xi)|s, xi) = ui(β̂(s)i(xi)|s, xi)− ui(si(xi)|s, xi)

is continuous for all i, xi.

Next, to prove the lemma, again let sn be an arbitrary sequence converging to s in Ma∗ .
For each i, the continuity of ri at each xi implies that ri(sn) converges pointwise ri(s).
From the dominated convergence theorem we deduce that

ri(s
n) :=

ˆ
Xi

ri(s
n)(xi)dxi converges to

ˆ
Xi

ri(s)(xi)dxi =: ri(s) ≤ 2R∗Ti.

Since the player set I is finite, this shows that r(s) = maxi∈I ri(s) is continuous. �

We are now set to prove theorem 11.

Proof. Consider again the lower-f -elaboration e(g, f) with θ distributed over the interval
[−1

2
, 2R∗ + 2] and the associated strategy space Ma∗ . As promised, we will show that

there is a strategy profile s∗ ∈Ma∗ such that r(s∗) = 0. Since r is continuous by lemma
14, r has a minimum on the compact set Ma∗ . It suffices to show that there are strategy
profiles in Ma∗ which have arbitrarily small relative loss.

First we will prove the following claim.

Claim. For every i ∈ I and every γ > 0, there exists κi > 0 such that for all ai ∈ Ai, all
s ∈Ma∗ , and all x′i, x′′i ∈ [0, 2R∗ + 1] we have that:

|x′i − x′′i | < κi =⇒ |ui(ai|s, x′i)− ui(ai|s, x′′i )| < γ.

Proof of claim. Choose any i. Consider the density function πi(x−i|xi) of player i’s
opponents’ signals, conditional on xi, as given by lemma 1. The induced probability
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measure is absolutely continuous with respect to the Lebesgue measure µ (Bogachev, [2],
theorem 2.5.7), in other words, for any α > 0 there exists εα > 0 such that

(1) µ(D−i) ≤ εα =⇒
ˆ
D−i

πi(x−i|xi)dx−i ≤ α.

Since changes in xi shift the probability density function πi(x−i|xi) in the real space but
do not change its shape, αε can be chosen independently of xi.

Now let γ, s, and ai be given, and assume without loss of generality that k := x′′i−x′i > 0.
Consider the strategy profile s′ defined by:

for all i, s′i(xi) =


si(xi) if xi < x′i − 1

si(xi + k) if x′i − 1 ≤ xi ≤ x′i + 1

si(xi) if xi > x′i + 1

The strategy profiles s−i and s′−i differ on a set D−i. Clearly, for any εα, there exists
κi > 0 sufficiently small to guarantee that |x′′i − x′i| < κi implies µ(D−i) ≤ εα. Choose
α < γ/Ti, choose εα in line with (1), and then κi accordingly. We have:

|ui(ai|s, x′i)− ui(ui|s, x′′i )|

≤
ˆ
X−i

|gi(ai, s−i(x−i))πi(x−i|x′i)− gi(ai, s−i(x−i))πi(x−i|x′′i )| dx−i

=

ˆ
X−i

|gi(ai, s−i(x−i)πi(x−i|x′i)− gi(ai, s′−i(x−i)πi(x−i|x′i)| dx−i

≤
ˆ
D−i

Tiπi(x−i|x′i)dx−i ≤ Tiα < Ti
γ

Ti
= γ,

and thus the claim is proved.

Now, to prove the theorem, choose any ε > 0, however small. We will find a strategy
s ∈ Ma∗ such that r(s) ≤ ε. To this end, put γ = ε/(8R∗) and subsequently, for each
i ∈ I, choose κi < 1

2
according to our claim above. Let δ = mini∈I κi.

Lemma 13 states that there exists a strategy profile sδ that is an equilibrium under
δ-discretised information in some lower-f -elaboration of g, and that sδ attains a∗, and is
constant for signals above 2R∗. By restricting sδ to the signal space of e(g, f), we can
interpret sδ as a strategy profile of e(g, f).

For any i ∈ I and all signals xi ≥ 2R∗ + 1, player i knows that her opponents receive
signals xj ≥ 2R∗. Since sδ is constant and equal to some a ≥ a∗ for signals greater than
2R∗, the relative loss function ri(sδ)(xi) is constant for xi ≥ 2R∗ + 1. Moreover, since sδ

is an equilibrium under discretised information, we infer ri(sδ)(xi) = 0 for xi ≥ 2R∗ + 1.
Similarly, for signals xi < 0, we have ri(sδ)(xi) = 0, since sδi (xi) is equal to the least action
0, the dominant action at such signals.

We turn to signals xi ∈ [0, 2R∗+1]. On any interval p ∈ P δ, sδ is constant and equal to
some a depending on p. For any pair of signals x′i, x′′i ∈ p we have |x′i− x′′i | ≤ δ ≤ κi, and
hence our claim above implies that the expected payoff ui(ai|sδ, xi) from playing sδi = ai
varies by less than γ on the interval p. Now, if ui(ai|sδ, xi) varies by less than γ on any
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interval p ∈ P δ, then ri(s
δ)(xi) varies by less than 2γ on any interval p. To see this,

assume the contrary, i.e. that for some p ∈ P δ we could find x′i, x′′i ∈ p such that

ri(s
δ)(x′′i )− ri(sδ)(x′i) > 2γ,

that is,

ui(β̂(sδ)i(x
′′
i )|sδ, x′′i )− ui(sδi (x′′i )|sδ, x′′i )− ui(β̂(sδ)i(x

′
i)|sδ, x′i) + ui(s

δ
i (x
′
i)|sδ, x′i) > 2γ.

Since sδi (x′′i ) = sδi (x
′
i), our claim above would then imply that

|ui(sδi (x′i)|sδ, x′i)− ui(sδi (x′′i )|sδ, x′′i )| < γ,

so that we could deduce

ui(β̂(sδ)i(x
′′
i )|sδ, x′′i )− γ > ui(β̂(sδ)i(x

′
i)|sδ, x′i).

Furthermore, if at the signal x′i player i would play β̂(sδ)i(x
′′
i ), by our claim she would be

able to guarantee herself a payoff within γ of ui(β̂(sδ)i(x
′′
i )|sδ, x′′i ):

ui(β̂(sδ)i(x
′′
i )|sδ, x′i) > ui(β̂(sδ)i(x

′′
i )|sδ, x′′i )− γ.

So we infer ui(β̂(sδ)i(x
′′
i )|sδ, x′i) > ui(β̂(sδ)i(x

′
i)|sδ, x′i), contradicting that β̂(sδ)i(x

′
i) is a

best reply.
Thus ri(sδ)(xi) indeed varies by less than 2γ over any interval p ∈ P δ. Moreover, since

sδ is an equilibrium under δ-discretised information, we find that

∀i∀p,
ˆ
p

ri(s
δ)(xi)dxi ≤ δ2γ.

Otherwise, putting sδi (p) to some action that is a best reply at some xi ∈ p, would yield
a relative loss of less than 2γ at all signals xi ∈ p, which contradicts that sδ minimises
the average relative loss over p.

In sum,

∀i, ri(s
δ) =

ˆ
Xi

ri(s
δ)(xi)dxi

=

ˆ
[0,2R∗+1]

ri(s
δ)(xi)dxi

≤ (2R∗ + 1 + δ)2γ ≤ (2R∗ + 1 + δ)
ε

4R∗
< ε. �

Appendix

Proof of Lemma 1. First, note that xi ∈ [L+ 1
2
, R− 1

2
] impliesˆ

[L,R]

fi

(
xi − θ
v

)
dθ =

ˆ
[xi− v

2
,x1+ v

2
]

fi

(
xi − θ
v

)
dθ = 1.
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Thus,

fXi=xi(θ
∗) =

fi(
xi−θ∗
v

)φ(θ∗)´
R
fi(

xi−θ
v

)φ(θ)dθ

=
fi(

xi−θ∗
v

) 1
R+L

1
R+L

´
[L,R]

fi(
xi−θ
v

)dθ

= fi

(
xi − θ∗
v

)
,

from which we conclude that

πi(x−i|xi) =

ˆ
[L,R]

π−i(x−i|θ)fXi=xi(θ)dθ

=

ˆ
[L,R]

∏
i∈I

fi

(
xi − θ
v

)
dθ

= πj(x−j|xj). �
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