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Abstract

We study how an optimal income tax and an optimal public-goods provision rule re-
spond to preference and productivity shocks. A conventional Mirrleesian treatment is shown
to provoke manipulations of the policy mechanism by individuals with similar interests. We
therefore extend the Mirrleesian model so as to include a requirement of coalition-proofness.
The main results are the following: first, the possibility of preference shocks yields a new set
of collective incentive constraints. Productivity shocks have no such implication. Second,
the optimal policy gives rise to a positive correlation between the public-goods provision
level, the extent of redistribution and marginal tax rates.
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1 Introduction

A society that wants to provide public goods and redistribute income and therefore has to tax
individuals faces a number of information problems. Given that taxes paid and transfers received
should reflect an individual’s ability to generate income, each individual’s earning ability has
to be determined. In addition, information on preferences for public goods has to be acquired
because an optimal public expenditure policy requires an assessment of the social costs and
benefits of public spending.

The theory of optimal taxation in the tradition of Mirrlees (1971) focusses on the problem
to tax individuals according to their earning ability. The optimal policy is therefore the solution
of a screening problem, i.e., for any one individual the problem is to determine this individual’s
characteristics so that the individual can be taxed accordingly. In this literature, problems of
information aggregation do not arise; e.g., there is no issue of having to acquire the information
on how many individuals have a high earning ability. Also, for extended versions of this model
that include a decision on public-goods provision, there is no need to acquire the information
on how many individuals value a public good highly.1 These aggregates are taken to be known
quantities.

The theory of public-goods provision in the tradition of Clarke (1971) and Groves (1973),
by contrast, focusses on problems of information aggregation. In this literature, information on
the public-goods preferences of any one individual has to be acquired because it is an essential
input for the determination of the social benefits from public-goods provision. This literature,
however, disregards the production side of the economy and the tax system as an alternative
source of public-goods finance. Also, it does not include distributive considerations which are
based on individual differences in productive abilities.

This paper provides a unified approach to these issues so that we can simultaneously analyze
problems of optimal taxation and problems of information aggregation. This makes it possible to
provide answers to the following questions: should the tax system become more redistributive if
the average worker becomes more productive? What are the implications of such a productivity
shock for public-goods provision? Should public spending expand if the demand for public goods
goes up? If so, what are the implications of such a preference shock for the shape of the tax
system?

The formal analysis is based on a large economy model with endogenous production, as is
the theory of optimal taxation, and uses a mechanism design approach.2 The economy is popu-
lated by high-skilled and by low-skilled individuals, who either have a high or a low preference
for public goods. A state of the economy is identified with a cross-section distribution of those
characteristics; that is, a state is a triplet consisting of the population share of high-skilled

1See, for example, Boadway and Keen (1993), Gahvari (2006), or Kreiner and Verdelin (2010).
2The paper thus contributes to a recent literature in public economics which uses a mechanism design approach

in order to characterize optimal insurance contracts or tax systems; see, for example, Golosov et al. (2003), or

Kocherlakota (2005). Predecessors are Hammond (1979) and Guesnerie (1995). The work that is most closely

related to this paper is by Bassetto and Phelan (2008) and Kocherlakota and Phelan (2009), who are also concerned

with the characterization of optimal policies in large economies with aggregate uncertainty. However, none of

these papers includes an analysis of public-goods provision.
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individuals, the fraction of high-skilled individuals with a high taste for public goods, and the
fraction of low-skilled individuals with a high taste for public goods. A mechanism specifies how
the income tax schedule and the public-goods provision level vary with the state of the economy;
that is, how fiscal policy responds to preference and productivity shocks. The aim of the paper
is to characterize the optimal mechanism, or, equivalently, the optimal response to preference
and productivity shocks.

Our mechanism design approach invokes a requirement of robustness with respect to the specifi-
cation of the individuals’ probabilistic beliefs.3 As has been shown in Bierbrauer (2009), robust
mechanism design in a large economy yields a framework that is equivalent to a Mirrleesian
model of income taxation and public-goods provision. This contribution of the present paper is
to introduce, in addition, a requirement of coalition-proofness. This requirement is motivated
by the observation that the Mirrleesian model is vulnerable to collective manipulations by like-
minded individuals. We show that any mechanism which implements the Mirrleesian outcome
has alternative equilibria with at least one the following properties:

(i) Individuals benefit from lies about their public-goods preferences. High-skilled individuals
may have an incentive to exaggerate their public-goods preferences and low-skilled individuals
may have an incentive to understate theirs. The reason is that low-skilled individuals suffer more
from the need to pay for the public good because they have a harder time generating income.
Since a utilitarian policy maker does not give full weight to the utility loss of the low-skilled,
these individuals have an incentive to lie about their public-goods preferences so as to convince
the policy maker that the provision level should be reduced. (A symmetric argument explains
why the high-skilled have an incentive to exaggerate their preferences.)

(ii) Individuals benefit from lies about their productive abilities. Suppose, for the sake of the
argument, that an optimal income tax is more redistributive if the economy is “rich”, in the sense
that there are many high-skilled individuals. Consequently, if enough high-skilled individuals
lie about their productive abilities, this causes the policy maker to believe that the economy is
poorer than it actually is, so that redistribution is reduced and the high-skilled are better off.

The problems in (i) and (ii) have a common cause: the implementability of the Mirrleesian
outcome rests on the assumption that individuals behave truthfully simply because, in a large
economy, a unilateral change of behavior would neither make a difference for the public-goods
provision level, nor, for the income tax schedule. However, individuals are not indifferent re-
garding the policy that is implemented. Hence, from a theoretical perspective, if individuals
can coordinate on an alternative equilibrium that is more attractive to them, it is unconvincing
to assume that the truthful equilibrium will be played. Also, from an empirical point of view,
if one thinks about political parties and special interest groups, it is plausible that individuals
with common interests manage to induce policies that are favorable to them.

To address this concern, this paper uses the notion of coalition-proof implementation in a
large economy, which has been developed in Bierbrauer and Hellwig (2010). In this approach,
individuals are given the possibility to coordinate their communication with the policy-maker

3This notion of robustness has been introduced by Bergemann and Morris (2005) in an attempt to reduce the

reliance on specific common prior assumptions in the theory of mechanism design.
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so as to take advantage of the possibility that, if sufficiently many individuals lie about their
characteristics, this affects the policy maker’s perception of the state of the economy and hence
the policy that is ultimately chosen. Coalition-proofness fails if there is an alternative equilibrium
in which a group of individuals lies about their characteristics, and, moreover, benefits from the
change in the policy that is induced by this deviation.4

Bierbrauer and Hellwig (2010) study the provision of an indivisible public good which is either
provided or not. Moreover, individuals differ only in their public-goods preferences. The present
paper extends this analysis in various directions. Individuals now differ both in public-goods
preferences and in productive abilities. Moreover, the distribution of public-goods preferences
and the distribution of productive abilities are a priori unknown. The public-goods provision
level can be continuously adjusted, and, finally, production is endogenous. In particular, these
extensions make it possible to study the interdependence of optimal tax and expenditure policies.

The main part of the analysis is concerned with the characterization of an optimal rule for
income taxation and public goods-provision that is both robust and coalition-proof. This yields
two main results.

First, there is a fundamental difference between preference and productivity shocks: while the
possibility of productivity shocks has essentially no bearing on the set of admissible policies, the
possibility of preference shocks leads to a new set of collective incentive constraints. Lies about
productive abilities can be deterred by minor adjustments of the income tax schedule which
ensure that a truthful communication of abilities is each individual’s unique best response. Lies
about public-goods preferences cannot be addressed in this way. Since the economy is large
so that no individual is pivotal for how much of a public good is provided, it is impossible to
provide incentives for a truthful communication of preferences. Hence, the policy rule has to
deter these lies by making their consequences unattractive. This gives rise to an additional set
of constraints.

Second, we characterize the optimal mechanism that satisfies these collective incentive con-
straints. We show that the optimal mechanism displays a complementarity between public-
goods provision, redistribution, and marginal tax rates; i.e., deviations from the conventional
Mirrleesian model take one of the following forms:

Upward distortions. The public-goods provision level is higher than stipulated by the
Samuelson rule, there is more redistribution, and marginal tax rates are higher.

Downward distortions. The public-goods provision level is lower than stipulated by the
Samuelson rule, there is less redistribution, and marginal tax rates are lower.

Moreover, upward distortions are associated with states in which many individuals have a high
preference for the public good, whereas downward distortions are associated with states in which
many individuals have low preference for the public good. At an empirical level, these results
imply that we should observe a positive correlation between the public-goods provision level, the

4This approach has been inspired by the work of Laffont and Martimort (1997, 2000) who treat the formation

of a deviating coalition as a mechanism design problem with its own set of incentive and participation constraints.
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level of redistribution, and marginal tax rates. We would not predict such a correlation on the
basis of a conventional Mirrleesian model that does not include collective incentive constraints.

The remainder of the paper is organized as follows: Section 2 describes the economic envi-
ronment. As a benchmark, Section 3 reviews Mirrleesian approach to income taxation and
public goods provision and relates it to a model of robust mechanism design. In Section 4, we
introduce the solution concept of a robust and coalition-proof Bayes-Nash equilibrium. The
optimal robust and coalition-proof mechanism for income taxation and public-goods provision
is characterized in Section 5. The last section contains concluding remarks. All proofs are in
the Appendix.

2 The Environment

Payoffs and social choice functions

There is a continuum of individuals identified with the unit interval I = [0, 1]. Individual i’s
utility function is given by

U(q, c, y, wi, θi) = θiq + u(c)− y

wi
,

where q is the amount of a public good, c is the individual’s consumption of a private good
and y is the individual’s contribution to the economy’s output. Individual i’s utility from the
public good depends on a taste parameter θi which either takes a high or a low value; for all
i, θi ∈ Θ = {θL, θH}, where 0 < θL < θH . The function u gives utility from private-goods
consumption and is assumed to be strictly increasing and strictly concave. The disutility from
productive effort depends on a skill parameter wi, which, again, takes either a high or a low
value; for all i, wi ∈ W = {wL, wH}, where 0 < wL < wH . Individuals are privately informed
about their taste parameter and about their skill level. To simplify the exposition, we assume
that θL = wL and that θH = wH .

A state of the economy is identified with a cross-section distribution of productivity and
preference parameters. Formally, a state s of the economy is a triple s = (fH , pH , pL), where fH
is the population share of individuals with a high taste parameter, pH is the fraction of high-
skilled individuals with a high taste parameter, and pL is the fraction of low-skilled individuals
with a high taste parameter. The set of states is in the following denoted by S = [0, 1]3.

A social choice function formalizes the dependence of outcomes on the state of the economy.
It consists of a provision rule for the public good q : S 7→ R+ that specifies for each state how
much of the public good is provided. It also specifies an individual’s private-goods consumption
and output requirement as a function of the state of the economy and the individual’s charac-
teristics. Private-goods consumption is determined by the function c : S ×W × Θ 7→ R+, and
the output requirement is determined by y : S ×W ×Θ 7→ R+.

4



A social choice function is said to be feasible, if, for every s,

fH

(
pH(y(s, wH , θH)− c(s, wH , θH)) + (1− pH)(y(s, wH , θL)− c(s, wH , θL))

)
+(1− fH)

(
pL(y(s, wL, θH)− c(s, wL, θH)) + (1− pL)(y(s, wL, θL)− c(s, wL, θL))

)
≥ r(q(s)) ,

(1)

where r is a strictly increasing and strictly convex cost function which captures the resource
requirement of public-good provision.

Types and beliefs

The analysis below focusses on social choice functions that are robustly implementable in the
sense that their implementability does not rely on assumptions about the individuals’ proba-
bilistic beliefs. This notion of robustness is formally defined below. As a preliminary step, we
introduce the notion of a type space, which we borrow from Bergemann and Morris (2005). This
makes it possible to view an individual’s type as a two-dimensional object, consisting of a payoff
type affecting the individuals’ preferences, and a belief type.

More formally, let (T, T ) be a measurable space, π = (w, θ) be a measurable map from T into
W ×Θ, and β a measurable map from T into the space M(M(T )) of probability distributions
over measures on T . We interpret ti ∈ T as the abstract type of agent i, π(ti) = (w(ti), θ(ti)) as
the payoff type of agent i and β(ti) as the belief type of agent i. We assume throughout that
the function π is surjective.

From an individual’s perspective, the cross-section distribution of types, henceforth denoted
by δ, is a random variable. The belief type β(ti) indicates the agent’s probabilistic beliefs about
δ. Thus, for any X ⊂M(T ), β(X | ti) is the probability that agent i assigns to the event δ ∈ X.
We refer to the map β : T →M(M(T )) as the belief system of the economy.

A given belief system specifies, in particular, an individual’s beliefs about the payoff types
of other individuals. To see this, note that each δ ∈ M(T ) induces a cross-section distribution
of payoff types s(δ) := δ ◦ π−1.

We assume that the measures β(t), t ∈ T, are mutually absolutely continuous, i.e., that
they all have the same null sets. We refer to this property by saying that the belief system is
moderately uninformative. If the belief system is moderately uninformative, observation of the
event ti = t does not permit agent i to rule out any event that has positive probability with
some other specification of beliefs.5

Mechanisms and robust implementation

We seek to implement a social choice function by means of an allocation mechanism M =
[(A,A), Q,C, Y ], where (A,A) is a measurable space, and A is the set of of actions that in-
dividuals can take.6 The function Q : M(A) → R+ gives the public-good provision level as a

5We can leave open whether or not these beliefs are derived from a common prior. For a discussion of

moderately uninformative belief systems under a common prior assumption, see Bierbrauer and Hellwig (2010).
6We do not (yet) restrict attention to direct mechanism and to truthtelling equilibria because, for the coalition-

proof Bayes-Nash equilibria that will be studied below, the revelation principle does not generally hold.
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function of the cross-sectional distribution of actions, and the functions C :M(A)×A→ R+ and
Y :M(A)×A→ R+ specify a consumption level C and an output requirement Y , respectively,
as a function of an individual’s message and of the cross-section distribution of messages.

The mechanisms that we consider are anonymous in the sense that the decision on public-
goods provision depends only on the cross-section distribution of actions that the mechanism
designer receives. Also, an individual’s consumption level and output requirement depend on
the own action and, again, the distribution of actions. Since the economy is large, a single
individual cannot affect the distribution of actions that the mechanism designer receives. In
particular, this implies that no single individual can influence the public-goods provision level,
or the consumption levels and output requirements of other individuals.

A mechanism induces a game. In the following section, as a benchmark, we focus on Bayes-
Nash equilibria. (The additional requirement of coalition-proofness will be introduced in Section
4.) With this solution concept, a social choice function is said to be implementable on a given
type space if, for this type space, there exists a mechanism M , and a Bayes-Nash equilibrium so
that the equilibrium outcome is equal to the outcome stipulated by the social choice function.
It is robustly implementable if, for every (T, T ), and π : T → W ×Θ, there exists a mechanism
that implements it on the type space [(T, T ), π, β], for every moderately uninformative belief
system β.7

3 A Mirrleesian approach

Prior to introduction of coalition-proofness in the subsequent section, as a benchmark, we char-
acterize the social choice functions that are robustly implementable as a Bayes-Nash equilibrium.
In particular, we show that the problem of choosing an optimal robust social choice function
is equivalent to a Mirrleesian problem of optimal income taxation and public-goods provision.
Finally, we will demonstrate that the optimal Mirrleesian policy provokes manipulations of the
policy outcome by like-minded individuals.

Implications of robust implementability as a Bayes-Nash equilibrium

Proposition 1 The following statements are equivalent.

(a) A social choice function (q, c, y) is robustly implementable as a Bayes-Nash equilibrium.

(b) A social choice function (q, c, y) satisfies the following individual incentive compatibility
constraints: For every s ∈ S, every (w, θ) ∈W ×Θ, and every (ŵ, θ̂) ∈W ×Θ,

θq(s) + u(c(s, w, θ))− y(s, w, θ)
w

≥ θq(s) + u(c(s, ŵ, θ̂))− y(s, ŵ, θ̂)
w

. (2)

7Our notion of robustness is slightly stronger than that of Bergemann and Morris (2005). Following Ledyard

(1978), we require that the same mechanism is used whatever the belief system is. In contrast, Bergemann

and Morris allow mechanisms to depend on the belief system. While this has no bearing on the set of robustly

implementable social choice functions, it matters for the formulation of a robust mechanism design problem.
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Proposition 1 adapts arguments by Ledyard (1978) and Bergemann and Morris (2005) to the
given large economy setup. The individual incentive compatibility constraints can be interpreted
as follows: a truthful revelation of types must be an ex post equilibrium; i.e., once the state of the
economy has been revealed, no individual regrets having reported his characteristics truthfully
to the mechanism designer.

The incentive compatibility constraints in (2) can be equivalently written as follows: for
every s ∈ S and every (w, θ) ∈W ×Θ,

u(c(s, w, θ))− y(s, w, θ)
w

≥ u(c(s, ŵ, θ̂))− y(s, ŵ, θ̂)
w

, (3)

for all (ŵ, θ̂). The utility that individuals derive from public goods does not matter for incentive
compatibility because (i) the economy is large, and (ii) the utility function is separable so that
an individual’ s marginal rate of substitution between consumption c and output y does not
depend on the supply of public goods.

The inequalities in (3) imply that, for every s, for every given w and every pair θ and θ̂,

u(c(s, w, θ))− y(s, w, θ)
w

= u(c(s, w, θ̂))− y(s, w, θ̂)
w

, (4)

so that two individuals who differ only in their taste parameter derive the same utility from
their respective (c, y) combination, in every state s. Given condition (4), it is without loss of
generality to assume that also c(s, w, θ) = c(s, w, θ̂) and y(s, w, θ) = y(s, w, θ̂), for every s, w,
and every pair (θ, θ̂).8 In the following, we may hence drop the dependence of consumption levels
and output requirements on taste parameters and write simply c(s, w) and y(s, w), respectively.

With this notation, we can write the individual incentive compatibility constraints as follows:
for every s, every w, and every ŵ,

u(c(s, w))− y(s, w)
w

≥ u(c(s, ŵ))− y(s, ŵ)
w

. (5)

The economy’s resource constraint in (1) can now be written as follows: For all s = (fH , pH , pL),

fH(y(s, wH)− c(s, wH)) + (1− fH)(y(s, wL)− c(s, wL)) ≥ r(q(s)) . (6)

It has become common practice to use a mechanism design approach for the analysis of the
Mirrleesian income tax problem; that is, instead of assuming that individuals are confronted with
an income tax schedule T that relates their pre-tax-income, y, to their after-tax-income, c, and
then choose y and c in a utility-maximizing way, one looks directly at the social choice functions
that permit a decentralization via some income tax schedule.9 This yields implementability
conditions that, for a given s, coincide with the constraints in (6) and (5). Hence, finding an
optimal robustly implementable social choice function is equivalent to the Mirrleesian problem
of optimal income taxation.

8Any welfare-maximizing social choice function is such that individual utility levels are generated at a minimal

resource cost. Hence it must be true that y(s, w, θ) − c(s, w, θ) = y(s, w, θ′) − c(s, w, θ′). This equality in

conjunction with the fact that indifference curves in a y − c diagram are strictly increasing and strictly convex,

yields c(s, w, θ) = c(s, w, θ′) and y(s, w, θ) = y(s, w, θ′).
9Examples are Stiglitz (1982), Boadway and Keen (1993), Gahvari (2006), or Hellwig (2007).
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The optimal robust social choice function

An optimal utilitarian social choice function solves the following maximization problem: choose
q : S → R+, c : S ×W → R+ and y : S ×W → R+ in order to maximize expected utilitarian
welfare E[W (s)], where W (s) is utilitarian welfare in state s, subject to the the constraints in
(6) and (5). However, since there is no constraint that links the outcomes for different states,
we may assume, without loss of generality, that each state s gives rise to its own optimization
problem, without repercussions for the outcomes in other states.

Formally, for every s, q(s), c(s, wL), y(s, wL), c(s, wH) and y(s, wH) are chosen in order to
maximize

W (s) = θ̄(s)q(s) + fH

(
u(c(s, wH))− y(s,wH)

wH

)
+ (1− fH)

(
u(c(s, wH))− y(s,wH)

wH

)
,

where

θ̄(s) = (fHpH + (1− fH)pL)θH + (fH(1− pH) + (1− fH)(1− pL))θL

is the population average of the taste parameter in state s.
As is well-known,10 the solution to this problem is such that the incentive constraint for the

high-skilled individuals is binding,

u(c(s, wH))− y(s, wH)
wH

= u(c(s, wL))− y(s, wL)
wH

, (7)

and the incentive constraint of the low-skilled individuals is slack,

u(c(s, wL))− y(s, wL)
wL

> u(c(s, wH))− y(s, wH)
wL

.

Intuitively, the reason is that the utilitarian mechanism designer wants to allocate the same
consumption to high-skilled and low-skilled individuals so as to equate their marginal utilities
of consumption. At the same time, he wants to have as much output as possible generated
by the high-skilled because their marginal effort cost is smaller. Hence, unless the high-skilled
individuals’ incentive constraint is binding, W (s) can be increased by lowering y(s, wL) and
increasing y(s, wH), so that aggregate output remains unchanged.

The resource constraint is also binding,

fH(y(s, wH)− c(s, wH)) + (1− fH)(y(s, wL)− c(s, wL)) = r(q(s)) . (8)

Otherwise y(s, wL) and y(s, wH) could both be decreased in a way that maintains incentive
compatibility.

Knowing that these constraints are binding, we can use a Lagrangean approach to charac-
terize the optimal choices of q(s), c(s, wL), y(s, wL), c(s, wH) and y(s, wH). The results from
this exercise are summarized in the following proposition which we state without proof.

Proposition 2 For every s, the values of q(s), c(s, wL), y(s, wL), c(s, wH) and y(s, wH) which
maximize W (s) subject to the constraints in (7) and (8) are characterized by the following system
of equations:

10A formal proof can be found in Weymark (1986) or Hellwig (2007).
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i) The optimal consumption levels satisfy

u′(c∗(s, wH)) = 1
wH

and u′(c∗(s, wL)) = 1
wL

1−fH
wH−wL
wH

1−fH
wH−wL
wL

.

The implicit marginal tax rates, which are a measure of how distortionary the income tax
system is, are given by

τ∗(s, wH) := 1− 1
wHu′(c∗(s,wH)) = 0 and τ∗(s, wL) := 1− 1

wLu′(c∗(s,wL)) > 0 .

ii) The optimal public-goods provision level satisfies the Samuleson rule, θ̄(s) = λ(s)r′(q∗(s)),
where λ(s) := fH

wH
+ 1−fH

wH
gives the marginal costs of public funds in state s.

iii) The optimal output requirements satisfy

y∗(s, wH) = e∗(s) + (1− fH)wH(u(c∗(s, wH))− u(c∗(s, wL))) and
y∗(s, wL) = e∗(s)− fHwH(u(c∗(s, wH))− u(c∗(s, wL))) ,

where e∗(s) := fHc
∗(s, wH) + (1 − fH)c∗(s, wL) + r(q∗(s)) denotes aggregate expenditures

on public and private goods in state s.

Proposition 2 makes it possible to analyze how a change in the distribution of productivity or
preference parameters affects the optimal policy. This comparative statics exercise is facilitated
by the assumptions that preferences are additively separable and that the individuals’ effort
costs are linear.

For instance, if the economy as a whole becomes “richer” in the sense that the average
worker’s productivity increases, i.e., if fH goes up, this implies that λ goes down so that there
is more public-goods provision. It also leaves the consumption of the high-skilled unaffected,
whereas the consumption of the low-skilled goes down. This also implies that the income tax
system becomes more distortionary, as reflected by an increase of τ(s, wL). Hence, an increase
in fH can be viewed as generating a further deviation from a laissez-faire outcome without
redistribution and without distortionary taxation.

We can also analyze how a change in the distribution of public-goods preferences among
the high skilled (a change in pH), or among the low-skilled (a change in pL) affects the optimal
policy. An increase of pH or pL generates an increase of the average valuation of the public good,
θ̄(s), and hence leads to a higher provision level of the public good. It has neither an impact
on the consumption of private goods, nor on marginal tax rates. However, all individuals have
to produce more output. More specifically, an increase of the revenue requirement r by some
∆ > 0 implies that all individuals in the economy have to increase their output by ∆.

Problems with the optimal robust social choice function

In the following, we discuss two examples in order to demonstrate that the implementability
of the social choice function in Proposition 2 is questionable because individuals may have an
incentive to coordinate their behavior in such a way that the optimal policy is manipulated.
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Example 1: Public-goods preferences. An increase of the revenue requirement r by some
∆ > 0 implies that all individuals in the economy have to increase their output by ∆, while their
consumption levels remain unaffected. For a low-skilled individual this implies a utility loss of
∆
wL

, whereas the utility loss for the high-skilled individual equals only ∆
wH

. Ceteris paribus, this
implies that public-goods provision is less attractive from the perspective of the low-skilled. This
may give them an incentive to understate their public-goods preferences collectively. (A symmet-
ric example can be constructed in which high-skilled individuals exaggerate their public-goods
preferences.)

To articulate this concern more formally, we find it useful to define the indirect utility
function V ∗ : S ×W ×Θ→ R, with

V ∗(s, w, θ) = θq∗(s) + u(c∗(s, w, θ))− y∗(s, w, θ)
w

,

where (q∗, c∗, y∗) is the social choice function characterized in Proposition 2. One easily derives
that, for every s, w, θ, and k ∈ {L,H},

∂V ∗(s, w, θ)
∂pk

=
(
θw − r′(q∗(s))

) 1
w

∂q∗(s)
∂pk

=
(
θw − θ̄(s)

λ(s)

)
1
w

∂q∗(s)
∂pk

. (9)

Now consider a low-skilled individual with a high taste for the public good; i.e., w = wL and
θ = θH . Also, for the sake of the argument, suppose that the type space under consideration
is such that this individual’s beliefs assign a lot of probability mass to states s such that both
pH and pL are high; i.e., the individual beliefs that most other individuals have a high taste
parameter. This implies that θ̄(s) is close to θH so that ∂V ∗(s,wL,θH)

∂pH
is close to

θH

(
wL −

1
λ(s)

)
1
wL

∂q∗(s)
∂pL

.

Since, for all s, wL < 1
λ(s) , and ∂q∗(s)

∂pL
> 0, this implies that

∂V ∗(s, wL, θH)
∂pL

< 0 .

This situation is illustrated in Figure 1. Assuming a quadratic cost function, the provision
level q∗(s) = q∗(fH , pH , pL) is, given fH and pH , a linearly increasing function of the fraction
of low-skilled individuals with a high taste parameter, pL. The indirect utility function of these
individuals V ∗(s, wL, θH) = V ∗(fH , pH , pL, wL, θH) is, however, increasing in pL only if pL is
low and is decreasing if pL is high. Hence, if these individuals think that it is likely that they
will find themselves on the downward-sloping part of their indirect utility function they would
be happy if they could make the mechanism designer believe that pL was lower than it actually
is. Moreover, if many of them falsely communicated a low taste parameter, the mechanism
designer would perceive pL to be lower than it actually is and reduce the public-goods provision
level. Finally, note that such lies are perfectly in line with the incentives at the individual level:
It is an implication of individual incentive-compatibility (recall equation (4)) that neither an
individual’s consumption level c nor his productive effort y depend on the preference parameter.
Consequently, lying is a best response.

10



Figure 1: State-dependent public-goods provision
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Example 2: Productive Abilities. We can also question whether information on the
fraction of high-skilled individuals, fH , can be acquired if the social choice function in Proposition
2 is used. To demonstrate this in an easy way, consider a simplified version of our model
without public goods. Suppose that we seek to implement a social choice function with the
following properties: for all states, there is a binding incentive compatibility constraint so that
high-skilled individuals are indifferent between the bundles z(s, wL) := (c(s, wL), y(s, wL)) and
z(s, wH) = (c(s, wH), y(s, wH)), and there is redistribution from the high-skilled to the low-
skilled, y(s, wH)− c(s, wH) > 0 and y(s, wL)− c(s, wL) < 0. Moreover, suppose that the level of
redistribution varies across states; it is large whenever the economy is “rich”, in the sense that
most workers are high-skilled (fH > 1

2), and it is small otherwise. This is illustrated by Figure
2. In this Figure, IL is the relevant indifference curve of the low-skilled, and IH is the one of
the high-skilled individuals.

Does it make sense to assume that high-skilled individuals are communicating their skill
level truthfully to the mechanism designer? The “rich states” involve more redistribution than
the “poor states” so that the high-skilled individuals are better off in the latter. Moreover,
for every s, the incentive constraint of the high-skilled is binding, so that the high-skilled are
giving a best response if they lie about their skill level. These individuals could therefore be
inclined to lie about their skill level so as to convince the mechanism designer that there are
only few high-skilled individuals in the population and that it is therefore optimal to have only
a moderate level of redistribution.

The implementability of the social choice function in Proposition 2 is based on the assump-
tion that individuals do not lie about their characteristics, because, in a large economy, they
cannot affect the outcome anyway. We consider this way of breaking the individual’s indifference
in favor of truth-telling to be unconvincing. If all like-minded individuals – e.g., all individuals
with a low skill level and a high preference parameter in Example 1, or all high-skilled individu-
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Figure 2: State-dependent redistribution
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als in the example in Example 2 – coordinated their behavior, they could affect the outcome in a
way that makes all of them strictly better off, without violating the postulate that each individ-
ual’s action is a best response to the actions chosen by all other individuals. To articulate this
concern more formally, we will introduce a notion of coalition-proofness in the following section.

4 Robust and coalition-proof social choice functions

In this section, we develop the notion of a robust and coalition-proof social choice function
and state necessary and sufficient conditions that characterize such a social choice function. A
main result of this section will be that preference and productivity shocks have very different
implications: the possibility of preference shocks indeed gives rise to an additional set of collective
incentive constraints that a social choice function has to fulfill. By contrast, productivity shocks
do not give rise to such constraints. Hence, a mechanism designer has to provide appropriate
incentives in order to learn pH and pL, while he gets the information on fH for free.

As a first step, however, we define formally what it means that the game induced by a
mechanism M = [(A,A), Q,C, Y ] has a coalition-proof equilibrium.11 We will then introduce
the requirement of robustness, and provide a characterization of robust and coalition-proof social
choice functions.

11The definition below is a simplified version of the notion of a coalition-proof Nash equilibrium due to Bernheim

et al. (1986). In particular, we also take a non-cooperative approach to coalition formation, and we also require

that a coalition is subcoalition-proof, i.e., that the formation of a coalition cannot be undermined by the further

deviation of a subcoalition. For reasons of tractability, however, we do not model a possibly infinite chain of

successive formations of subcoalitions.
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4.1 Coalition-proof Bayes-Nash equilibrium

A (mixed) strategy in the game induced by M is a function σ : T → M(A) that specifies
a probability distribution over actions for each type of individual. Put differently, the action
chosen by individual i is a random variable a(ti). The probability, conditional on the event
ti = t, that a(ti) takes values in subset A′ of A is in the following denoted by σ(A′ | t).

We find it convenient to introduce the following notation: suppose that, for the game induced
by mechanism M , individuals follow a strategy σ : T → M(A), then the expected payoff of a
type t individual from behaving according to χ ∈M(A) is given by

ŨM (σ, χ, t) :=
∫
M(T )

∫
A
ũM (α(δ, σ), a, w(t), θ(t)) dχ(a) dβ(δ | t) ,

where, for any α, a, θ and w we define

ũM (α, a, w, θ) := θQ(α) + u(C(α, a))− Y (α, a)
w

,

and α(δ, σ) = δ ◦ σ−1 is the cross-section distribution of actions induced by strategy σ if the
cross-section distribution of types is given by δ. We assume that a law of large numbers for large
economies holds so that we can interpret σ(A′ | t) both as the probability that the action chosen
by a type t individual belongs to a subset A′ of A and as the fraction of type t individuals who
choose an action in A′.12 Consequently, for a given δ, we can treat α(δ, σ) as a non-random
quantity.

Definition 1 Given a mechanism M and a type space [(T, T ), π, β], a strategy σ∗ : T →M(A)
is said to be a coalition-proof Bayes-Nash equilibrium if it is a Bayes-Nash equilibrium, and there
is no set of types T ′ ⊆ T who can deviate to a strategy σ′T ′ : T ′ →M(A) so that the following
conditions are fulfilled:

(a) The strategy profile (σ∗T\T ′ , σ
′
T ′), where σ∗T\T ′ is the restriction of σ∗ to types not in T ′, is

a Bayes-Nash equilibrium.

(b) Deviators are made better off: the outcome that is induced if all types in T \ T ′ play
according to σ∗T\T ′, and all types in T ′ play according to σ′T ′, is preferred by all individuals
with types in T ′; i.e, for all t ∈ T ′,

ŨM ((σ∗T\T ′ , σ
′
T ′), σ

′
T ′(t), t) > ŨM (σ∗, σ∗(t), t) . (10)

(c) The deviation is subcoalition-proof: there is no strict subset T ′′ of T ′ – i.e., a subset T ′′

of T ′ so that there are t′ ∈ T ′ and t′′ ∈ T ′′ with w(t′) 6= w(t′′), or θ(t′) 6= θ(t′′), or
β(t′) 6= β(t′′) – with a strategy σ′′T ′′ : T ′′ →M(A) so that (σ∗T\T ′ , σ

′
T ′\T ′′ , σ

′′
T ′′) is a Bayes-

Nash equilibrium, and, for all t ∈ T ′′,

ŨM ((σ∗T\T ′ , σ
′
T ′\T ′′ , σ

′′
T ′′), σ

′′
T ′′(t), t) ≥ ŨM ((σ∗T\T ′ , σ

′
T ′), σ

′
T ′(t), t) . (11)

12For a discussion of the law of large numbers in large economies, see Sun (2006), Al-Najjar (2004) or Judd

(1985).
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An equilibrium σ∗ is coalition-proof only if it does not leave incentives for a subset of individuals
to coordinate their behavior in such a way that they induce an outcome that makes all of them
better off. Our definition is very demanding with respect to the consistency requirements that
such a deviation from an equilibrium strategy σ∗ has to satisfy: the behavior that is prescribed by
the deviation must induce a new Bayes-Nash equilibrium, i.e., playing according to (σ∗T\T ′ , σ

′
T ′)

must be a best response, both for the deviating types as well as for the non-deviating types.
Also, the outcome that is induced by the deviation must be beneficial for all deviating types.
Finally, we require that a deviation must itself be coalition-proof; that is, it must not trigger a
further deviation by a subcoalition of the deviators.

With this definition, we may think of the collective deviation as resulting from an own
mechanism design problem that the deviating agents face. Condition (a) can be interpreted as
a incentive compatibility constraint, so that behaving according the strategy profile (σ∗T\T ′ , σ

′
T ′)

is indeed a best response. Condition (b) is a participation constraint which ensures that the
deviators are made better off. Finally, condition (c) requires that the mechanism on which
the collective deviation is based, must also be coalition-proof. A similar approach to coalition
formation has previously been introduced by Laffont and Martimort (1997, 2000), and has been
extended to a large economy model by Bierbrauer and Hellwig (2010). These papers explicitly
model the formation of a coalition as an extensive form game, so that first an overall mechanism
is announced, then a coalition organizer may propose a collusive side mechanism to a set of
deviating agents, and ultimately a subcoalition organizer may propose a further side mechanism
to a subset of the deviators. A mechanism is then said to be coalition-proof if it does not provoke
the formation of a collusive side mechanism.

The approach taken here is different in that we define the notion of a coalition-proof equilib-
rium with reference to a given normal form game. The reason for this approach is that it makes
the exposition easier, without affecting the conclusions. Indeed, the constraints on social choice
functions that are derived below resemble those identified by Bierbrauer and Hellwig (2010),
albeit in a somewhat different model.

4.2 Robust and coalition-proof implementation

For a given type space, a social choice function (q, c, y) is said to be implementable as a coalition-
proof Bayes-Nash equilibrium, if there is a mechanism M and a strategy σ∗ such that (i) σ∗ is
a coalition-proof Bayes-Nash equilibrium, and (ii) the equilibrium allocation coincides with the
prescription of the social choice function for every δ; i.e., we have that, for every δ,

Q(α(δ, σ∗)) = q(s(δ)) (12)

and, for each δ and t,

C(α(δ, σ∗), a(t)) = c(s(δ), w(t), θ(t)) and Y (α(δ, σ∗), a(t)) = y(s(δ), w(t), θ(t)) , (13)

σ∗(t)-almost surely.
We say that a social choice function is robustly implementable and coalition-proof, if, given

(T, T ) and π, there is a mechanism M and a strategy σ∗ such that requirements (i) and (ii) are
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fulfilled, for every belief system β.

Subsequently, we derive necessary and sufficient conditions for robustness and coalition-proofness.
However, before going into details, we use Example 2 to illustrate the interplay of robustness
and coalition-proofness. The example is meant to illustrate the following: if our analysis was
based on specific assumptions about beliefs, the mechanism designer could typically exploit her
knowledge of the belief system so that the requirement of coalition-proofness would not have
a lot of bite. If instead we insist on the use of robust mechanisms, coalition-proofness be-
comes a substantive constraint. The example also illustrates why, with the solution concept of
a coalition-proof Bayes-Nash equilibrium, the revelation principle does not hold. It shows that
non-direct mechanisms may eliminate failures of coalition-proofness that cannot be avoided if
direct mechanisms are used.13

Example 2 revisited. We argued before that the social choice function in Figure 2 cannot
be implemented in a coalition-proof way, under the assumption that attention is restricted to
direct mechanisms and to truthtelling equilibria: a collective lie so that some high-skilled indi-
viduals declare a low-skill level, induces a new equilibrium in which the high-skilled individuals
are better off. In the following, we show that a mechanism designer who knows the belief sys-
tem β can generally eliminate the scope for such a collective deviation by using a non-direct
mechanism. We will also argue that the scope of such non-direct mechanisms is reduced if we
insist on robustness.

For the sake of concreteness, suppose first that all high-skilled individuals belief that rich and
poor states are equally likely, and, in addition, that this is known by the mechanism designer.
He may then use a non-direct mechanism with an action set A = {a1, a2, a3} and an outcome
function Z := (C, Y ) which works as follows: in any state, an individual who chooses action a1

receives the consumption-income bundle dedicated to the low-skilled individuals; i.e., taking the
action a1 is interpreted as saying “I am a low-skilled individual”. Likewise, an individual who
chooses action a2 receives the bundle intended for the high-skilled individuals. The action a3

gives a very unattractive bundle if many individuals choose action a2. This is illustrated in the
left part of Figure 2, where δ′ indicates a distribution of actions so that more than half of the
population chooses a2. However, if only few individuals choose action a2, then action a3 is very
attractive for the high-skilled individuals. This is illustrated by the right part of Figure 2, where
δ′′ indicates a distribution of actions so that less than half of the population chooses a2. For the
given specification of beliefs, the non-direct mechanism implements the social choice function in
a coalition-proof way, because there is no longer an equilibrium in which high-skilled individuals
communicate having a low-skill level. Conditional on many high-skilled individuals choosing
action a1, it is a best response for a high-skilled individual to choose action a3. Moreover, the
equilibrium in which all high-skilled individuals choose action a2 and thereby communicate their
skill level truthfully to the mechanism designer remains intact: if the situations in Figure 3 arise

13It is well-known that the objective to implement a social choice function as the unique equilibrium of some

mechanism, generally makes the use of non-direct mechanisms necessary (see, e.g., Jackson (2001) for an overview).

Here, the situation is similar in that our notion of coalition-proofness postulates that there must not exist a second

equilibrium with certain properties.
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Figure 3: The non-direct mechanism
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with equal probability, then choosing a2 is a best response for the high-skilled because action a3

yields a very bad outcome with probability 1
2 .

However, the non-direct mechanism does no longer work if we insist on robustness. To see
this, suppose that all individuals believe that poor states occur with probability 1. Then, all
individuals believe that the payoffs associated with actions a1, a2, and a3 are as in the right part
of Figure 2. Consequently, all individuals with a high-skill level will choose action a3 instead of
action a2, so that the social choice function is no longer reached.

4.2.1 Necessary conditions for robustness and coalition-proofness

For a given social choice function (q, c, y), define the associated indirect utility function V by

V (s, w, θ) = θq(s) + u(c(s, w))− y(s, w)
w

.

Proposition 3 If (q, c, y) is robust and coalition-proof, then it must be true that: (i) For any
given pair (fH , pL), V (s, wH , θL) is a non-increasing function of pH , and V (s, wH , θH) is a non-
decreasing function of pH , and (ii) for any given pair (fH , pH), V (s, wL, θL) is a non-increasing
function of pL, and V (s, wL, θH) is a non-decreasing function of pL.

The logic of the proof is straightforward.14 If, say, the constraint that V (s, wL, θH) is a non-
decreasing function of pL is violated, this implies that there exist pL and p′L with p′L > pL so
that V ((fH , pL, pH), wL, θH) > V ((fH , p′L, pH), wL, θH). If we now consider a type space, so that

14A difficulty for the proof of Proposition 3 is that we cannot rely on the revelation principle. However, given

some equilibrium σ∗, a false communication of, say, the taste parameter by a type t individual can still be defined

in a meaningful way: it takes the form of behaving according to σ∗(t̂), for some type t̂ 6= t with θ(t̂) 6= θ(t).
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all individuals assign mass 1 to a distribution of types δ with s(δ) = (fH , p′L, pH), individuals
with a low skill level and a high taste parameter have an incentive to lie. If they communicate
a low as opposed to a high taste parameter to the mechanism designer – more specifically, if
they, falsely, announce a low taste parameter with probability 1− pL

p′L
, and, truthfully, announce

a high taste parameter with probability pL
p′L

– they will receive the outcome intended for the case
that s = (fH , pL, pH), and are thereby made better off, i.e., requirement (b) in Definition 1 is
fulfilled. Since the lie involves only a false communication of taste parameters and, by individual
incentive compatibility, an individual’s (c, y)-bundle does not depend on the taste parameter,
every individual is giving a best response. Hence, the deviation satisfies property (a). Finally,
all these individuals have the same preferences, and the same beliefs so that there exists no strict
subset of types. This implies that the deviation is subcoalition-proof, i.e., property (c) is also
satisfied.

To see the significance of the constraints in Proposition 3, it is instructive to check which
of these constraints are satisfied and which ones are violated by the Mirrleesian social choice
function in Proposition 2. The constraint that low-skilled individuals with a high taste param-
eter do not benefit from understating their public-goods preferences is satisfied provided that
∂V ∗(s,wL,θH)

∂pL
≥ 0, where V ∗ is the indirect utility function that was defined in Section 3. By

equation (9), this condition is violated whenever

θHwL <
θ̄(s)
λ(s)

. (14)

The constraint that high-skilled individuals with a low taste parameter do not benefit from
exaggerating their public-goods preferences is satisfied provided that ∂V ∗(s,wH ,θL)

∂pH
≤ 0. Again,

by equation (9), this condition is violated whenever

θLwH >
θ̄(s)
λ(s)

. (15)

Since θLwH = θHwL, equations (14) and (15) imply that the Mirrleesian social choice function
violates coalition-proofness, whenever θHwL 6= θ̄(s)

λ(s) . In essence this implies that there is no
state s of the economy so that the Mirrleesian social choice function is coalition-proof. This is
illustrated by Figure 4. In this Figure, we treat fH as a given parameter, and vary only pH and
pL. The line in the figure is the locus along which θLwH = θ̄(s)

λ(s) , or, equivalently, along which

pL = 1− fH
1−fH pH . (The graph is drawn under the assumption that fH > 1

2 .)

4.2.2 Sufficient conditions for robustness and coalition-proofness

The following Proposition states a sufficient condition for coalition-proofness. More specifically,
is states that all social choice functions in a set Ω(ε) are robust and coalition-proof. This set
is defined as the set of social choice functions with the following properties: (i) For every s,
the necessary conditions in Proposition 3 are satisfied, and at most one of these conditions is
binding, (ii) for every s, the resource constraint in (1) holds, and (iii) for some given ε > 0,

u(c(s, w))− y(s, w)
w

≥ u(c(s, ŵ))− y(s, ŵ)
w

+ ε , (16)
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Figure 4: Violation of coalition-proofness
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for every s, w, and ŵ. These constraints require that, for every s, an individual with skill level
w prefers the “own” consumption-output bundle (c(s, w), y(s, w)) strictly over any alternative
bundle (c(s, ŵ), y(s, ŵ)), where the parameter ε is the minimal intensity of this strict prefer-
ence; that is, the constraints in (16) require that there is a little bit of slack in the incentive
compatibility constraints in (5).

Proposition 4 A social choice function in Ω(ε) is robustly implementable as a coalition-proof
Bayes-Nash equilibrium.

The proof is based on a direct mechanism that reaches the given social choice function in a
truthtelling equilibrium.15 We verify that this equilibrium is coalition-proof, whatever the belief
system β is. As a first step, we observe that there is no collective deviation that involves a false
communication of productive abilities. For social choice functions in Ω(ε), all individual incentive
compatibility constraints hold as strict inequalities which implies that there is no equilibrium
in which individuals declare false productivity levels. Hence, any such deviation would violate
condition (a) in Definition 1.

Next, consider a deviation that involves only lies about taste parameters. Any such deviation
induces a new equilibrium because (c, y)-bundles do not depend on taste parameters. Suppose
first that the types who participate all have the same payoff type, i.e., that they all have the
same skill level and the same taste parameter. For instance, suppose that they all have the
skill level wH and the taste parameter θL. If these individuals lie about their taste parameter,
this implies that the mechanism designer ends up with the perception that pH is higher than

15Hence, our proof implies, in particular, that if the sufficient conditions in Proposition 4 are satisfied, then we

may without loss of generality focus on direct mechanisms and truthtelling equilibria.
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it actually is. By the constraints in Proposition 3, V (s, wH , θL) is a non-increasing function of
pH , so that this deviation does not make the participating individuals better off, i.e., it violates
condition (b) in Definition 1.

Now suppose that the types who collectively lie about their taste parameters have diverse
payoff types. The assumption that, for every s, at most one of the necessary conditions in
Proposition 3 binds, implies that there is always a set of types who would like to “withdraw” their
contribution to the deviation, thereby free-riding on the contribution of others. For instance,
suppose that individuals with payoff type (wH , θL) and individuals with payoff type (wH , θH) lie
about their taste parameters. From an ex post perspective, either the (wH , θL)-individuals think
that pH , as perceived by the mechanism designer, is too high, or the (wH , θH)-individuals think
that pH is too low. Consequently, ex interim, individuals with payoff type (wH , θL) understand
that, taking the lie of individuals with payoff type (wH , θH) as given, they are weakly better
off if they communicate their characteristics truthfully. Likewise, the (wH , θH)-individuals are
weakly better off if they refuse to lie about their public-goods preferences. Moreover, if the
deviation affects the implemented policy with positive probability (which is necessary in order
to satisfy condition (b) in Definition 1), then one of these groups is in fact strictly better off if
it communicates truthfully, which implies that the deviation does not satisfy condition (c) in
Definition 1.

4.2.3 Why are these conditions useful for finding an optimal social choice function?

Propositions 3 and 4 make it possible to solve for the optimal social choice function via the
following procedure: First, characterize the optimal social choice function among those that
are individually incentive-compatible, resource-feasible and satisfy the necessary conditions in
Proposition 3. Second, verify that the optimal social choice function is indeed such that, for
every s, at most one of the monotonicity constraints holds as an equality, more formally that it
belongs to the set Ω(0). This procedure will be applied in the following Section.

The social choice functions in Ω(0) are not generally coalition-proof, as we explain below.
However, under a mild technical assumption, every such social choice function can be approx-
imated by a social choice function that is coalition-proof. This is stated more formally in the
following Corollary.

Corollary 1 Suppose that there is some ε̄ > 0 so that the set
⋃

0≤ε≤ε̄ Ω(ε) is compact. Then,
for every social choice function (q, c, y) ∈ Ω(0), and for every ε̃ > 0, there is a social choice
function (q′, c′, y′) that is robustly implementable as a coalition-proof Bayes-Nash equilibrium,
and satisfies

| U(q′(s), c′(s, w), y′(s, w), w, θ)− U(q(s), c(s, w), y(s, w), w, θ) |≤ ε̃ ,

for every s, and every (θ, w).

Example 2 revisited. To illustrate why the social choice functions in Ω(0) are not necessarily
coalition-proof themselves but can be approximated by coalition-proof social choice functions,
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it is instructive to look once more at the example in Section 3, where the social choice function
that is illustrated in Figure 2 cannot be implemented as a robust and coalition-proof equilibrium
because the high-skilled have an incentive to lie. We will now argue that there is, however, a
social choice function which is arbitrarily close and does not face this problem.

Suppose that the social choice function in Figure 2 is modified as follows: in both graphs,
the bundle for high-skilled individuals is moved to a slightly higher indifference curve.16 This
implies that truth-telling is the unique best response of the high-skilled, for every state s. A
deviation that involves lies about skill levels is therefore no longer consistent with equilibrium
behavior. This illustrates the general insight in Corollary 1. Once we introduce a tiny amount
of slack into the incentive compatibility constraints, deviations that involve lies about skill levels
are no longer viable. The example also shows why the slack is needed. If incentive compatibility
constraints are binding, lies that involve skill levels are a concern.

4.3 On the separability of individual and collective incentive problems

The reasoning in section 4.2 translates the requirement of coalition-proofness into a simple set
of inequality constraints: there must not exist a group of individuals who could benefit from the
policy change that is induced by a false communication of public-goods preferences. This simple
characterization is available because as far as coalition-proofness is concerned, we may, without
loss of generality, assume that productive abilities are communicated truthfully: if we introduce
a tiny amount of slack into individual incentive compatibility constraints, any lie that involves
a false communication of productive abilities is effectively deterred.

A first major insight of the paper is therefore that preference and productivity shocks have
very different implications for the set of robust and coalition-proof social choice functions: while
appropriately calibrated incentives at the individual level make a manipulative communication
of productive abilities unviable, the communication of public-goods preferences cannot be ad-
dressed in this way. As we have seen in Section 3, individual incentive compatibility implies that
individuals who differ only in their public-goods preferences need to be treated equally in terms
of their consumption level c and their output requirement y. Consequently, individuals are will-
ing to lie about their public-goods preferences if this has positive consequences at an aggregate
level. A social choice function therefore has to be such that those lies are unattractive.

5 The optimal robust and coalition-proof social choice function

In this section, we characterize the social choice function which maximizes expected utilitar-
ian welfare E[W (s)] subject to the requirements of individual incentive compatibility, resource
feasibility and coalition-proofness.

We assume that the mechanism designer has subjective beliefs about the possible realizations
of s. For simplicity, we assume that she has an agnostic prior in the following sense: she views
fH , pH and pL as independent random variables, which are uniformly distributed over the unit

16To preserve feasibility, we may simultaneously have to move the low-skilled individuals to a slightly lower

indifference curve.
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We proceed in two steps. We first characterize the optimal social choice function that satisfies
the necessary conditions identified in Proposition 3; i.e., we study the following optimization
problem: choose q : s 7→ q(s), y : (s, w) 7→ y(s, w) and c : (s, w) 7→ c(s, w) in order to maximize
E[W (s)] subject to the requirements that, for any k ∈ {L,H}, V (s, wk, θL) is a non-increasing
function of pk, and V (s, wk, θH) is a non-decreasing function of pk, and that, for every s, the
resource constraints in (6), and the individual incentive compatibility constraints in (5) are
satisfied.. Subsequently, we show that the resulting social choice function is such that, for every
s, at most one of these necessary conditions is binding, i.e., that the social choice function in
question belongs to the set Ω(0). With an appeal to Corollary 1, this implies that the social
choice function is approximately coalition-proof.

Our strategy for solving the optimization problem is to decompose it into a number of
subproblems, each of which take only some of necessary conditions in Proposition 3 into account.
(We will verify ex post that the neglected constraints are indeed satisfied.) More specifically,
for each possible value of the parameter fH ∈ [0, 1] we study the following set of subproblems:

i) Problems of the PL(pH , fH)-type: Fix pH and fH and consider the values of pL so
that θ̄(pH ,pL)

λ ≥ θHwL. Choose c(s, wL), y(s, wL), c(s, wH), y(s, wH) and q(s) in order to

maximize E
[
W (s) | θ̄(pH ,pL)

λ ≥ θHwL, fH , pH
]

subject to the incentive constraints in (5),

the resource constraints in (6), and the constraint ∂V (s,wL,θH)
∂pL

≥ 0.

ii) Problems of the PH(pL, fH)-type: Fix pL and fH and consider the values of pH so
that θ̄(pH ,pL)

λ ≤ θHwL. Choose c(s, wL), y(s, wL), c(s, wH), y(s, wH) and q(s) in order to

maximize E
[
W (s) | θ̄(pH ,pL)

λ ≤ θHwL, fH , pL
]

subject to the incentive constraints in (5),

the resource constraints in (6), and the constraint ∂V (s,wH ,θL)
∂pH

≤ 0.

More intuitively, with a PL(pH , fH)-problem, one has to deviate from the Mirrleesian outcome
in Proposition 2 because the low-skilled individuals need to be prevented from understating their
public-goods preferences. With a problem of the PH(pL, fH)-type one has to deviate because
the high-skilled need to be prevented from exaggerating theirs. Figure 5 illustrates how these
problems relate to each other. Along the downward sloping line we have, as in Figure 4, that
θ̄(pH ,pL)

λ = θHwL.
Observe that, if we determine for every fH , the solutions to all problems of the PL(pH , fH)-

type and to all problems of the PH(pL, fH)-type we characterize a social choice function.18 For
every s, q(s), c(s, wL), y(s, wL), c(s, wH), and y(s, wH) are then given by the solution to the
relevant subproblem, in the following denoted by c∗∗(s, wL), y∗∗(s, wL), c∗∗(s, wH), y∗∗(s, wH)
and q∗∗(s). For later use, we denote by v∗∗k (s) = u(c∗∗(s, wL)) − y∗∗(s,wk)

wk
, the utility derived

by individuals with skill level wk from their (c, y) bundle in state s. Analogously, we denote by
17These beliefs affect the way in which the mechanism designer is making trade-offs between welfare levels in

different states of the economy. The assumption of an agnostic prior simplifies the exposition. However, the logic

of the analysis would remain the same with alternative assumptions about the mechanism designer’s beliefs.
18Along the θ̄(pH ,pL)

λ
= θHwL line, the outcome is determined by two such problems. However, as follows from

Propositions 5 and 6 below, these solutions are identical.
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Figure 5: Relaxed optimization problems
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v∗k(s) the value that results from the Mirrleesian social choice function in Proposition 2. Finally,
we denote by τ∗∗(s, wk) = 1− 1

wku′(c∗∗(s,wk)) the implicit marginal tax rate for individuals with
skill level wk.

Propositions 5 and 6 below respectively characterize the solutions of a problem of the
PL(pH , fH)-type, and a problem of the PH(pL, fH). For the sake of concreteness, both con-
sider the case fH < 1

2 .19

5.1 Preventing the low-skilled from understating their preferences

Proposition 5 Let fH < 1
2 . The solution to Problem PL(pH , fH) has the following properties.

There is a cutoff value p̂L such that:

(a) For pL ∈ [max{0, 1− fH
1−fH pH}, p̂L) redistribution and public-goods provision are distorted

downwards, v∗∗L (s) < v∗L(s), v∗∗H (s) > v∗H(s), and q∗∗(s) < q∗(s). Also, the implicit
marginal tax rates are lower, τ∗∗(s, wL) < τ∗(s, wL), and τ∗∗(s, wH) ≤ τ∗(s, wH).

(b) For pL = p̂L the allocation is undistorted. Also, if 1− fH
1−fH pH ≥ 0, then the allocation is

undistorted for pL = 1− fH
1−fH pH .

(c) For pL ∈ (p̂L, p̄L] redistribution and public-goods provision are distorted upwards, v∗∗L (s) >
v∗L(s), v∗∗H (s) < v∗H(s), and q∗∗(s) > q∗(s). Also, the implicit marginal tax rates are higher,
τ∗∗(s, wL) > τ∗(s, wL) and τ∗∗(s, wH) = τ∗(s, wH).

The Proposition says that, in comparison to the Mirrleesian social choice function, the public-
goods provision level, the extent of redistribution (measured by the utility levels vL and vH of

19Alternative assumptions about fH would only affect how the line along which θ̄(pH ,η(pH ))
λ

= θHwL is located,

without affecting the results otherwise.
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high-skilled and low-skilled individuals), and marginal income tax rates are distorted in the same
direction: if there are only few low-skilled individuals who value the public good highly, then
there is underprovision of the public good and deficient redistribution, accompanied by lower
marginal tax rates. By contrast, if many low-skilled individuals value the public good highly,
then there is overprovision of the public good, excessive redistribution, and marginal income tax
rates are higher.

Below, we give a sketch of the formal proof.20 An intuitive understanding may be obtained
as follows: first, to see why public goods provision and redistribution are always distorted in the
same direction, note that the constraint ∂V (s,wL,θH)

∂pL
≥ 0 is binding throughout. Hence, given fH

and pH , different values of pL give rise to the same utility level θHq(s)+vL(s) for the low-skilled.
Now suppose that, for some pL, we had underprovison of the public good, in the sense that q(s)
was lower than stipulated by the Samuelson rule, and excessive redistribution, in the sense that
utilitarian welfare would go up if we reduced vL(s) and increased vH(s). Then we could increase
the public-goods provision level, q(s), and simultaneously decrease the low-skilled individuals’
utility from their (c, y)-bundle, vL(s), so that θHq(s)+vL(s) would remain constant. Utilitarian
welfare, by contrast, would go up. Hence, it cannot be optimal to have underprovision of public
goods, and at the same time and excessive redistribution. A symmetric argument rules out
overprovision and deficient redistribution.

Second, why do we have downward distortions of public-goods provision and redistribution
if pL is low, and upward distortions if pL is high? The reason is that, the higher pL, the more
attractive is public-goods provision from a welfare perspective. Upward distortions therefore
appear if pL is high and downward distortions if pL is low. Moreover, the higher the public-goods
provision level, the more accompanying redistribution is needed to compensate the low-skilled
and thereby prevent them from understating their preferences.

Third, why are downward distortions associated with lower marginal tax rates and upward
distortions with higher marginal tax rates? The general intuition is that more redistribution
from high-skilled individuals to low-skilled individuals goes together with more distortionary
taxation. The validity of this intuition is formally confirmed in Bierbrauer and Boyer (2010)
who show that the marginal tax rates of low-skilled and high-skilled individuals, respectively,
are non-decreasing functions of vL.21

Sketch of the Proof of Proposition 5. We solve problem PL(pH , fH) using a two-step-
procedure: first, for given pL, we treat the public-goods provision level, q(pL), and the utility
that low-skilled individuals realize from their (c, y)-bundle, vL(pL), as given. (Note that since
we treat fH and pH as given, q and vL can be written as functions of pL, i.e., we may suppress

20A rigorous proof is in the Appendix.
21More specifically, if, starting from the optimal utilitarian outcome, vL is increased further, the marginal tax

rate of the high-skilled individuals does not change, i.e., we still have “no distortion at the top”. At the same

time, the “downward distortion” of low-skilled labor supply becomes more severe; that is, the marginal income

tax rate for the low-skilled go up. Similarly, a small reduction in vL will again leave the high-skilled individuals’

marginal tax rate unchanged, but reduce the downward distortions for the low-skilled. Larger reductions, by

contrast, may drive all marginal tax rates down to zero, or even be associated with upward distortions in the

supply of high-skilled labor (negative marginal tax rates).
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the dependence on the whole vector s = (fH , pH , pL).) A solution to problem PL(pH , fH) has
to be such that, given these variables, the utility of the high-skilled is chosen optimally subject
to the individual incentive compatibility and resource constraints; i.e.,

vH(pL) = VH(vL(pL), r(q(pL))) ,

where, for any pair (vL, ρ),

VH(vL, ρ) := max u(cH)− yH
wH

s.t. u(cH)− yH
wH
≥ u(cL)− yL

wH
, u(cL)− yL

wL
≥ u(cH)− yH

wL
,

fH(yH − cH) + (1− fH)(yL − cL) = ρ , u(cL)− yL
wL

= vL .

The function VH can be interpreted as the Pareto-frontier of a Mirrleesian income tax problem
with no public goods, but an exogenous revenue requirement ρ.22

Given that vH(pL) = VH(vL(pL), r(q(pL)), we can, in a second step, determine the optimal
values of q(pL) and vL(pL). For this purpose, we use optimal control theory to determine
the solution to the following optimization problem: choose the functions q : pL 7→ q(pL) and
vL : pL 7→ vL(pL) in order to maximize∫ 1

κ(pH)
{θ̄(pL)q(pL) + fHVH(vL(pL), r(q(pL))) + (1− fH)vL(pL)}dpL

subject to the constraint, that for all pL ∈ [κ(pH), 1], with κ(pH) := max{0, 1− fH
1−fH pH},

θHq
′(pL) + v′L(pL) ≥ 0 .

The proof of Proposition 5 relies mainly on two optimality conditions. The first one is as follows:

1
θH

(θ̄ + fHVH2 r
′(q)) = fHVH1 + 1− fH . (17)

This equation requires that the marginal social benefit from increased public-goods provision
θ̄ + fHVH2 r′(q) is proportional to the marginal social benefit from increased redistribution
fHVH1 + 1− fH . The social choice function in Proposition 2 also satisfies this equation, since it
prescribes optimal utilitarian redistribution and optimal utilitarian public-goods provision,

fHVH1 + 1− fH = 0 and θ̄ + fHVH2 r
′(q) = 0 .

However, as we have argued before (see Figure 4), it violates the constraint θHq′(pL)+v′L(pL) ≥
0. Now, Equation (17) implies a complementarity between redistribution and public-goods
provision: if we have excessive redistribution, so that the utility level of the low-skilled is higher
than optimal, which implies fHVH1 + 1 − fH < 0, then it has to be the case that public-good
provision is also higher than optimal, fHVH1 + 1 − fH < 0, and vice versa. Moreover, since
the function VH is decreasing in vL, if the low-skilled are better off than otherwise, this implies
in turn that there is no longer room to make the high-skilled as well off, i.e., v∗∗H falls short of
v∗H whenever v∗∗L exceeds v∗L. Likewise, insufficient redistribution goes together with insufficient
public-goods provision, and with higher utility for the high-skilled.

22For a complete characterization of the function VH , see Bierbrauer and Boyer (2010).
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A further insight of Proposition 5 concerns the optimal allocation of the distortions that
are due to the binding monotonicity constraint. The Proposition stipulates that if pL is high
public-goods provision and redistribution should be distorted upwards, and that they should be
distorted downwards otherwise. This follows from an optimality condition which stipulates that
the “average distortion” must be zero, i.e., a solution has to be such that∫ 1

κ(pH)
{θ̄ + fHVH2 r

′(q)}dpL =
∫ 1

κ(pH)
{fHVH1 + 1− fH}dpL = 0 . (18)

This condition says that any upward distortion of public-goods provision and redistribution
that occurs over some subinterval of [κ(pH), 1] has to be balanced by a downward distortion
over some other subinterval. Given that this “budget condition” holds, it is optimal to have the
upward distortions of public-goods supply concentrated in the region where it contributes most
to welfare, i.e. where θ̄ is particularly high. This is the case for high values of pL.

5.2 Preventing the high-skilled from exaggerating their preferences

The following Proposition gives the characterization of the solution to problem PH(pL, fH). It
is the mirror image of Proposition 5, i.e., it follows from exactly the same reasoning, so that we
can simply state it without need of further elaboration.

Proposition 6 Let fH < 1
2 . The solution to Problem PH(pL, fH) has the following properties.

There is a cutoff value p̂H such that:

(a) For pH < p̂H redistribution and public-goods provision are distorted downwards, v∗∗L (s) <
v∗L(s), v∗∗H (s) > v∗H(s), and q∗∗(s) < q∗(s). Also, the implicit marginal tax rates are lower,
τ∗∗(s, wL) < τ∗(s, wL) and τ∗∗(s, wH) ≤ τ∗(s, wH).

(b) For pH = p̂H and for pH such that pL = 1− fH
1−fH pH the allocation is undistorted.

(c) For pH > p̂H redistribution and public-goods provision are distorted upwards, v∗∗L (s) >
v∗L(s), v∗∗H (s) < v∗H(s), and q∗∗(s) > q∗(s). Also, the implicit marginal tax rates are
higher, τ∗∗(s, wL) > τ∗(s, wL) and τ∗∗(s, wH) = τ∗(s, wH).

5.3 Sufficiency

The social choice function (q∗∗, c∗∗, y∗∗) which is characterized in Propositions 5 and 6 satisfies
some of the necessary conditions for coalition-proofness which were identified in Proposition 3.
In particular, if (q∗∗, c∗∗, y∗∗) coincides with a the solution to a problem of the PL(pH , fH)-type,
then, by the definition of this problem, the constraint that V (s, wL, θH) must be a non-decreasing
function of pL is satisfied. If it coincides with a the solution to a problem of the PH(pL, fH)-type,
then, by the definition of this problem, the constraint that V (s, wH , θL) must be a non-increasing
function of pH is satisfied. The following Proposition establishes that all necessary conditions
that were not explicitly taken into account by this approach, are also satisfied. Moreover, it is
shown that, for any s, at most one these conditions holds as an equality. By Corollary 1 this
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is an “almost” sufficient condition for coalition-proofness; i.e., if (q∗∗, c∗∗, y∗∗) is not coalition-
proof itself, then the Corollary implies that there is an alternative social choice function that is
coalition-proof and arbitrarily close to (q∗∗, c∗∗, y∗∗).

Proposition 7 The social choice function (q∗∗, c∗∗, y∗∗) satisfies all the constraints in Propo-
sition 3. More specifically, for every s, one of those constraints holds as an equality, and all
others hold as strict inequalities.

It is straightforward to show that the constraint that V (s, wH , θH) must be a non-decreasing
function of pH is always satisfied: individuals with a high-skill level and a high taste parameter
always have an above-average valuation of the public good. Hence, from their perspective the
provision level is always too low, so that they want the policy maker to believe that pH is high.
Consequently, V ∗∗(s, wH , θH) is a strictly increasing function of pH . A symmetric argument
implies that V ∗∗(s, wL, θL) is a strictly decreasing function of pL.

The more difficult part is to show that in the region where problems of the PL(pH , fH)-type
are relevant for a characterization (q∗∗, c∗∗, y∗∗), V ∗∗(s, wH , θL) is a strictly decreasing function
of pH , and that, in the domain of PH(pL, fH)-problems, V ∗∗(s, wL, θH) is a strictly increasing
function of pL. Recall that the Mirrleesian social choice function (q∗, c∗, y∗) also has this property
(see Figure 4). In the Appendix, it is shown that it carries over to the present setting.

5.4 Summary and empirical implications

Figure 5 below summarizes the characterization of the optimal robust and coalition-proof social
choice function (q∗∗, c∗∗, y∗∗). It compares it to the Mirrleesian social choice function (q∗, c∗y∗).
Both are such that the public-goods provision level is strictly increasing in pL and pH .23 With
the Mirrleesian approach, this is neither accompanied by a departure from optimal utilitarian
redistribution (we have throughout that fHVH1 + 1 − fH = 0) nor by a change in marginal
tax rates. By contrast, if we require coalition-proofness, preference shocks induce simultaneous
changes of public-goods provision, redistribution, and marginal tax rates. Figure 6 illustrates
this pattern. In this figure, a “ + ” sign indicates more public-goods provision, redistribution
and taxation as compared to the Mirrleesian outcome. Likewise, a “−” sign indicates that there
is less in any one of those dimensions.

The figure shows that upward distortions tend to be associated with high values of pH and
pL, whereas downward distortions tend to be associated with low values of pL and pH . Equiv-
alently, high public-goods provision levels are associated with high levels of redistribution and
high marginal tax rates, whereas low public-goods provision levels are associated with low levels
of redistribution and low marginal tax rates. Hence, at an empirical level, the optimal policy
that is derived under the requirement of coalition-proofness implies a positive correlation be-
tween public-goods provision, redistribution and income tax rates. The conventional Mirrleesian
approach in Section 3 would not give rise to such a correlation.

23For the provision rule q∗∗, this is formally shown in the Appendix, see Lemma 2.
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Figure 6: The pattern of distortions
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Of course,one has to be careful when trying to interpret the results from a normative exercise
in a positive way. In the real world, public policy is not determined by optimal mechanism design.
However, the requirement of coalition-proofness has a positive interpretation. It is a political
economy constraint capturing the possibility that like-minded individuals may coordinate their
actions – e.g., when they take voting decisions – to get their preferred policies. We may therefore
hope that the incorporation of this additional constraint brings the outcomes of our normative
analysis closer to the forces that determine policy outcomes in the real world.

6 Concluding Remarks

This paper has analyzed a large economy in which individuals are privately informed about
their productive abilities and their preferences for public goods. Moreover, there is aggregate
uncertainty with respect to the cross-sectional distribution of these characteristics. The analysis
has identified two sets of incentive conditions for public policy. Individual incentive compatibility
constraints take into account how individuals respond to an income tax system that determines
their after-tax income as a function of their labor supply. Collective incentive compatibility
constraints take care of the possibility that individuals may lobby for certain tax and expenditure
policies, thus addressing the political reactions that may be triggered by the policy mechanism.

Collective incentive compatibility requires that if a group of individuals experiences a shift in
their public-goods preferences such that their willingness to pay for a public good is increased,
then it must be true that more of the public good is provided (otherwise these individuals
understate their public-goods preferences) and that these individuals pay more taxes (otherwise
they exaggerate their preferences). More generally speaking, the tax system confronts individuals
with prices for public goods. These prices have to be set in an “appropriate” manner, namely
in such a way that the “true” demand for public goods can be determined.
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We have shown that introducing these considerations into a model of optimal taxation and
public-goods provision induces an interdependence of tax and expenditure policies. At an empir-
ical level, if the the optimal policy were implemented, this would give rise to a positive correlation
between the expenditures on public goods, direct income transfers and marginal tax rates.
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A Appendix

A.1 Proof of Proposition 1

We fix T, T , and π. By the standard version of the revelation principle, a social choice function
(q, c, y) is implementable as a Bayes-Nash equilibrium by some mechanism M on a given type
space, if and only if it is truthfully implementable, i.e., if and only if their exists a direct
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mechanism M with an action set A = T and outcome functions Q, and C and Y such that (i)
truthtelling is a Bayes-Nash equilibrium; i.e., for all t,

t ∈ argmaxt′∈T

∫
M(T )

U(Q(δ), C(δ, t′), Y (δ, t′), w(t), θ(t)) dβ(δ | t) , (19)

and (ii) the equilibrium allocation is equal to the allocation stipulated by the social choice
function; for every δ,

Q(δ) = q(s(δ)) (20)

and, for every t,

C(δ, t) = c(s(δ), w(t), θ(t)) and Y (δ, t) = y(s(δ), w(t), θ(t)) . (21)

We first show that (b)⇒ (a). Consider an incentive compatible social choice function (q, c, y).
For an arbitrary belief system β construct a direct mechanism M = [(T, T ), Q,C, Y ] such that
(20) and (21) hold. We seek to verify that, for every t,

t ∈ argmaxt′∈T
∫
M(T ) U(Q(δ), C(δ, t′), Y (δ, t′), w(t), θ(t)) dβ(δ | t)

= argmaxt′∈T
∫
S U(q(s), c(s, w(t′), θ(t′)), y(s, w(t′), θ(t′)), w(t), θ(t)) dβ̂(s | t) ,

where, for any S′ ⊂ S, β̂(S′ | t) := β ({δ ∈M(T ) | s(δ) ∈ S′} | t). Equivalently, for every t,
(w(t), θ(t)) solves

max(w′,θ′)∈W×Θ

∫
S
U(q(s), c(s, w′, θ′), y(s, w′, θ′), w(t), θ(t)) dβ̂(s | t) .

This follows immediately from the fact that (q, c, y) is incentive compatible.
We now show that (a) ⇒ (b). Consider a type space where β is such that for some s′,

β({δ | s(δ) = s′} | t) = 1, for all t. Suppose that a direct mechanism (T,Q′, C ′, Y ′) truth-
fully implements (q, c, y). Using conditions (20) and (21) to substitute for Q′, C ′, and Y ′, the
equilibrium condition in (19) becomes: for all t and all t′,

U(q(s′), c(s′, w(t), θ(t)), y(s′, w(t), θ(t)), w(t), θ(t))

≥ U(q(s′), c(s′, w(t′), θ(t′)), y(s′, w(t′), θ(t′)), w(t), θ(t)) ;

or, equivalently, for all (w, θ) and (w′, θ′),

U(q(s), c(s, w, θ), y(s, w, θ), w, θ) ≥ U(q(s), c(s, w′, θ′), y(s, w′, θ′), w, θ) .

Since the choice of s′ was arbitrary, the latter inequality holds for all s ∈ S. Hence, (q, c, y) is
individually incentive-compatible.
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A.2 Proof of Proposition 3

Suppose there is a mechanism M = [(A,A), Q,C, Y ] with an equilibrium σ∗ that robustly
implements a social choice function (q, c, y) as a coalition-proof Bayes-Nash equilibrium. In
particular, this requires that the mechanism reaches the social choice function; i.e., for every δ,
conditions (12) and (13) are fulfilled.

We show that this implies that V (s, wL, θH) must be a non-decreasing function of pL. (All
other claims in Proposition 3 follow from a symmetric argument.) Suppose otherwise, then there
exist fH , pH pL and p′L with p′L > pL so that

V ((fH , pL, pH), wL, θH) > V ((fH , p′L, pH), wL, θH) . (22)

In the following, we will construct a deviation and show that there is a type space so that it
satisfies conditions (a), (b) and (c) in Definition 1. This contradicts the assumption that σ∗ is
a coalition-proof Bayes-Nash equilibrium on every type space.

Step 1: Construction of a deviation

Intuitively, we seek to construct a deviation σ′T ′ for individuals with a type in T ′ = {t |
(w(t), θ(t)) = (wL, θH)} which works as follows: a type t′ ∈ T ′, plays according to σ∗(t′)
with probability pL

p′L
and plays according to σ∗(t̂), where t̂ ∈ T̂ = {t | (w(t), θ(t)) = (wL, θL)},

otherwise.
It proves convenient to define first two strategies that, with a direct mechanism, could be

interpreted as a “lie” by a set of deviating types and as “honesty” or truthtelling by all others.
For types in T ′, define the “lie” `′T ′ : T ′ →M(T ) such that, for every t′ ∈ T ′, `′T ′({t′} | t′) = pL

p′L
,

and `′T ′(T̂ | t′) = 1− pL
p′L

. Let the function hT\T ′ : T \T ′ →M(T ) be such that for all t ∈ T \T ′,
hT\T ′({t} | t) = 1. Observe that the pair (`′T ′ , hT\T ′) induces, for each δ ∈M(T ), an announced
cross-sectional distribution of types δ̄(δ) with

δ̄(T̃ | δ) =
∫
t′∈T ′

`′T ′(T̃ | t′)dδ(t′) +
∫
t∈T\T ′

hT\T ′(T̃ | t)dδ(t) , (23)

for any subset T̃ of T .
With reference to `′T ′ we now define a strategy σ′T ′ for the game induced by mechanism M

in the following way: for every t′ ∈ T ′ and every subset A′ of A, let

σ′T ′(A
′ | t′) =

∫
t̂∈T

σ∗(A′ | t̂) d`′T ′(t̂ | t′) . (24)

This construction ensures that, for every δ, the distribution of actions that results if individ-
uals with types in T ′ behave according to σ′T ′ and all others follow σ∗T\T ′ equals the distribution
of actions that results if all individuals follow σ∗ and the distribution of types equals δ̄(δ).
Formally, for every δ,

α(δ̄(δ), σ∗) = α(δ, (σ∗T\T ′ , σ
′
T ′)) . (25)
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To see that this true, note that for any subset A′ of A,

α(A′ | δ̄(δ), σ∗)
=
∫
t′∈T σ

∗(A′ | t′)dδ̄(t | δ)
=
∫
t′∈T σ

∗(A′ | t′)d
(∫

t∈T ′ `
′
T ′(t

′ | t)dδ(t) +
∫
t∈T\T ′ hT\T ′(t

′ | t)dδ(t)
)

=
∫
t∈T ′

∫
t′∈T σ

∗(A′ | t′)d`′T ′(t′ | t) dδ(t) +
∫
t∈T\T ′

∫
t′∈T σ

∗(A′ | t′)dhT\T ′(t′ | t) dδ(t)
=
∫
t∈T ′ σ

′
T ′(A

′ | t) dδ(t) +
∫
t∈T\T ′ σ

∗
T\T ′(A

′ | t) dδ(t)
= α(A′ | δ, (σ∗T\T ′ , σ

′
T ′)) .

Step 2: Consider a specific type space

Consider a type space with a belief system so that, for some δ such that s(δ) = (fH , pH , p′L),
β({δ} | t) = 1, for all t. The distribution of types δ̄(δ) that is communicated to the mechanism
if types in T ′ behave according to σ′T ′ and types in T \ T ′ behave according to σ∗T\T ′ , therefore
is such that

s(δ̄(δ)) = (fH , pH , pL) , (26)

with probability 1.

Step 3: Show that, on this type space, the deviation makes the deviators better off

By equations (12) and (13), given the strategy (σ∗T\T ′ , σ
′
T ′), the expected payoff of a type t′ ∈ T ′

equals

Π(t′) :=
pL
p′L
V (s(δ̄(δ)), w(t′), θ(t′)) +

(
1− pL

p′L

)
Φ(t′) ,

where

Φ(t′) := E

[
θ(t′)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), w(t̂), θ(t̂)))− y(s(δ̄(δ)), w(t̂), θ(t̂)))

w(t′)
| t̂ ∈ T̂

]
.

By Proposition 1 robust implementability of a social choice function as a Bayes-Nash equilibrium
implies individual incentive compatibility of a social choice function. As we observed in Section
3, this in turn implies that, for any s, c and y may depend on w, but not on θ. Also, note that,
by construction of the set T̂ , types in T ′ choose only actions that communicate their skill level
truthfully to the mechanism. Hence, Φ(t′) = V (s(δ̄(δ)), w(t′), (t′)) so that so that, for every t′

in T ′,

Π(t′) = V (s(δ̄(δ)), w(t′), (t′)) .

This observation in conjunction with equations (22) and (26) implies that types in T ′ are made
strictly better off by this deviation.
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Step 4: Show that, on this type space, (σ∗T\T ′ , σ
′
T ′) is a Bayes-Nash equilibrium

Consider an alternative type space with a belief system so that, for all t,

β({δ | s(δ) = (fH , pL, pH)} | t) = 1 .

Since σ∗ robustly implements the given social choice function, behaving according to σ∗(t) is
a best response for every type t, given these beliefs. Since, for any s, c and y may depend on
w, but not on θ, behaving according to σ∗(t̂), for some t̂ ∈ T̂ is also a best response for an
individual with type t′ ∈ T ′.

But this implies that behaving according to (σ∗T\T ′ , σ
′
T ′) is also a best response for each type

t under the assumption made in Step 2, namely that the type space is such that

β({δ | s(δ) = (fH , p′L, pH)} | t) = β({δ | s(δ̄(δ)) = (fH , pL, pH)} | t) = 1 ,

which implies that the deviation satisfies (26).

Step 5: Show that, on this type space, the deviation is subcoalition-proof

The deviating individuals have the same preferences, (w(t′), θ(t′)) = (wL, θH), for all t′ ∈ T ′,
and the same beliefs, by the assumptions made in Step 2. Hence, there exists no strict subset
of T ′ which could undermine the subcoalition-proofness of the deviation σ′T ′ .

A.3 Proof of Proposition 4

Given a measure space of types (T, T ) and a function π = (w, θ) : T 7→ W × Θ, and given a
social choice function (q, c, y) ∈ Ω(ε), we construct a direct mechanism M = [(T, T ), Q,C, Y ] so
that, for all δ ∈M(T ) and all t ∈ T ,

Q(δ) = q(s(δ)), C(δ, t) = c(s(δ), w(t)), and Y (δ, t) = y(s(δ), w(t)) . (27)

This construction ensures that the mechanism achieves the social choice function in a truthtelling
equilibrium. More formally, the strategy h : T →M(T ) with h({t} | t) = 1, for all t, is Bayes-
Nash equilibrium of the game induced by this mechanism, for every belief system β. This was
shown in the proof of Proposition 1. In the following, we seek to show that this equilibrium is
coalition-proof on every type space with a moderately uninformative belief system β.

Step 1: No deviations that involve lies about skills

Suppose there is a set of types T ′ who deviate from h and instead behave according to a lie
`′T ′ : T ′ →M(T ). We say that such a lie involves lies about skills if there is t′ ∈ T ′ so that

l(ŵ | t′) := `′T ′({t̂ | w(t̂) 6= w(t′)} | t′) > 0 . (28)

We show in the following that any such deviation violates condition (a) in Definition 1 and
therefore does not challenge the coalition-proofness of the truthtelling equilibrium.

Let δ̄(δ) ∈ M(T ) (see the definition in equation (23)) be the cross-section distribution of
types that is communicated to the mechanism if types in T ′ behave according to `′T ′ and types
in T \ T ′ behave according to hT\T ′ .
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Given that (27) holds, the expected payoff of an individual with a type t′ ∈ T ′ whose behavior
satisfies (28) can be written as∫

M(T ) l(ŵ | t
′)
{
θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ))), ŵ)− y(s(δ̄(δ)),ŵ)

w(t)

}
+(1− l(ŵ | t′))

{
θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), w(t))− y(s(δ̄(δ)),w(t))

w(t) )
}
dβ(δ | t) ,

(29)

where ŵ 6= w(t).
Now suppose that the individual in question would instead communicate his skill level truth-

fully with probability 1. The resulting payoff equals∫
M(T )

{
θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), w(t))− y(s(δ̄(δ)),w(t))

w(t)

}
dβ(δ | t) . (30)

By the constraints in (16) we have that

θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), w(t)))− y(s(δ̄(δ)),w(t))
w(t)

> θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), ŵ)− y(s(δ̄(δ)),ŵ)
w(t) ,

which implies that the expression in (30) is strictly larger than the expression in (29). This
shows that, for a type t′ ∈ T ′, behaving in such a way that (28) holds is not a best response.
Hence, (hT\T ′ , `′T ′) is not a Bayes-Nash equilibrium strategy.

Step 2: No deviation so that all participating individuals have the same preferences

Suppose the deviating set of types T ′ is such that t′ ∈ T ′ and t̂′ ∈ T ′ imply that π(t′) = π(t̂′).
For the sake of concreteness assume that π(t′) = (wH , θL) for all t′ ∈ T ′. We know by Step 1
that there is no deviation that involves lies about skills and challenges the coalition-proofness of
equilibrium h. Hence, suppose that all participating individuals truthfully communicate their
skills

`′T ′({t̂ | w(t̂) 6= w(t′)} | t′) = 0 , (31)

and that some lie about their taste parameter with positive probability,

`′T ′({t̂ | θ(t̂) = θH} | t′) > 0 . (32)

Consequently, for every δ, s(δ) = (fH(δ), pH(δ), pL(δ)) and s(δ̄(δ)) = (fH(δ̄(δ)), pH(δ̄(δ)), pL(δ̄(δ)))
are such that

fH(δ) = fH(δ̄(δ)), pH(δ) < pH(δ̄(δ)) and pL(δ) = pL(δ̄(δ)) .

Since the given social choice function satisfies the monotonicity constraint

∂V (s, wH , θL)
∂pH

≤ 0 ,

this deviation will fail to make the participating types better off, i.e., it violates condition
(b) in Definition 1, and therefore does not challenge the coalition-proofness of the truthtelling
equilibrium.
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Step 3: No deviation with heterogeneous preferences

Now suppose that the deviating set of types T ′ is such that there are t′ ∈ T ′ and t̂′ ∈ T ′ so that
π(t′) 6= π(t̂′). Again, we may assume that the deviation involves no lies about skills so that (31)
holds. Consequently, we have for all δ that fH(δ) = fH(δ̄(δ)).

Assume, for the sake of concreteness, that there is T ′′ ⊂ T ′ so that t′′ ∈ T ′′ implies that
π(t′′) = (wH , θL) and that these individuals lie about their taste parameter with positive prob-
ability,

`′T ′({t̂ | θ(t̂) = θH} | t′′) > 0 . (33)

Given that the monotonicity constraint

∂V (s, wH , θL)
∂pH

≤ 0 ,

holds, these types will benefit from the deviation `′T ′ only if there is a subset D of M(T ) with
β(D | t′) > 0 for all t′ ∈ T ′ with π(t′) = (wH , θL), which has the following property: δ ∈ D
implies that

pL(δ) 6= pL(δ̄(δ)) , or pH(δ) > pH(δ̄(δ)) .

Since we have limited information to type spaces with moderately uninformative belief sys-
tems, β(D | t′) > 0 for all t′ ∈ T ′ with π(t′) = (wH , θL) implies in fact that β(D | t′) > 0 for all
t′ ∈ T ′, i.e., all participants of the deviation assign positive probability mass to the set D.

Suppose that the set D is such that pH(δ) > pH(δ̄(δ)), for all δ ∈ D. (The alternative cases
so that δ ∈ D implies pL(δ) < pL(δ̄(δ)) or pL(δ) > pL(δ̄(δ)) can be treated in exactly the same
way.) This implies that the set T ′ includes high-skilled individuals with a high taste parameter
who announce a low taste parameter with positive probability: there is T̂ ′′ ⊂ T ′ so that t̂′′ ∈ T̂ ′′

π(t̂′′) = (wH , θH), and

`′T ′({t̂ | θ(t̂) = θL} | t̂′′) > 0 . (34)

The assumptions that, for every s, at most one of the monotonicity constraints in Propo-
sition 3 is binding and that the belief system is moderately uninformative have the following
implication: there is a subset D̃ of D so that β(D̃ | t′) > 0 for all t′ ∈ T ′, and conditional on
δ ∈ D̃, types in T ′′ or types in T̂ ′′ are made strictly better off if they reduce the probability of
a lie, taking the behavior of all other individuals as given. To see this, suppose first that types
in T̂ ′′ change their behavior and now follow a strategy `′′

T̂ ′′
with

`′′
T̂ ′′

({t̂ | θ(t̂) = θL} | t̂′′) < `′T ′({t̂ | θ(t̂) = θL} | t̂′′) . (35)

Let δ̂(δ) be the cross-section distribution of types that is communicated to the mechanism given
that the true cross-section distribution of types is δ and that individuals behave according to
the strategy profile (hT\T ′ , `′T ′\T̂ ′′ , `

′′
T̂ ′′

). We have that, for all δ ∈M(T ),

pH(δ̂(δ)) > pH(δ̄(δ)) and pL(δ̂(δ)) = pL(δ̄(δ)) .
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Given that the monotonicity constraint

∂V (s, wH , θH)
∂pH

≥ 0 , (36)

holds, for all s, the outcome of this deviation makes all types in T̂ ′′ weakly better off. It makes
them also strictly better off, provided that there is a subset D̃ with β(D̃ | t′) > 0 so that (36)
holds as a strict inequality. Finally, observe that (hT\T ′ , `′T ′\T̂ ′′ , `

′′
T̂ ′′

) is a Bayes-Nash equilibrium
strategy because individuals communicate their skill levels truthfully, and, individual outcomes
do not depend on announced taste parameters (see equation (27)). Hence, if there is a subset
D̃ of D with β(D̃ | t′) > 0 so that so that (36) holds as a strict inequality, the deviation `′T ′ fails
to be subcoalition-proof.

Now assume that there is no such set D̃. Then, since for every s at most one monotonicity
constraints in Proposition 3 is binding, it has to be the case that the monotonicity constraint
∂V (s,wH ,θL)

∂pH
≤ 0 holds as a strict inequality with probability 1, conditional on the event δ ∈ D.

But this implies that now individuals with types in T ′′ benefit from reducing the probability of
a lie. Again, this implies that `′T ′ fails to be subcoalition-proof.

A.4 Proof of Corollary 1

Consider a social choice function (q, c, y) ∈ Ω(0). Since
⋃

0≤ε≤ε̄ Ω(ε) is compact, we can construct
a sequence of social choice functions {(qk, ck, yk)}∞k=1 with (qk, ck, yk) ∈ Ω

(
ε̄
k

)
, for each k,

which converges to (q, c, y). By continuity of U this implies that also, for each s, w, and θ,
U(qk(s), ck(s, w), yk(s, w), w, θ) converges to U(q(s), c(s, w), y(s, w), w, θ).

A.5 Proof of Proposition 5

Step 1: Reformulate problem PL(pH , fH)

The function VH , defined by

VH(vL, ρ) := max u(cH)− yH
wH

s.t. u(cH)− yH
wH
≥ u(cL)− yL

wH
, u(cL)− yL

wL
≥ u(cH)− yH

wL
,

fH(yH − cH) + (1− fH)(yL − cL) = ρ , u(cL)− yL
wL

= vL ,

is the Pareto-frontier in a simplified version of the Mirrleesian optimal income tax problem that
does not contain a decision on public-goods provision. The properties of this Pareto-frontier are
extensively studied in Bierbrauer and Boyer (2010). The derivations that follow make repeated
use of these properties.

At the optimal allocation, it has to be the case that, for all possible values of pL, the utility
of the high-skilled satisfies

v∗∗H (s) = VH(v∗∗L (s), r(q∗∗(s))) . (37)

To see why this is true, note that the monotonicity constraint

∂V (s, wL, θH)
∂pL

≥ 0 ,
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restricts how the low-skilled individuals’ utility may vary with s, or, equivalently, with pL.
There is no such constraint for the high-skilled. Hence, once we have determined vL(s) and
r(q(s)), optimality considerations require that me make vH(s) as large as possible. This implies
that a solution to problem PL(pH , fH) has to satisfy (37), for every s. This makes it possible
to reformulate problem PL(pH , fH) in such a way that we can treat the utility level of the
low-skilled and the public-goods provision level as choice variables.

Since, for the analysis of problem PL(pH , fH), pH and fH are fixed parameters, we may
interpret both the utility of the low-skilled vL and the public-goods provision level as functions
of pL, and suppress the dependence on the whole vector s = (fH , pH , pL). With a slight abuse
of notation, problem PL(pH , fH) may therefore be stated as follows: choose the functions vL :
pL 7→ vL(pL) and q : pL 7→ q(pL) in order to maximize∫ 1

κ(pH)
{θ̄(pL)q(pL) + fHVH(vL(pL), r(q(pL))) + (1− fH)vL(pL)}dpL

subject to the monotonicity constraint, that for all pL ∈ [κ(pH), 1], with κ(pH) := max{0, 1 −
fH

1−fH pH},

θHq
′(pL) + v′L(pL) ≥ 0 .

Step 2: Statement of optimality conditions

We use optimal control theory in order to characterize the solution to this optimization problem.
Specifically, we treat q and vL as states variables. The control variables u1 and u2 are equal to
q′ and v′L; that is, they satisfy the following equations of motion,

q′ = g1(u1) , with g1(u1) = u1 , (38)

and

v′L = g2(u2) , with g2(u2) = u2 . (39)

The monotonicity constraint can now be formulated as a constraint on the control variables,

h(u1, u2) ≥ 0 , where h(u1, u2) = θHu1 + u2 . (40)

The optimality conditions for this problem can be conveniently stated by making use of the
following Hamiltonian

H(q, vL, u1, u2) = θ̄(pL)q + fHVH(vL, r(q)) + (1− fH)vL + µ1g1(u1) + µ2g2(u2) ,

where µ1 is the costate variable associated with (38) and µ2 is the costate variable associated
with (39); and of the Lagrangean

L(q, vL, u1, u2) = H(q, vL, u1, u2) + νh(u1, u2) ,
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where ν ≥ 0, is the multiplier associated with (40). The optimality conditions are as follows:24

(i) The costate variables satisfy

µ′1 = −∂H
∂q

and µ′2 = − ∂H
∂vL

, (41)

or, equivalently,

µ′1 = −(θ̄ + fHVH2 r
′(q))φL (42)

and

µ′2 = −(fHVH1 + 1− fH)φL , (43)

where VHj denotes the partial derivative of the function VH with respect to its j-th argument.
(ii) The fact that we have free start and end values for the control variables implies that

µ1(κ(pL)) = µ1(1) = 0 and µ2(κ(pL)) = µ2(1) = 0 . (44)

(iii) The control variables satisfy the following first order and complementary slackness condi-
tions:

∂L
∂u1

= 0 and ∂L
∂u2

= 0 , (45)

and

ν ≥ 0 , and νh(u1, u2) = 0 . (46)

Equations (45) can equivalently be written as

µ1 + νθH = 0 , (47)

and

µ2 + ν = 0 . (48)

Step 3: Some implications of the optimality conditions

We know that, for pL ∈ (κ(pH), 1) the constraint (40) is binding so that, over this range, we
have

ν(pL) > 0 . (49)

Also, equations (44), (47), and (48) imply that

ν(κ(pL)) = ν(1) = 0 . (50)

Finally, (47), and (48) also imply that

µ′1 = − 1
θH

ν ′ , (51)

24For a derivation of these optimality conditions, see Kamien and Schwartz (1991), pp. 195-197. These condi-

tions are necessary and sufficient provided that the Lagrangean L is concave in (q, vL, u1, u2). Since it is linear in

u1, and u2, this follows from the fact that VH is a concave function of vL and r(q). A proof of this assertion can

be found in Bierbrauer and Boyer (2010).
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and

µ′2 = −ν ′ . (52)

Using (51) and (52) in conjunction with (42) and (43) yields

1
θH

(θ̄ + fHVH2 r
′(q)) = fHVH1 + 1− fH . (53)

The following three Lemmas establish some properties that will prove useful subsequently.

Lemma 1 Condition (53) implies that, for all pL ∈ (κ(pH), 1), r′(q(pL)) ≥ θHwL.

Proof We first note that the function VH introduced in Step 1 has the following property,25

VH2 =
VH1

wL
− 1
wH

. (54)

Now suppose that the Lemma is false. Then we have

r′(q) < θHwL .

Using the optimality condition (53) we may solve for r′(q) and state this inequality equivalently
as

θ̄ − θH(fHVH1 + 1− fH) ≤ −θHwLfHVH2 .

Using (54) to substitute for VH2, we can rewrite this condition once more as

θ̄

λ
< θHwL ,

which contradicts the assumption that pL ≥ κ(pL). �

Lemma 2 For all pL ∈ (κ(pH), 1), q′(pL) > 0.

Proof If we totally differentiate equation (53) with respect to pL, we obtain

θ̄′ = fH
(
VH11v

′
L + VH21r

′q′ − (VH21v
′
L + VH22r

′q′)r′ − VH2r
′′)

Using that constraint (40) is binding, this can be equivalently written as

θ̄′ = −fH
(
Q+ VH2r

′′) q′
where

Q := VH11θ
2
H − 2VH12θHr

′ + VH22(r′)2

25See Bierbrauer and Boyer (2010) for a proof.
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is a quadratic form which is non-positive because the function VH is jointly concave in vL and
ρ, see Bierbrauer and Boyer (2010) for a proof. Using that VH2 < 0 (again, see Bierbrauer and
Boyer (2010)), and that r′′ > 0 establishes the result. �

Lemma 3 For all pL ∈ (κ(pH), 1), ν ′′(pL) ≤ 0.

Proof Optimality conditions (52) and (43) imply that

ν ′ = fHVH1 + 1− fH .

Hence,

ν ′′ = fHVH11v
′
L + fHVH12r

′(q)q′

Since constraint (40) is binding, this can be equivalently written as

ν ′′ = q′(−fHVH11θH + fHVH12r
′(q)) .

Since (54) implies that VH12 = 1
wL
VH11, we can rewrite this as

ν ′′ = −fHVH11wLq
′(θHwL − r′(q)) . (55)

It follows from Lemmas 1 and 2 that

q′(θHwL − r′(q)) ≤ 0 .

Moreover, it is shown in Bierbrauer and Boyer (2010) that VH11 ≤ 0. Consequently, (55) implies
that ν ′′ ≤ 0. �

Step 4: Implications for public-good provision and redistribution

Lemma 4 There exists p̂L ∈ (κ(pH), 1) so that

i) pL < p̂L implies v∗∗L (s) < v∗L(s), v∗∗H (s) > v∗H(s) and q∗∗(s) < q∗(s).

ii) pL = p̂L implies v∗∗L (s) = v∗L(s), v∗∗H (s) = v∗H(s) and q∗∗(s) = q∗(s).

iii) pL > p̂L implies v∗∗L (s) > v∗L(s), v∗∗H (s) < v∗H(s) and q∗∗(s) > q∗(s).

Proof Part A. Equation (53) states that the marginal utilitarian welfare gain from increased
public-goods provision is proportional to the marginal utilitarian welfare gain from increased
redistribution, i.e., from an increase of vL. v∗∗L (s) < v∗L(s) implies that the latter is positive.
Equation (53) then requires that also q∗∗(s) < q∗(s), and vice versa. Moreover, since the
function VH is strictly decreasing in vL and ρ, we have that v∗∗L (s) < v∗L(s) implies that v∗∗H (s) =
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VH(v∗∗L (s), r(q∗∗(s))) > v∗H(s) = VH(v∗L(s), r(q∗(s))). This proves that

v∗∗L (pL) < v∗L(pL)⇐⇒ q∗∗(pL) < q∗(pL)⇐⇒ v∗∗H (pL) > v∗H(pL) .

Analogously, one shows that

v∗∗L (pL) = v∗L(pL)⇐⇒ q∗∗(pL) = q∗(pL)⇐⇒ v∗∗H (pL) = v∗H(pL) ,

and

v∗∗L (pL) > v∗L(pL)⇐⇒ q∗∗(pL) > q∗(pL)⇐⇒ v∗∗H (pL) < v∗H(pL) .

Part B. It thus remains to be shown that there is p̂L so that pL < p̂L implies v∗∗L (s) < v∗L(s),
pL = p̂L implies v∗∗L (s) = v∗L(s), and pL > p̂L implies v∗∗L (s) > v∗L(s). Optimality conditions (52)
and (43) imply that

ν ′ = fHVH1 + 1− fH .

Hence, this is equivalent to showing that there is p̂L so that pL < p̂L implies ν ′ > 0, pL = p̂L

implies ν ′ = 0, and pL > p̂L implies ν ′ < 0. This follows from the following observations:
ν(pL) > 0, for pL ∈ (κ(pH), 1) since the constraint (40) is binding; ν(κ(pL)) = ν(1) = 0 as an
implication of the optimality conditions (44), (47) and (48); and finally the observation that
ν ′′(pL) ≤ 0, for pL ∈ (κ(pH), 1), in Lemma 3. �

Lemma 5 Suppose the given parameter pH is such that η(pH) ≥ 0, then v∗∗L (κ(pH)) = v∗L(pL),
q∗∗L (κ(pH)) = q∗L(pL), and v∗∗H (κ(pH)) = v∗H(pL).

Proof By the arguments in Part A of the proof Lemma 4 it suffices to show that q∗∗L (κ(pH)) =
q∗L(κ(pH)). Suppose otherwise, i.e., q∗∗L (κ(pH)) 6= q∗L(κ(pH)). Lemma 1 implies that, for all pL,
q∗∗L (pL) ≥ q∗(κ(pL)). Hence, q∗∗L (κ(pH)) > q∗L(κ(pL)), i.e., there is overprovision of the public
good, so that, for pL = κ(pH) we have, 26

θ̄ + fHVH2r
′(q) < 0 .

From (42) this implies that for pL = κ(pH), µ′1 > 0. Optimality condition (51) then implies
that ν ′ < 0. However, ν(pL) > 0, for pL ∈ (κ(pH), 1) since the constraint (40) is binding;
and ν(κ(pH)) = 0 as an implication of the optimality conditions (44). As a consequence, (47)
and (48) imply that, for pL = κ(pH), we need to have ν ′ > 0. Hence, the assumption that
q∗∗L (κ(pH)) 6= q∗L(κ(pL)) has led to a contradiction, and must be false. �

26Note that q∗∗L (κ(pH)) > q∗L(κ(pH)) implies that v∗∗L (κ(pH)) > v∗L(κ(pH)). Jointly, these two observations

imply that | VH2 | is larger than at an undistorted allocation.
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Step 6: implications for marginal tax rates

For an undistorted allocation, the marginal tax rates are those in Proposition 2. It is shown
in Bierbrauer and Boyer (2010) that more redistribution in comparison to this benchmark, i.e.,
v∗∗L (pL) > v∗L(pL) implies that τ∗∗(pL, wL) > τ∗(pL, wL), i.e., the distortion at the bottom gets
more severe, whereas τ∗∗(pL, wH) = τ∗(pL, wH), so that there is no distortion at the top. It is
also shown that v∗∗L (pL) < v∗L(pL) implies that τ∗∗(pL, wL) < τ∗(pL, wL) and that τ∗∗(pL, wH) ≤
τ∗(pL, wH).

The reason is as follows: if, starting from v∗L(pL), redistribution in favor of the low-skilled
is reduced, we eventually reach a region of the Pareto-frontier where no incentive constraint is
binding and the implicit marginal tax rates of high- and low-skilled individuals are equal to
0; τ∗∗(pL, wL) = 0 and τ∗∗(pL, wH) = 0. If we reduce vL further, we get to a region where
the low-skilled individuals’ incentive constraint binds which implies no distortion at the bottom,
τ∗∗(pL, wL) = 0, and an upward distortion of labour supply for the high-skilled, τ∗∗(pL, wH) < 0.

Combining these observations with Lemmas 4 and 5 proves the statements about implicit
marginal tax rates in Proposition 5.

A.6 Proof of Proposition 6

The proof of Proposition 6 is the exact mirror image of the proof of Proposition 6, and is
therefore omitted.

A.7 Proof of Proposition 7

We fix fH at an arbitrary level so that we may suppress the dependence of s on fH , and
write simply s = (pH , pL). Suppose that θ̄(pH ,pL)

λ > θHwL so that the social choice function
(q∗∗, c∗∗, y∗∗) is determined as the solution to a collection of subproblems of the PL(pH , fH)-
type. (The proof under the alternative assumption that θ̄(pH ,pL)

λ < θHwL would follow from
exactly the same arguments.) The proof makes use of the following Lemma:

Lemma 6 Suppose that θ̄(pH ,pL)
λ > θHwL. Then

∂v∗∗L (pH , pL)
∂pH

= −θH
∂q∗∗(pH , pL)

∂pH
.

Proof Since ∂V (s,wL,θH)
∂pL

≥ 0 is binding for θ̄(pH ,pL)
λ > θHwL, we have that, for a given pH ,

∂v∗∗L (pH , pL)
∂pL

= −θH
∂q∗∗L (pH , pL)

∂pL
.

This implies that there exists a number α(κ(pH)) so that, for every pL ∈ [κ(pH), 1],

α(κ(pH)) = θHq
∗∗(pH , pL) + v∗∗L (pH , pL) . (56)

To prove the Lemma, we show that α′(α(κ(pH)))κ′(pH) = 0. For values of pH so that 0 ≥ η(pH),
this follows trivially from the observation that κ(pH) = 0 and hence also κ′(pH) = 0. For values
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of pH so that 0 < η(pH), it follows from Proposition 6 that α(κ(pH)) is the utility level induced
by an undistorted allocation. Hence,

α(κ(pH)) = θHq
∗(pH , κ(pH)) + u(c∗(pH , κ(pH), wL))− y∗(pH , κ(pH), wL)

wL
.

Upon using Proposition 2, we find that

α′(κ(pH))κ′(pH) =
(
θH −

1
wL

r′(q∗(pH , κ(pH)))
)

d

dpH
(q∗(pH , κ(pH)))κ′(pH) ,

where

θH −
1
wL

r′(q∗(pH , κ(pH))) = θH −
1
wL

θ̄(pH , κ(pH)))
λ

= 0 .

�

Step 1: if ∂V (s,wL,θH)
∂pL

≥ 0 binds, then ∂V (s,wH ,θL)
∂pH

< 0

We seek to show that

∂V (s, wH , θL)
∂pH

= θL
∂

∂pH
q∗∗(pH , pL) +

∂

∂pH
v∗∗H (pH , pL) < 0 .

From Step 1 in the proof of Proposition 6, we know that

v∗∗H (pH , pL) = VH(v∗∗L (pH , pL), r(q∗∗(pH , pL))) .

Hence, we seek to show that

θL
∂

∂pH
q∗∗(pH , pL) + VH1

∂

∂pH
v∗∗L (pH , pL) + VH2r

′ ∂

∂pH
q∗∗(pH , pL) < 0 ,

or, equivalently, by Lemma 6, that(
θL − θHVH1 + VH2r

′) ∂

∂pH
q∗∗(pH , pL) < 0 .

A straightforward adaptation of the arguments in the proof of Lemma 2 reveals that

∂

∂pH
q∗∗(pH , pL) > 0 .

To complete the argument, it therefore remains to be shown that

θL − θHVH1 + VH2r
′ < 0 . (57)

To see that this is true note that optimality condition (53) in the proof of Proposition 6 implies
that

−θHVH1 + VH2r
′ =

1− fH
fH

θH −
θ̄(pH , pL)

fH
.

Consequently, (57) holds if and only if

θLfH + θH(1− fH) < θ̄(pH , pL) . (58)
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To see that this is always fulfilled, recall that, by assumption,

θ̄(pH , pL) > θHwLλ , (59)

in the interior of the region where the subproblems of the PL(pH , fH)-type determine (q∗∗, c∗∗, y∗∗).
Further, upon using that λ = fH

wH
+ 1−fH

wL
, wH = θH and wL = θL, it is straightforward to verify

that

θHwLλ = θLfH + θH(1− fH) . (60)

Hence, (60) and (59) imply that (58) is true.

Step 2: if ∂V (s,wL,θH)
∂pL

≥ 0 binds, then ∂V (s,wH ,θH)
∂pH

> 0

We seek to show that
∂V (s, wH , θH)

∂pH
= θL

∂

∂pH
q∗∗(pH , pL) +

∂

∂pH
v∗∗H (pH , pL) > 0 .

From Step 1 in the proof of Proposition 6 we know that

v∗∗H (pH , pL) = VH(v∗∗L (pH , pL), r(q∗∗(pH , pL))) .

Hence, we seek to show that

θH
∂

∂pH
q∗∗(pH , pL) + VH1

∂

∂pH
v∗∗L (pH , pL) + VH2r

′ ∂

∂pH
q∗∗(pH , pL) > 0 ,

or, equivalently, by Lemma 6, that(
θL − θHVH1 + VH2r

′) ∂

∂pH
q∗∗(pH , pL) > 0 .

Since ∂
∂pH

q∗∗(pH , pL) > 0, it therefore remains to be shown that

θH − θHVH1 + VH2r
′ > 0 . (61)

To see that this is true, note that optimality condition (53) in the proof of Proposition 6 implies
that

−θHVH1 + VH2r
′ =

1− fH
fH

θH −
θ̄(pH , pL)

fH
.

Consequently, (61) holds if and only if

θHfH + θH(1− fH) > θ̄(pH , pL) .

This inequality is obviously fulfilled for all (pH , pL) 6= (1, 1).

Step 3: if ∂V (s,wL,θH)
∂pL

≥ 0 binds, then ∂V (s,wL,θL)
∂pL

< 0

We seek to show that
∂V (s, wL, θL)

∂pL
= θL

∂

∂pL
q∗∗(pH , pL) +

∂

∂pL
v∗∗L (pH , pL) < 0 .

This follows from ∂
∂pL

q∗∗(pH , pL) > 0, the fact that θL < θH and that ∂V (s,wL,θH)
∂pL

≥ 0 binds, so
that

θH
∂

∂pL
q∗∗(pH , pL) +

∂

∂pL
v∗∗L (pH , pL) = 0 .

44


