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Abstract

The Mirrleesian model of income taxation restricts attention to simple allocation mecha-
nism with no strategic interdependence, i.e., the optimal labor supply of any one individual
does not depend on the labor supply of others. It has been argued by Piketty (1993) that
this restriction is substantial because more sophisticated mechanisms can reach first-best al-
locations that are out of reach with simple mechanisms. In this paper, we assess the validity
of Piketty’s critique in an independent private values model. As a main result, we show that
the optimal sophisticated mechanism is a simple mechanism, or, equivalently, a Mirrleesian
income tax system.

Keywords: Optimal Income Taxation, Mechanism Design

JEL: D82, D86, H21

∗I am indebted to Martin Hellwig for numerous discussions about the relationship between the theory of

taxation and the theory of mechanism design. I am also grateful for conversations with Alia Gizatulina, Mike

Golosov and Hans Peter Grüner.
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1 Introduction

We study a model with n individuals who produce output and consume a private good. As in the
Mirrleesian model of optimal income taxation, these individuals differ in their productive abilities
and it is desirable that more able individuals produce more output, while marginal utilities of
consumption should be equalized. Moreover, individuals are privately informed about their
productive abilities. We seek to characterize the optimal mechanism which specifies, for each
individual, an output requirement and a consumption level both as a function of the individual’s
type and the types of all other individuals. Our main result provides conditions so that (i) the
optimal mechanism is a simple mechanism in the sense that the outcome for any one individual
depends only on the characteristics of that individual, irrespectively of what the characteristics
of other individuals are, and (ii) the optimal mechanism is equivalent to an optimal Mirrleesian
income tax.

Our main assumption is that the productive abilities of different individuals are independent
and identically distributed random variables. Also, our mechanism design approach is based
on a condition of budget balance in expectation, i.e., it is required that the expected level of
output per capita is not less than the expected level of consumption per capita. With a given
finite number of individuals, the Mirrleesian income tax may therefore violate the public sector
budget constraint, provided that budget balance holds on average. However, we show that,
as the number of individuals grows without limit, the law of large numbers implies that the
probability of a budget surplus or deficit converges to zero.

Thus, the main conclusion of our analysis is that, in a large economy, there is no mechanism
which outperforms the Mirrleesian income tax. The result extends to a small economy if budget
balance is required on average, but not if budget balance is required for all states that occur
with positive probability.

This result is of interest because the existing literature is unclear with respect to the interpre-
tation of the Mirrleesian income tax model from a mechanism design perspective. In particular,
there have been interpretations based on a model with a finite number of individuals, and inter-
pretations based on a model with a continuum of individuals, which give rise to very different
conclusions.

More specifically, for a continuum economy, it has been shown by Hammond (1979) and
Guesnerie (1995) that the Mirrleesian income tax problem is equivalent to a model of optimal
mechanism design. For a model with a finite number of individuals, it has been shown by Dierker
and Haller (1990) that the Mirrleesian problem is equivalent to a model of mechanism design in
which attention is restricted to simple mechanisms. For this model, Piketty (1993) has shown
that the focus on simple mechanisms involves a substantial loss of generality. First-best welfare
optima, including the utilitarian one, can be reached with mechanisms that exploit the option
to make the outcome for an individual i dependent on the behavior of some other individual
j. These outcomes are out of reach with simple mechanisms, or, equivalently, with income tax
schedules.1

1Hamilton and Slutsky (2007) extend Piketty’s result. They show that his results remain valid if budget
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Piketty’s work challenges the approach by Hammond (1979) and Guesnerie (1995). Most
economists view an analysis with a continuum of individuals as useful only to the extent that it
provides an approximation of the outcomes that would be obtained with a large finite economy.
If the results for a finite economy (first-best is possible) are fundamentally different from the
results for a continuum economy (first-best is out of reach), this casts doubt on the plausibility
of a model with a continuum of individuals.

The Mirrleesian income tax problem is appealing to many researchers because – in contrast
to Ramsey models of taxation which are theoretically interesting only if lump sum taxes are as-
sumed unavailable – it limits the role of a priori assumptions on admissible policies. Now, what
are the a priori assumptions in the Mirrleesian model? According to Dierker and Haller (1990)
attention is restricted to simple mechanism. Piketty’s result then leads us to the conclusion that
the Mirrleesian policy problem is somewhat contrived because without this restriction we could
reach first-best. The Mirrleesian approach to optimal taxation is therefore subject to the same
criticism as Ramsey models of taxation: The policy problem is interesting only because of ad
hoc restrictions on the set of available policy instruments.

The present paper introduces an alternative model of a finite economy. With this model, the
problems above do not arise. In particular, the optimal mechanism in the finite economy is
shown to be a simple mechanism which is equivalent to an optimal income tax. This result
does not depend on the number of individuals. The only difference between an economy with
a finite number of n individuals, and the limit outcome that is obtained as n → ∞ is that,
due to the law of large numbers, in the “limit economy” budget balance holds in a strict, ex
post sense, whereas in the finite economy budget balance holds only in a weak, ex ante sense.
This observation also implies that a model based on a large, but finite number of individuals
gives approximately the same results as a model with a continuum of individuals, and therefore
provides a justification for the latter approach.2

The crucial difference between our model and the one by Dierker and Haller (1990) and
Piketty (1993) is as follows: Dierker and Haller (1990) and Piketty (1993) consider a finite
economy in which the cross-section distribution of productive abilities is predetermined and
commonly known. For instance, in an economy with two individuals, one individual is known
to be high-skilled and one individual is known to be low-skilled. It is, however, unknown
whether person 1 or person 2 is the high-skilled person. In particular, this implies that if the
mechanism designer has learned person 1’s type, she automatically knows person 2’s type. More
generally, any one individual is informationally small in the sense that access to the privately
held information of n− 1 individuals reveals the last individual’s privately held information.

In our model, by contrast, individual skill-levels are drawn independently. Knowing the
type of person 1 therefore does not contain information about the type of person 2. Likewise,
observing the types of n − 1 individuals reveals nothing about the type of the last individual.

balance is also required out-of-equilibrium.
2A recent literature uses models of mechanism design with a continuum of individuals in order to characterize

optimal insurance contracts or tax systems; see, for example, Golosov et al. (2003), Kocherlakota (2005), Bassetto

and Phelan (2008), or Kocherlakota and Phelan (2009).
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As a consequence, the cross-section distribution of types is itself a random quantity. In a model
with two individuals it could well be the case that both of them turn out to be high-skilled
or that both of them turn out to be low-skilled. However, we show that, as the number of
individuals becomes larger, by the law of large numbers, the cross-section distribution of types
converges to the probability distribution from which types are drawn. For instance, if each
individual is high-skilled and low-skilled with equal probability, then, in a large finite economy,
the population share of high-skilled individuals equals 1

2 , almost surely.
The fact that our information structure is different from Piketty’s does not yet imply that

the restriction to simple mechanisms is without loss of generality. In fact, the optimality of
simple mechanisms requires an additional assumption on the risk attitudes of individuals. The
logic is as follows. With non-simple mechanisms, we can make the outcome for some individual
i dependent on the types of all other individuals. From individual i’s perspective, the types
of other individuals are random. The question, then, is whether an optimal mechanism should
provide full insurance of individual i against the randomness in the types of other individuals.
Under an assumption of decreasing risk aversion, we show that the answer to this question is
“yes”. This is the key step in our proof that simple mechanisms are optimal.

The desirability of “full insurance against the risk in other individuals’ types” can be ex-
plained as follows. When dealing with individual i, the mechanism faces an equity-efficiency
trade-off. The equity concern implies that she would like i’s consumption to be independent of
i’s type. The efficiency concern implies that i should work more if he is more productive. A
necessary condition for the desirability of non-simple mechanisms is that this trade-off becomes,
from the mechanism designer’s perspective, more favorable – in the sense that additional con-
sumption of low-skilled types could be obtained at a lower welfare cost – if individual i is exposed
to randomness. The trade-off would become more favorable if such randomness created slack
in the incentive constraints of the very productive types of individual i so as to create room for
additional consumption of the less productive types of individual i. However, with decreasing
risk aversion, such randomness introduces additional slack only in the incentive constraints of
the less productive types, if anything. Given that these constraints are not binding anyway,
nothing is gained by having outcomes for any one individual being dependent on the outcomes
of other individuals.

Our proof of these statements builds on a proof of Hellwig (2007b) who studies the desir-
ability of randomized income taxation, or in the parlance of this paper, of stochastic simple
mechanism. For the proof of our main result, we show that the arguments which imply that
stochastic simple mechanisms cannot outperform deterministic simple mechanisms also imply
that non-simple mechanism cannot outperform simple mechanisms.

The remainder is organized as follows. The next section describes the environment. Section
3 defines the Mirrleesian income tax problem. In Section 4, we review Piketty’s critique of
the Mirrleesian model. Our main result is in Section 5. The last section contains concluding
remarks. All proofs are in the Appendix.
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2 The environment

There is a finite set of individuals, denoted by I = {1, . . . , n}. Individual i has a utility function

Ui = U(ci, yi, wi) ,

where ci is i’s consumption of a private good, or after-tax income, yi is the contribution to
the economy’s output, or pre-tax-income, and wi is a productivity parameter, which is private
information of individual i. We assume throughout that U is twice continuously differentiable,
and that the partial derivatives satisfy Uc > 0, and Uy < 0. We also assume that U is strictly
quasiconcave in ci and yi.

For each individual i, the productivity parameter wi belongs to a finite ordered set of possible
productivity parameters W = {w1, w2, . . . , wm}. A higher productivity parameter is associated
with a lower disutility from productive effort; i.e., we assume that the single crossing condition
is satisfied: For every point (c, y) ∈ R2

+, and every pair (w,w′) ∈W 2 with w′ > w,

−Uy(c, y, w)
Uc(c, y, w)

> −Uy(c, y, w
′)

Uc(c, y, w′)
.

Finally, we assume that, under a first-best allocation, each individual’s productive effort is
positive. More formally, given k ∈ {1, . . . ,m}, let

(ckf (v), ykf (v)) := argmin(c,y)∈R2
+

c− y s.t. U(c, y, wk) = v .

Then, ykf (v) > 0.

3 The Mirrleesian model of optimal income taxation

We introduce the Mirrleesian model of optimal income taxation as a benchmark which facilitates
the interpretation of the results from the mechanism design analysis below. The Mirrleesian
model is as follows: individuals choose how much to work and thereby face an income tax
schedule T : R+ → R that relates their pre-tax-income to their after-tax-income; i.e., they solve
the following utility maximization problem,

maxc,y U(c, y, wi) s.t. c ≤ y − T (y) .

We denote by (C∗(wi | T ), Y ∗(wi | T )) the pair which solves this utility maximization problem.
An income tax T is said to be feasible if aggregate tax revenues are non-negative,

m∑
k=1

fkT (Y ∗(wk | T )) ≥ r ,

where f = (f1, . . . , fm) is a probability distribution with support W , and r is an exogenous
revenue requirement.

At this stage, two different interpretations of the public sector budget constraint, and of
the probability distribution f are possible. One interpretation is that fk equals the population
share of individuals with skill level wk. An alternative interpretation is that fk is the probability
that any one individual has a skill level of wk. The latter interpretation gives rise to a weaker

4



interpretation of the budget balance condition, namely as the requirement that expected tax
revenues must be sufficient to finance the resource requirement. We will argue later that, with
a large number of individuals, both interpretations are essentially equivalent.

The Mirrleesian income tax problem can now be stated as follows: choose (Ck, Y k)mk=1 in
order to maximize a utilitarian social welfare function

S =
m∑
k=1

fkU(Ck, Y k, wk)

subject to the constraints that there is a function T so that, for every k,

(Ck, Y k) = (C∗(wk | T ), Y ∗(wk | T )) , (1)

and
m∑
k=1

fk(Y k − Ck) ≥ r . (2)

The taxation principle3 implies that the constraints in (1) can be written in a way that no longer
involves an explicit reference to a tax schedule T . According to this result, (Ck, Y k)mk=1 satisfies
(1), for some income tax schedule T , if and only if it satisfies the following Mirrleesian incentive
compatibility constraints: For every pair k, l,

U(Ck, Y k, wk) ≥ U(C l, Y l, wk) . (3)

Assumption 1 (Non-decreasing marginal costs of public funds)
Let S∗(r) be the level of welfare that is induced by a solution to the Mirrleesian income tax
problem. We assume that, for all r, S∗

′′
(r) ≤ 0.

A marginal increase of the revenue requirement r in the government budget constraint yields a
welfare loss with absolute value equal to −S∗′(r). Assumption 1, which will be important for
the proof of our main result, says that this welfare loss is a non-decreasing function of r.4

4 Piketty’s critique of the Mirrleesian model

In the following, we will briefly review the critique of the Mirrleesian income tax model that is due
to Piketty (1993). Piketty’s work is based on the interpretation of the probability distribution
f as a commonly known cross-section distribution of productive abilities.

To illustrate his approach we focus on a simple setup with two individuals, I = {1, 2},
two possible skill levels W = {w1, w2} and a given cross-section distribution of productivity
parameters f =

(
1
2 ,

1
2

)
. Note that the information structure is such that, from an outsider’s

perspective, one individual is known to be high-skilled and one individual is known to be low-
skilled. However, the outsider does not know whether individual 1 or individual 2 is the high-
skilled individual.

3See Hammond (1979) or Guesnerie (1995) for a proof.
4Assumption 1 could be traced back to assumptions about the primitives of the model, in particular of the

utility function U ; see Bierbrauer and Boyer (2010) for an example. Here, this would lead us astray.
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For simplicity, we assume that individuals have a separable utility function U(c, y, w) =
u(c)− v

( y
w

)
, where u is increasing and concave function and v is increasing and convex. Under

these assumptions, the first-best utilitarian allocation consists of an consumption-output com-
bination for the low-skilled individual, A1∗ = (C1∗, Y 1∗), and one for the high-skilled individual
A2∗ := (C2∗, Y 2∗) which satisfies the following properties: (i) marginal utilities of consumption
are equalized, implying that C1∗ = C2∗ =: C∗, and (ii) for each individual, the marginal utility of
consumption equals the marginal disutility of effort so that u′(C∗) = 1

w1 v
′
(
Y 1∗

w1

)
= 1

w2 v
′
(
Y 2∗

w2

)
.

In particular, this implies that the high-skilled individual generates more output than the low-
skilled individual: Y 2∗ > Y 1∗.

Piketty’s critique of the Mirrleesian optimal income tax problem is the following: this first-
best allocation is not Mirrleesian incentive compatible.5 However, it can be reached with a more
general mechanism design approach. To demonstrate this, consider the following mechanism:
Each individual sends a message from the set W = {w1, w2}. Let (ŵ1, ŵ2) be a typical pair
of messages by individuals 1 and 2, and let Ai(ŵ1, ŵ2) be the consumption-effort pair that
individual i gets as a function of the message profile.

Suppose these consumption-effort pairs satisfy the following properties: (i) If one individual
declares to be high-skilled and one individual declares to be low-skilled, the former gets the
bundle A1∗, and the latter gets the bundle A2∗, (ii) if both individuals declare to be low-skilled
both individuals get the bundle A11, (iii) if both individuals declare to be high-skilled both
individuals get the bundle A22. It is easy to verify that, if A11 and A22 are chosen as in Figure
1, then truth-telling is a dominant strategy, which implies that in equilibrium the first-best
allocation is reached.

More generally, Piketty shows that for an economy with n individuals and a given cross-
section distribution of types, one can construct a game so that the first-best utilitarian alloca-
tion is the unique equilibrium that survives the iterated elimination of dominated strategies. His
approach uses the possibility to make outcomes for one individual dependent on the behavior of
the other individual. To see this, note, e.g., that A1(w1, w2) = A1∗ 6= A1(w1, w1) = A11. Now,
if we impose the restriction that such an interdependence must not arise, then there is a bundle
A1 = (C1, Y 1) that an individual gets whenever it communicates a low-skill level, irrespectively
of what the other individual communicates, and a bundle A2 = (C2, Y 2) that an individual gets
whenever it communicates a high-skill level. Following Dierker and Haller (1990), we refer to
mechanisms with this property in the following as simple. It is straightforward to verify that, for
the game induced by such a simple mechanism, truth-telling is a dominant strategy equilibrium
if and only if (Ck, Y k)2k=1 satisfies the Mirrleesian incentive compatibility constraints in (3).

5To see this, note that a high-skilled individual prefers the bundle intended for the low-skilled individual,

(C∗, Y 1∗), over (C∗, Y 2∗). The reason is that the second bundle involves a larger workload. Hence, for (C1, Y 1) =

(C∗, Y 1∗) and (C2, Y 2) = (C∗, Y 2∗), the inequalities in (3) are violated.
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C

A1∗r r
A22r

A11 r

A2∗

I21∗

I22∗

I11∗

Figure 1. The indifference curve of a low-skilled/ high-skilled individual through the bundle A1∗ is denoted

I11∗/ I21∗. The indifference curve of a high-skilled individual through A2∗ is denoted by I22∗
2 .

Piketty’s result suggests that the Mirrleesian model of optimal income taxation lacks a the-
oretical foundation. Given that superior mechanism exist, it is ultimately unclear why, for the
purposes of a normative analysis, attention should be restricted to simple mechanisms.

Our plan in the following is to look at this problem from a different angle. In particular, we
introduce an alternative model of a finite economy. The essential difference to Piketty’s model
is the following: in Piketty’s analysis, each individual is informationally small. Given that the
cross-section distribution f is assumed to be known, if the mechanism designer has already
gained access to the privately held information of n − 1 individuals about their productive
abilities, he can infer the last individual’s productivity level. By contrast, we will assume that
the productivity level of any one individual i can not be inferred from information about the
productivity levels of all other individuals.

With this model we can show that, with an arbitrary, finite number of n individuals, the
optimal mechanism satisfying a feasibility condition and a Bayes-Nash incentive compatibility
condition is equivalent to an optimal income tax in the Mirrlees-model. Our constraints are
weaker than those imposed by Piketty. We use a weaker notion of incentive compatibility, and a
requirement of budget balance in expectation rather than an ex post budget balance condition.
This makes the observation that the optimal mechanism is equivalent to an optimal income tax
even more striking.

5 A finite economy with independent private values

We study the environment in Section 2 under additional assumptions. First, we assume that
the individuals’ productivity levels are realizations of independent and identically distributed
random variables with distribution f = (f1, . . . , fk); i.e., fk is now interpreted as the probability
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of the event that wi = wk, for any one individual i. Second, we make the following assumptions
about preferences:

Assumption 2 (Desirability of Redistribution)

a) The utility function U is concave in y and satisfies Uy(c, y, wl) > Uy(c, y, wk) for l > k.

b) Let l > k. Let (cl, yl) ∈ R2
+ and (ck, yk) ∈ R2

+ be such that

cl > ck, Uc(cl, yl, wl) ≥ −Uy(cl, yl, wl) and Uc(ck, yk, wk) = −Uy(ck, yk, wk) .

Then, −Uy(cl, yl, wl) < −Uy(ck, yk, wk).

Assumption 3 (Decreasing Risk Aversion)
Let c̃, and ỹ be a pair of nondegenerate nonegative-valued random variables. Let l > k. For
any π ∈ R, let E[U(c̃, ỹ, wk)] = U(E[c̃] − π,E[ỹ], wk). Then, π > 0 and E[U(c̃, ỹ, wl)] ≥
U(E[c̃]− π,E[ỹ], wl).

Assumption 2 describes situations in which it is desirable to change output requirements so
that high-skilled individuals work more and low-skilled individuals work less.6 Part a) states
that if a high-skilled and a low-skilled individual are pooled so that they both consume the
same and provide the same output, then utilitarian welfare goes up if output requirements are
rearranged. Part b) extends this to first-best allocations with the property that high-skilled
individuals consume more than low-skilled individuals, and to second-best allocation where
the high-skilled individual’s marginal disutility of output provision is even lower than with an
undistorted first-best allocation.

Assumption 3 formalizes a concept of decreasing risk aversion, with risk premia measured
in units of the consumption good.7 The assumption says that, if an individual of some given
skill level is indifferent between a lottery over consumption-output bundles and a deterministic
consumption-output-bundle – in which the output component is equal to the expected level
of output under the lottery –, then an individual with a high-skill level will not prefer the
deterministic bundle over the lottery.

Hellwig (2007b) shows that these two assumptions have the following implications. First,
for the Mirrleesian income tax problem defined in Section 3, one may without loss of generality
limit attention to a subset of the Mirrleesian incentive compatibility constraints, namely to the
Mirrleesian downward incentive compatibility constraints: for every pair k and every h < k,

u(Ck, Y k, wk) ≥ u(Ch, Y h, wk) . (4)

A solution of the relaxed Mirrleesian problem which takes only these constraints into account
satisfies the neglected upward incentive compatibility constraints automatically. Second, the

6For a more extensive discussion of this assumption and its relation to alternative assumptions that have been

made in the literature on optimal income taxation, see Hellwig (2007a).
7See Hellwig (2007b) for more details.
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option to assign stochastic rather than deterministic consumption-output-bundles to individuals,
does not yield a higher level of utilitarian welfare and will hence not be used.

5.1 The mechanism design problem

Our main result will be that the optimal Mirrleesian income tax solves a mechanism design
problem with no a priori restrictions on the set of admissible mechanisms. Before we can state
this result, we first need to define this mechanism design problem.

We appeal to the revelation principle and limit attention to direct mechanisms that possess
truth-telling equilibria. We use Bayes-Nash equilibrium as the solution concept. Let w =
(w1, . . . , wn) be a profile of productivity levels. A direct mechanism specifies a pair of outcome
functions ci : w 7→ ci(w) and yi : w 7→ yi(w), for each individual i ∈ I. Truth-telling is a Bayes-
Nash equilibrium provided that the following Bayes-Nash incentive compatibility constraints are
satisfied: For each i, for each k and for each l,

Ew−i [U(ci(w−i, wk), yi(w−i, wk), wk)] ≥ Ew−i [U(ci(w−i, wl), yi(w−i, wl), wk)] . (5)

A mechanism is said to be feasible if the expected budget surplus is non-negative,

Ew

[
n∑
i=1

(yi(w)− ci(w))

]
≥ 0 . (6)

This budget condition is weaker than one requiring budget balance in an ex post sense, so that,
for every w,

∑n
i=1(yi(w) − ci(w)) ≥ 0. However, we will show below (see Section 5.4), that,

under an optimal mechanism, the probability of the event
∑n

i=1(yi(w) − ci(w)) 6= 0 converges
to zero, as n→∞.

The mechanism design problem is to choose the functions (ci)ni=1 and (yi)ni=1 in order to
maximize expected utilitarian welfare, ES := Ew [

∑n
i=1 U(ci(w), yi(w), wi)], subject to the con-

straints in (5) and (6).

5.2 The main result

Proposition 1

i) The optimal mechanism is a simple mechanism. Let (c∗i )
n
i=1 and (y∗i )

n
i=1 be the

solution to the mechanism design problem in Section 5.1. Then, for every k ∈ {1, . . . ,m},
there exists (Ck∗, Y k∗) ∈ R2

+ so that, for every i, wi = wk implies that

(ci∗(w−i, wk), yi∗(w−i, wk)) = (Ck∗, Y k∗) ,

for every w−i ∈Wn−1.

ii) The optimal mechanism is an optimal income tax. The collection (Ck∗, Y k∗)mk=1

solves the Mirrleesian income tax problem in Section 3.
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The proof of the main result builds on the proof in Hellwig (2007b) that random income tax
schedules cannot outperform deterministic ones. More specifically, we first focus on a relaxed
mechanism design problem where, for each individual i, only downward Bayes-Nash incentive
compatibility constraints are imposed. Given that these are the only incentive constraints that
are taken into account, we show that non-simple mechanisms cannot outperform simple mech-
anisms.

The key step in the proof of this statement is the following. Any individual i is willing to
pay a risk premium for being insured against the fluctuations in w−i. Hence, if we start from
an non-simple mechanism that is downward Bayes-Nash incentive compatible and replace it
by a simple mechanism so that every individual’s expected output level remains the same and
every individuals’ expected utility level remains the same, we can reduce expected consumption
levels and create a surplus in the feasibility constraint (6). Moreover, because of decreasing
risk aversion, type wl of individual i considers the consumption-output-combination for type
wk under the new, simple mechanism to be less attractive than under the old, non-simple
mechanism. Hence, the newly constructed simple mechanism is also downward Bayes-Nash
incentive compatible.

This implies that, as long as we limit attention to downward incentive constraints, focussing
on simple mechanisms involves no further loss of generality. Given that with simple mechanisms
outcomes for different individuals are linked only via the budget constraint and that simple
mechanisms are equivalent to income tax schedules, the relaxed mechanism design problem can
now be decomposed into a number of subproblems: first, there is a separate subproblem for each
individual i: choose a simple mechanism (Cki , Y

k
i )mk=1 that satisfies the downward Mirrleesian

incentive constraints and yields an expected tax revenue of
∑n

k=1 f
k(Y k

i − Cki ) = Ti. Second,
choose the expected tax payments of different individuals (Ti)ni=1 in a welfare-maximizing way,
subject to the constraint that

∑n
i=1 Ti ≥ 0.

An individual’s subproblem is in fact a relaxed Mirrleesian income tax problem with a revenue
requirement of Ti. It follows from the analysis of the relaxed Mirrleesian income tax problem in
Hellwig (2007b) that the solution to each individual’s subproblem is also upward incentive com-
patible. This proves that the optimal simple mechanism that is downward incentive compatible,
is also upward incentive compatible, and therefore is a solution to the “full” mechanism design
problem.

The last step in the proof is to verify that the optimal simple mechanism is in fact symmetric
or anonymous. A utilitarian mechanism designer chooses the revenue requirements of different
individuals so that the marginal impact on expected utility levels is equalized. Assumption 1
implies that this is achieved only if each individual faces the same revenue requirement.

5.3 Robustness and Dominant Strategies

The optimal mechanism satisfies the Bayes-Nash incentive compatibility constraints. However,
the fact that the optimal mechanism is a simple mechanism implies that it also satisfies the
more demanding ex post incentive compatibility constraints: For each i, for each k, for each l,
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and for each w−i,

U(ci(w−i, wk), yi(w−i, wk), wk) ≥ U(ci(w−i, wl), yi(w−i, wl), wk) . (7)

These constraints can be interpreted as follows: suppose that individual i has learned what the
types of the other individuals are. Then, whatever these types are, individual i’s best response
still is to communicate the own type truthfully to the mechanism designer. Put differently, from
an ex post perspective where the individuals’private information has become public, no type of
individual i regrets to have revealed himself to the mechanism designer.

A simple mechanism trivially satisfies these constraints, because the outcome for individual
i is the same irrespectively of what the types of other individuals are. In fact, this implies that
truth-telling is a dominant strategy. Consequently, the results of our analysis would remain
unaffected if, for the mechanism design problem in Section 5.1, we replaced the Bayes-Nash
incentive constraints by the more demanding incentive constraints in (7).

It has been shown by Ledyard (1978) and Bergemann and Morris (2005) that ex post in-
centive compatibility is a necessary and sufficient condition for the robust implementability of
an allocation rule, or social choice function. Robustness here refers to the specification of the
individuals’ probabilistic beliefs about the environment; that is, an outcome is robustly imple-
mentable if we can implement it whatever the probabilistic beliefs of individuals look like. We
chose a particular specification of beliefs, namely the one which is implied by a common prior
according to which the types of different individuals are independent and identically distributed
random variables. The observation that the optimal mechanism is ex post incentive compatible
implies that these assumptions can be substantially weakened. In fact, every possible specifica-
tion of the individuals’ beliefs would give rise to the same result, provided that the mechanism
designer’s beliefs remain unaltered.

5.4 A large economy

Our main result in Proposition 1 shows that, for an economy with an arbitrary, but finite
number of individuals, the optimal mechanism is equivalent to an optimal Mirrleesian income
tax. This result is based on the interpretation of f as a probability distribution from which
the individuals’ types are drawn. This implies, in particular, that the budget constraint in the
Mirrleesian model is interpreted as a constraint which requires that the budget is balanced in
expectation, but not necessarily for each possible type profile. The following Proposition uses
the law of large numbers in order to show that, in a large economy, we can interpret f also as
the the empirical cross-section distribution of types in the economy as a whole.

Proposition 2 Let Pn(x) be the probability of an event x in an economy with n individuals.
Let µkn(w) = #{i|wi=w

k}
n . For every ε > 0, and every δ > 0, there exists N so that n > N implies

Pn(| µ1
n(w)− f1 |< ε, | µ2

n(w)− f2 |< ε, . . . , | µmn (w)− fm |< ε) ≤ δ .

An immediate implication of this Proposition is that, in an arbitrarily large, finite economy, ex
post budget balance holds almost surely. This is stated formally in the following Corollary.

11



Corollary 1 Let Pn(IM(ε)) be the probability that there is an imbalance larger than ε,

Pn(IM(ε)) := Pn(|
∑m

k=1 µ
k
n(w)(Ck∗ − Y k∗) |> ε)

= Pn(|
∑m

k=1 µ
k
n(w)(Ck∗ − Y k∗)−

∑m
k=1 f

k(Ck∗ − Y k∗) |> ε) .

Proposition 2 implies that, for every ε > 0, limn→∞ P
n(IM(ε)) = 0.

6 Concluding Remarks

In this paper, we have provided a rationale for the use of simple mechanisms in problems of
social insurance, or redistributive income taxation. Simple mechanisms separate the provision
of working incentives to any one individual from the provision of working incentives to other
individuals. The main result of the paper shows that, under an assumption of decreasing risk
aversion, the optimal mechanism is a simple mechanism. Moreover, the optimal simple mecha-
nism is equivalent to an optimal income tax in the Mirrleesian model of income taxation.

Versions of this result are likely to carry over to other allocation problems. We illustrate
this by means of two examples. First, consider a monopolistic firm who sells a private good to
n consumers with private information on their willingness to pay. With a general mechanism
design approach it is possible to make the quantity sold to and the price paid by a consumer i
dependent on the willingness to pay of some other consumer j. A straightforward adaptation of
the arguments in this paper show that if (i) the firm has a constant returns to scale technology
and, (ii) agents with a low willingness to pay are not more risk-loving than agents with a high
willingness to pay, then this option will not be attractive for a profit-maximizing firm. Instead,
the firm will use a simple pricing mechanisms.

Second, consider an organization with n risk-averse agents/ employees and one risk-neutral
principal/ employer. For each agent, the principal observes a performance measure which is
a noisy signal of the agent’s effort. The question now is whether the wage contract of agent i
should be simple in the sense that the wage paid to i depends only on i’s performance, or whether
there is a role for non-simple wage contracts that make the payment to i also dependent on j’s
performance. Our analysis suggests that, if (i) the signals of different agents are stochastically
independent, and (ii) agents with bad outcomes are not more risk-loving than agents with good
outcomes, than the use of simple wage contracts will be optimal.
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A Appendix

A.1 Proof of Proposition 1

Step 1: The relaxed mechanism design problem. Instead of looking at directly at the
mechanism design problem in Section 5.1, we first study a relaxed mechanism design problem
that takes only local downward incentive compatibility constraints into account. More precisely,
we consider the problem of choosing (ci)ni=1 and (yi)ni=1 in order to maximize ES subject to the
feasibility constraint in (6) and the following subset of all Bayes-Nash incentive compatibility
constraints: For all i, all k > 1, and all h < k,

Ew−i [U(ci(w−i, wk), yi(w−i, wk), wk)] ≥ Ew−i [U(ci(w−i, wh), yi(w−i, wh), wk)] .

Lemma 1 Let (ci, yi)ni=1 be a feasible and locally downward incentive compatible mechanism.
Suppose there is i, wk, w−i and w′−i so that

(ci(w−i, wk), yi(w−i, wk)) 6= (ci(w′−i, w
k), yi(w′−i, w

k)) .
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Then, there exists a collection of simple mechanisms (C, Y ) := (Ci, Yi)ni=1, where (Ci, Yi) =
(Cki , Y

k
i )mk=1, that satisfies the following properties:

i) The simple mechanisms are payoff equivalent: For all i and k,

U(Cki , Y
k
i , w

k) = Ew−i [U(ci(w−i, wk), yi(w−i, wk), wk)] .

ii) The simple mechanisms are locally downward incentive compatible: For all i, k > 1, and
h < k,

U(Cki , Y
k
i , w

k) ≥ U(Chi , Y
h
i , w

k) .

iii) The simple mechanisms require less resources,

n∑
i=1

m∑
k=1

fk(Y k
i − Cki ) < E

[
n∑
i=1

yi(w)− ci(w)

]
.

Proof As a first step, we only adjust the mechanism for individual i, leaving (cj , yj) unaffected
for j 6= i. Suppose there is a type wk of individual i and a pair w−i and w′−i so that

(ci(w−i, wk), yi(w−i, wk)) 6= (ci(w′−i, w
k), yi(w′−i, w

k)) .

Define Y k
i by the equation Y k

i := Ew−i [yi(w−i, w
k)], and define Cki by the equation

U(Cki , Y
k
i , w

k) = Ew−i [U(ci(w−i, wk), yi(w−i, wk), wk)] . (8)

Construct a new mechanism (c̄i, ȳi) for individual i so that, c̄i(w) = Cki and ȳi(w) = Y k
j , when-

ever wi = wk. Whenever wi 6= wk, let c̄i(w) = ci(w) and ȳi(w) = yi(w). By construction, the
new mechanism satisfies payoff equivalence. Because of decreasing risk aversion it also satisfies
local downward incentive compatibility: Equation (8) in conjunction with the assumption of
decreasing risk aversion implies that,

U(Cki , Y
k
i , w

l) ≤ Ew−i [u(ci(w−i, wk), yi(w−i, wk), wl)] , (9)

for all l > k. Moreover, by local downward incentive compatibility of (ci, yi)

Ew−i [U(ci(w−i, wk), yi(w−i, wk), wl)] ≤ Ew−i [U(ci(w−i, wl), yi(w−i, wl), wl)] . (10)

Consequently, the new allocation is also locally downward incentive compatible. Finally, de-
creasing risk aversion implies that Cki < Ew−i [ci(w−i, w

k)].
We can repeat this argument for every possible type of individual i. This yields a simple

mechanism (Ci, Yi) = (Cki , Y
k
i )mk=1 satisfying payoff equivalence, downward incentive compat-

ibility, Y k
i = Ew−i [yi(w−i, w

k)], for all k and Cki ≤ Ew−i [ci(w−i, w
k)], for all k, with a strict

inequality for some k. Hence,
∑m

k=1 f
k[Y k

i − Cki ] < Ew[yi(w)− ci(w)].
Finally, to establish the Lemma, we repeat these arguments for all individuals.
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The proof of Lemma 1 is an adaptation of the proof of Lemma 5.2 in Hellwig (2007b) to the
given setup. It implies that for the analysis of the relaxed mechanism design problem we may
focus without loss of generality on simple mechanism. We therefore define the following relaxed
simple mechanism design problem: choose a collection of simple mechanisms (Ci, Yi)ni=1, where
(Ci, Yi) = (Cki , Y

k
i )mk=1, in order to maximize

ES =
n∑
i=1

m∑
k=1

fkU(Cki , Y
k
i , w

k)

subject to the downward incentive compatibility constraints, for all i, k > 1 and h < k,

U(Cki , Y
k
i , w

k) ≥ U(Chi , Y
h
i , w

k) , (11)

and the feasibility constraint,
n∑
i=1

m∑
k=1

fk(Y k
i − Cki ) ≥ 0 . (12)

The solution to this problem will henceforth be denoted by (Csi , Y
s
i )ni=1.

An interdependence of the simple mechanisms for two individuals i and j arises only via the
feasibility constraint. For each individual i, it must therefore be true that the simple mechanism
(Csi , Y

s
i ) = (Cksi , Y

ks
i )mk=1 solves the following problem: Maximize

m∑
k=1

fkU(Cki , Y
k
i , w

k)

subject to the downward incentive constraints in (11) and the constraint that

m∑
k=1

fk(Y k
i − Cki ) ≥ Ti , (13)

where Ti :=
∑m

k=1 f
k(Y ks

i − Cksi ) is the expected payment of individual i. We refer to this
problem in the following as individual i’s relaxed simple mechanism design problem. We denote
the expected utility level of individual i that results from a solution to this problem by Vi(Ti).

Individual i’s relaxed simple mechanism design problem is equivalent to the “deterministic
relaxed income tax problem” studied in Hellwig (2007b). It is shown in Hellwig (2007b) that,
at a solution to i’s problem, the constraint (13) holds as an equality. Any slack in this budget
constraint could be used to increase individual i’s expected utility in an incentive compatible way.
This observation also implies that the budget constraint (12) for the relaxed simple mechanism
design problem holds as an equality. Otherwise, it was possible to reduce the expected payment
of some individual i, and use the additional resources to make this individual better off.

These observations imply that we can characterize the solution to the relaxed simple mech-
anism design problem via the following two stage procedure: first, we solve for each individual
i the corresponding simple relaxed mechanism design problem, treating the expected transfer
payments (Ti)ni=1 as given parameters. Second, we solve the transfer problem, i.e., we choose
(Ti)ni=1 in order to maximize

∑n
i=1 Vi(Ti) subject to

∑n
i=1 Ti = 0.

15



Step 2: Show that the solution to the relaxed mechanism design problem and the
solution of the mechanism design problem coincide. Given that Assumptions 2 and 3 are
satisfied, it is shown in Hellwig (2007b) that the solution to the deterministic relaxed income tax
problem is incentive compatible, and is hence a solution to the Mirrleesian income tax problem.
For our setting, this implies that a solution to individual i’s relaxed simple mechanism design
problem is not only downward incentive compatible, but also upward incentive compatible, i.e.,
it satisfies for all k ≥ 1, and all l with m ≥ l > k,

U(Cki , Y
k
i , w

k) ≥ U(C li , Y
l
i , w

k) . (14)

This implies, in particular, that the solution to the relaxed mechanism design problem is up-
ward incentive compatible. It also proves that the solution to the mechanism design problem in
Section 5.1 is a simple mechanism.

Step 3: Show that the solution to the relaxed mechanism design problem and the
income tax problem coincide. Step 2 shows that each individual’s relaxed simple mechanism
design problem solves a Mirrleesian income tax problem. Hence, we have that Vi(Ti) = S∗(Ti).
We can therefore rewrite the transfer problem as follows: choose (Ti)ni=1 in order to maximize∑n

i=1 S
∗(Ti) subject to

∑n
i=1 Ti = 0. Under Assumption 1, the solution to this transfer problem

involves S∗
′
(Ti) = S∗

′
(Tj), and hence Ti = Tj , for any pair if individuals i and j. The solution

to the transfer problem therefore is such that, for all i, Ti = 0.
Hence, each individual’s relaxed simple mechanism design problem solves a Mirrleesian in-

come tax problem with a revenue requirement of 0. This implies in particular, that the optimally
chosen simple mechanisms for different individuals are identical, and coincide with the solution
to the Mirrleesian income tax problem in Section 3.

A.2 Proof of Proposition 2

We have that

Pn(| µ1
n(w)− f1 |> ε, | µ2

n(w)− f2 |> ε, . . .) ≤
∑m

k=1 P
n(| µkn(w)− fk |> ε)

≤ m maxk Pn(| µkn(w)− fk |> ε) .
(15)

Observe that µk(w) is the average of a sequence of n identically distributed and independent
random variables:

µk(w) =
∑n

i=1 1(wi = wk)
n

,

where 1(wi = wk) is an indicator variable that takes the value 1 if wi = wk, and takes the value
0 otherwise. Also note that E[µk(w)] = fk. By the strong law of large numbers, for every k,
and every δ̃ > 0, there exists Ñ so that n > Ñ implies that

Pn(| µkn(w)− fk |> ε) ≤ δ̃ . (16)

Now, if let δ̃ = δ
m and use (16) to substitute for maxk Pn(| µkn(w)− fk |< ε) in (15), we obtain

Pn(| µ1
n(w)− f1 |> ε, | µ2

n(w)− f2 |> ε, . . . , | µmn (w)− fm |> ε) ≤ δ .
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