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Alexander Westkamp
Chair of Economic Theory II

Economics Department, University of Bonn
Leneestr.37, 53113 Bonn, Germany

e-mail: awest@uni-bonn.de

Abstract

Ostrovsky [10] develops a theory of stability for a model of matching in exoge-
nously given networks. For this model a generalization of pairwise stability, chain
stability, can always be satisfied as long as agents’ preferences satisfy same side
substitutability and cross side complementarity. Given this preference domain I
analyze the interplay between properties of the network structure and (coopera-
tive) solution concepts. The main structural condition is an acyclicity notion that
rules out the implementation of trading cycles. It is shown that this condition and
the restriction that no pair of agents can sign more than one contract with each
other are jointly necessary and sufficient for (i) the equivalence of group and chain
stability, (ii) the core stability of chain stable networks, (iii) the efficiency of chain
stable networks, (iv) the existence of a group stable network, and (v) the existence
of an efficient and individually stable network. These equivalences also provide a
rationale for chain stability in the unrestricted model. The (more restrictive) con-
ditions under which chain stability coincides with the core are also characterized.
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1 Introduction

Theoretical models of network formation and matching markets are concerned with pre-
dicting which outcomes are likely to emerge when self-interested agents interact. An
important strand of this literature belongs to the area of cooperative game theory and
“likely outcomes” are not defined by writing down an explicit negotiation protocol, but
rather by postulating a set of stability constraints that one perceives to be relevant in the
problem under study. In several cases such constraints have been an important guideline
for the design of real-life mechanisms for two-sided matching problems in which a group
of workers/students has to be assigned among a set of firms/schools (see [13] and the
references therein). The literature has focused on the pairwise stability concept, which
only considers the possibility of coordinated deviations by pairs of players. As long as
workers can take at most one job and firms have substitutable preferences, a pairwise
stable matching not only exists ([7]), but is also group stable ([14]): There is no group
of agents who can obtain a strictly preferred matching by forming new partnerships only
among themselves, possibly dropping some previously held partnerships. In particular, a
pairwise stable matching is efficient. While these are encouraging results for a restricted
class of assignment problems, many interesting applications do not fit the assumptions
above: Some workers may demand multiple jobs in a labor market,1 firms may not view
workers as substitutes,2 and markets are often not two-sided.3

Ostrovsky [10] shows how some of these features can be accommodated by a model
in which agents are located in an exogenously given vertically ordered directed network
and have preferences over sets of trading relationships, or contracts, with their neighbors.
A set of contracts is chain stable if (i) it is individually stable in the sense that no agent
would prefer to drop some of her contracts, and (ii) there is no downstream sequence of
agents who can obtain a strictly preferred set of contracts by forming new contracts only
with their direct neighbors in the sequence, possibly dropping some of their previously
held contracts. Ostrovsky shows that chain stable outcomes exist as long as agents’ pref-
erences satisfy same side substitutability and cross side complementarity. However, unlike
pairwise stable matchings in the simple matching models above, chain stable allocations
may not be group stable. In fact, chain stable outcomes may even be inefficient and thus
fail to be in the core.4 I characterize the conditions under which these problems cannot
occur.

A main contribution of this study is methodological. Instead of introducing further
restrictions on preferences, I introduce restrictions on who can contract with whom and

1For example, Echenique and Oviedo [3] mention that 35 % of teachers in Argentina work for more
than one school.

2Many tasks can only be accomplished by the combined workforce of a set of specialized workers.
The construction of a building, for example, requires a structural engineer, a carpenter, and so on, so
that complementarities between individual workers are likely.

3Brokers act as intermediaries between owners and potential tenants in housing markets, temporary
employment agencies supply firms with short-term labor, some stores (e.g. Gamestop) allow customers
to trade in used goods which they then sell to other customers, and so on.

4An outcome is in the core (defined by weak domination), if no group of agents can obtain a weakly
preferred outcome for all involved by trading only among themselves.
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how many relationships agents can form. Such constraints are common in two-sided
matching models, where an agent cannot contract with another agent on her side of the
market and it is often assumed that agents on one side of the market can all engage in at
most one relationship. The restrictions that I develop can be interpreted as restricting
the sets of acceptable contracts. However, unlike the usual preference restrictions in the
matching literature, such as responsiveness or strong substitutability, my conditions do
not place further restrictions on the ranking of acceptable (or unacceptable) sets of con-
tracts. The main structural restriction in the paper is an acyclicity notion which rules out
the implementation of trading cycles. I show that this condition and the restriction that
no pair of agents can sign more than one contract with each other are jointly necessary
and sufficient for (i) the equivalence of group and chain stability, (ii) the core stability
of chain stable outcomes, (iii) the efficiency of chain stable outcomes, (iv) the existence
of a group stable outcome, and (v) the existence of an efficient and individually stable
outcome. The equivalences provide two justifications for the use of chain stability in
the unrestricted model: First, whenever the minimal stability requirement of individual
stability can be reconciled with efficiency, chain stable outcomes are also efficient. Thus,
imposing the stronger chain stability concept does not lead to any additional efficiency
loss. Second, if chain stable networks fail to be group stable, the very existence of a
group stable outcome cannot be guaranteed. In this sense chain stable allocations are
as stable as it gets. In the last part of the paper I characterize the (more restrictive)
conditions under which core and chain stability coincide. This result subsumes a number
of important existing results and provides a unified perspective on them.

From a methodological perspective, the paper most closely related to the present study
is Abeledo and Isaak [1]. They start from a fixed structure of potential partnerships in
a simple one-to-one matching model represented by an undirected graph that contains
edges between mutually acceptable pairs of agents. Their main result is that a pairwise
stable matching will exist for all preference profiles if and only if the market is two-sided.
In this paper I restrict attention to the model introduced by Ostrovsky [10] for which
the existence of a chain stable allocation is guaranteed. In contrast to [1], my focus is
the relationship between cooperative solution concepts. Furthermore, their methodology
has no direct extension to the model I consider where the set of acceptable allocations
cannot be summarized by a simple undirected graph.

More closely related in focus is a line of research that has been concerned with sta-
bility concepts for two-sided many-to-many matching markets. If all preferences are
substitutable, this model is a special case of the supply chain model so that existence
of a pairwise stable allocation follows from the existence result in [10] (for this special
case, existence had been previously established in [12]). Blair [2] was the first to note
that in such markets the core can be empty. This implies in particular that (i) group
stable allocations may fail to exist, and (ii) the set of pairwise stable allocations may
be disjoint from both, the core and the set of group stable allocations. In light of these
problems, most studies have focused on stability concepts which limit the set of allow-
able coalitional deviations. Important examples of this line of research are Roth [12], who
considers the restriction that all members of a deviating coalition should obtain a subset
of their most preferred set of contracts out of the set of previously held and newly formed
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contracts, Konishi and Ünver [9], who require that deviations have to be pairwise stable
themselves, and Echenique and Oviedo [3], who consider the restriction that deviations
have to be individually stable in the sense that no deviating agent wants to drop some of
her partners after the deviation. There are two important differences between this line of
research and my study: First, all these papers study stability notions that restrict the set
of allowable coalitional deviations. A problem with this approach is that none of these
concepts guarantee efficiency of the outcome. This leaves open the question whether there
are other natural stability concepts compatible with efficiency. The results of my paper
apply equally well to many-to-many matching models and, to the best of my knowledge,
this is the first systematic study of the relationship between pairwise stability, group
stability, the core, and efficiency. A second difference is that most of the papers in the
above line of research introduce stronger restrictions on preferences than those needed to
guarantee existence of a pairwise stable allocation and then show that for the restricted
model pairwise stability coincides with some (restricted) notion of group stability. While
this yields insightful foundations for pairwise stability in appropriately restricted models,
it does not explain why it is the right stability criterion when all substitutable preferences
are allowed.

Other papers that have studied the importance of the set of allowed potential interac-
tions for cooperative solution concepts in other contexts include Pápai [11], who analyzes
how to restrict allowable trades in a general indivisible goods exchange market in order
to guarantee a singleton core, and Kalai, Postlewaite and Roberts [6], who compare core
outcomes between an unrestricted market game and a game in which some players are
not allowed to form coalitions.

The remainder of this paper is organized as follows: Section 2 briefly summarizes
Ostrovsky’s supply chain model and introduces the solution concepts studied. Section 3
contains all main results of this paper and section 4 concludes. The appendix contains
an omitted proof and a discussion of the main results.

2 The Supply Chain Model

Consider a market consisting of a finite set of agents V . Agents trade discrete units of
indivisible goods and trading relationships are represented by bilateral contracts. Each
contract is of the form (s, b, a, p) and represents the sale of one (unit of a) good a ∈ N

from seller s ∈ V to buyer b ∈ V at a price p ∈ R.5 The set of all possible contracts,
denoted by X, is assumed to be exogenously given and finite. For x ∈ X, let sx denote
the seller in contract x and let bx denote the buyer in contract x. It is assumed that there
are no directed trading cycles in X, that is, there is no sequence of agents v1, . . . , vm such
that, for all i ∈ {1, . . . ,m}, there exists a contract xi such that sxi

= vi and bxi
= vi+1

(where m + 1 := 1).6 For future reference I now introduce some more terminology and

5This formulation of contracts follows [10] and is chosen for concreteness. My results do not depend
on the exact nature of the set of contracts apart from the assumption that each contract is bilateral. For
example, a labor market contract could specify wage, days of leave, retirement plans, and so on.

6This assumption corresponds to Ostrovsky’s assumption in [10] that agents are located in a vertically
ordered network.
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notation: Agent v ∈ V is involved with contract x ∈ X, if either sx = v or bx = v. A
contract in which agent v is the seller (buyer) is called a downstream (upstream) contract
for v. Given a set of contracts Y ⊆ X, let Dv(Y ) denote the set of contracts (in Y ) in
which v is a seller, Uv(Y ) denote the set of contracts in which v is a buyer, and Y (v)
denote the set of all contracts that v is involved with. Agent w ∈ V is a downstream
(upstream) agent relative to agent v ∈ V , if there is a contract x ∈ X(v) such that bx = w
(sx = w). An agent v ∈ V with Uv(X) 6= ∅ and Dv(X) 6= ∅ is an intermediary. For each
pair v, w ∈ V , X(v, w) denotes the set of all possible contracts between v and w.

2.1 Preferences

Agents care only about the contracts they are directly involved with and are never in-
different between two distinct subsets of X(v). Formally, v ∈ V has a weak preference
relation (i.e. a reflexive, transitive, and complete binary relation) Rv on 2X such that
Y IvZ for two subsets Y, Z ∈ 2X if and only if Y (v) = Z(v). A set of contracts Y is
acceptable (according to Rv) if Y (v)Rv∅. Given a set of contracts Y ⊆ X and a strict
preference relation Rv, Chv(Y ) denotes v’s most preferred subset of Y , v’s choice from
Y . Formally, it is defined by Chv(Y )PvZ for any Z ⊆ Y with Z 6= Chv(Y ). The next
two restrictions concern the choices of agents from various sets of contracts and were
introduced in [10].

(i) Whenever some downstream (upstream) contract becomes unavailable, v does not
reduce her demand for any still available downstream (upstream) contract. More
formally, let Y ⊆ X and either {x, x′} ⊆ Dv(Y ) or {x, x′} ⊆ Uv(Y ). Then x ∈
Chv(Y ) implies that also x ∈ Chv(Y \ {x′}) (Same Side Substitutability)

(ii) If an additional upstream (downstream) contract becomes available to an agent
v ∈ V , she does not reduce her demand for any downstream (upstream) contract.
More formally, let Y ⊆ X and either x ∈ Dv(Y ) and x′ ∈ Uv(X) \ Y , or x ∈ Uv(Y )
and x′ ∈ Dv(X)\Y . Then x ∈ Chv(Y ) implies that also x ∈ Chv(Y ∪{x′}) (Cross
Side Complementarity)

A preference profile R is admissible, if it satisfies all of the assumptions above and
R denotes the set of all admissible profiles. Note that in a supply chain model without
intermediaries CSC is vacuously satisfied so that such a model reduces to a many-to-many
two-sided matching model with substitutable preferences as studied in e.g. [12].

2.2 Networks and Solution Concepts

Given a preference profile in the domain introduced above, the aim of a supply chain
model is to predict which contracts will be signed by the agents. In the supply chain
model the relevant outcomes are sets of contracts, or networks. Networks will usually be
denoted by µ and agent v’s set of contracts under µ will be denoted by µ(v). Predictions
take the form of (cooperative) solution concepts which require a network to be robust
against certain deviations of individuals or groups.

A network is individually rational if no agent is assigned an unacceptable set of con-
tracts. This assumes that if an individual wanted to deviate she has to discontinue all
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of her existing relationships. A network µ is individually stable if no agent v wants to
drop some of her contracts in µ(v), that is, Chv(µ(v)) = µ(v) for all v ∈ V . In contrast
to individual rationality, individual stability thus allows an individual to delete some but
also to keep other contracts. Next, I consider stability notions that rule out coordinated
deviations by groups of agents.

The core (defined by weak domination) considers deviations by arbitrary groups of
players, but deviating agents are not allowed to maintain existing relationships with
“outsiders”. More formally, a network µ′ weakly dominates network µ via coalition A ⊆ V
if (i) x ∈ µ′ implies that either {sx, bx} ⊆ A or {sx, bx} ∩ A = ∅, and (ii) µ′(a)Raµ(a)
for all a ∈ A with at least one strict preference. A network µ is in the core, or core
stable, if it is not weakly dominated by any other network.7 Group stability, on the other
hand, considers any deviation that a coalition can implement by forming new contracts
only among themselves while possibly dropping some previously held contracts. Coalition
A ⊆ V can obtain µ′ from µ if x ∈ µ′ \ µ implies that {sx, bx} ⊆ A and x ∈ µ \ µ′ implies
that {sx, bx} ∩ A 6= ∅. Network µ is blocked by coalition A via network µ′ if (i) A can
obtain µ′ from µ, and (ii) µ′(a)Paµ(a) for all a ∈ A. A network is group stable if it is not
blocked by any coalition. Note that group stability is a stronger solution concept than
the core. Furthermore, note that if µ is core stable given some preference profile R then
it is also efficient, that is, there is no other network µ′ that makes all agents weakly and
at least one agent strictly better off compared to µ.

A major problem is that group and core stable networks can fail to exist even under
quite restrictive assumptions about preferences.8 Thus, in order to guarantee existence
the set of coalitional deviations has to be restricted. Ostrovsky [10] introduces a new
stability criterion which generalizes the idea of pairwise stability in the sense that it
considers (some) coordinated deviations by downstream sequences of agents instead of
only deviations by pairs. A chain is a downstream sequence of contracts {x1, . . . , xn} ⊆ X
such that for all i < n, bxi

= sxi+1
. Network µ is blocked by the chain x1, . . . , xn /∈ µ if (i)

x1 ∈ Chsx1
(µ(sx1

)∪{x1}), (ii) {xi, xi+1} ⊆ Chsxi+1
(µ(sxi+1

)∪{xi, xi+1}) for all i < n, and

(iii) xn ∈ Chbxn
(µ(bxn

) ∪ {xn}). A network µ is chain stable, if it is individually stable
and if it is not blocked by any chain. One of the main results in [10] is that chain stable
networks exist for all profiles in the domain R introduced in 2.1. Note that if there are no
intermediaries chain stability reduces to pairwise stability so that his result generalizes
the existence results from two-sided matching models with substitutable preferences.

Given the existence result, chain stability is a natural candidate for extending the
theory of stable matchings to the supply chain setting. This concept, however, has
two potential problems: First, requiring robustness against any possible chain block in
complex supply chain models means that coordinated deviations by large groups of agents

7Analogously, one can define the core by strong domination by requiring that all members of the
coalition A have to be strictly better off. Roth and Sotomayor [14, Ch. 5] show that even in many-to-
one matching markets with responsive preferences, this core concept allows for matchings that are not
pairwise stable.

8See e.g. Klaus and Walzl [8] and Konishi and Unver [9], who show that even when preferences
are strongly substitutable and responsive, respectively, there may not exist a group or core stable net-
work/matching in a two-sided matching model that is a special case of the supply chain model.
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are thought to be possible. But a “small” coalition of agents might have a profitable
deviation from a chain stable network that can only be implemented by e.g. a cyclical
sequence of trades. It is not clear why robustness against such a deviation is irrelevant
while all possible chain blocks have to be considered. Second, requiring robustness against
chain blocks may come at the expense of efficiency. If some of the deviations considered
by chain stability are implausible due to e.g. the size of the coalitions involved, less
demanding stability concepts may reduce the efficiency loss while still being satisfactorily
robust. In short, a foundation for the use of chain stability in the general supply chain
model is needed.

3 Results

This section develops conditions under which chain stable networks are efficient as well
as core and group stable. Furthermore, I provide two justifications for the use of the
chain stability concept in the general supply chain model.

For the analysis it is useful to work with a graphical representation of the supply
chain model. Let GX be the simple directed graph that contains an edge from agent v to
agent w if and only if X contains some contract x with sx = v and bx = w. This is the
graph of potential interactions that describes who can contract with whom. Note that
even though there may be more than one possible contract between a pair of agents, GX

contains at most one edge between each pair of agents. The assumption that there are no
directed trading cycles in X is equivalent to the assumption that GX contains no directed
cycles, that is, there is no sequence of agents v1, . . . , vm such that, for all i ∈ {1, . . . ,m},
(vi, vi+1) ∈ GX (where m + 1 := 1).

I restrict attention to supply chain models in which agents face fixed upper bounds
on the number of contracts they can sign: Agent v can sign contracts with at most qD

v

downstream agents and at most qU
v upstream agents. For example, an agent who owns

k indivisible goods and whose only interest is to sell these goods can sign contracts with
at most k agents. Furthermore, an arbitrary pair of agents v, w ∈ V can sign at most
qv,w ≤ |X(v, w)| contracts with each other, where qv,w = qw,v. For example, qv,w could
represent the capacity of the unique distribution channel between v and w. Let q be
the vector containing all individual and pair capacity constraints. Given V and X, the
unrestricted model is obtained by setting qv,w = qU

v = qD
v = |X|, for all v, w ∈ V . The

next definition connects capacity constraints and agents’ preferences.

Definition 1 A set of contracts Y ⊆ X violates v’s capacity constraints, if Y (v)
either contains contracts with more than qU

v upstream or more than qD
v downstream agents

relative to v, or if there is an agent w ∈ V \ {v} such that Y (v) contains more than qv,w

contracts between v and w.
Preferences conform to capacities if no agent ever finds a set of contracts accept-

able that violates one or more of her capacity constraints.

As I discuss in the appendix one could place feasibility restrictions on the set of
networks instead of requiring preferences to conform to the capacity vector. For the
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following, Rq ⊆ R denotes the set of all admissible preference profiles conforming to the
capacity vector q. Since all solution concepts I consider satisfy individual rationality, it
is without loss of generality to assume that if (v, w) ∈ GX then qD

v ≥ 1, qU
w ≥ 1, and

qv,w ≥ 1: Otherwise some contracts in X would play no role for the analysis and could
be deleted from the problem.

The pair (GX , q) is the market structure induced by the supply chain model (V, X)
and the capacity constraints q. Note that the assumptions made so far ruled out only
directed, but not undirected cycles in GX , where an undirected cycle in GX is a sequence
of distinct agents v1, . . . , vm such that, for all i ∈ {1, . . . ,m}, either (vi, vi+1) ∈ GX or
(vi+1, vi) ∈ GX (where m + 1 := 1). It turns out that the (im)possibility of actually
implementing such a cycle of trading relationships is key to the relationship between the
solution concepts studied in this paper. The following definition introduces the notion of
capacity constraints on cycles.

Definition 2 Let v1, . . . , vm be an undirected cycle in GX . Agent vi is
(i) a source (of the cycle) if {(vi, vi+1), (vi, vi−1)} ⊂ GX ,
(ii) a sink if {(vi−1, vi), (vi+1, vi)} ⊂ GX , and
(iii) a passing node if {(vi−1, vi), (vi, vi+1)} ⊂ GX .
Agent vi is capacity constrained on the cycle v1, . . . , vm if either vi is a source and
qD
vi

= 1, or vi is a sink and qU
vi

= 1.

Note that since GX is assumed not to include directed cycles, any undirected cycle in
GX must contain at least one source and at least one sink. An undirected cycle may or
may not contain (multiple) intermediaries as well as multiple sources and/or sinks. The
above definition does not consider the possibility of a capacity constrained passing node
on a cycle. The reason is that such a capacity constraint would have to require that the
agent can either sign no upstream or/and no downstream contracts, effectively rendering
some of the edges in GX irrelevant.9 Now, in order to guarantee that trading cycles
cannot be implemented, each cycle in GX has to contain at least one capacity constrained
agent, who cannot engage in more than one trading relationship. As I show below this
restriction by itself is not sufficient for the equivalence of chain and group stability since
a pair of agents might still have an incentive to block a chain stable network using a set
of two contracts with each other. Thus, we also have to require that each pair of agents
is capacity constrained in the sense that they can sign at most one contract with each
other. The following definition summarizes these requirements.

Definition 3 The market structure (GX , q) satisfies weak acyclicity if every undirected
cycle in GX contains at least one capacity constrained agent, and it satisfies bundling
if qv,w = 1 for all v, w ∈ V .

Note that bundling does not require that an agent can sell/buy at most one good
to/from any given neighbor. Rather, it requires that all trading relationships between a
given pair of agents can be bundled into one contract. To state the main result, I need the
following additional notation: Given a preference profile R ∈ Rq, let CS(R) denote the

9I thank an anonymous referee for pointing this out.
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set of all chain stable networks, IS(R) denote the set of all individually stable networks,
GS(R) denote the set of all group stable networks, C(R) denote the core, and E(R) denote
the set of all efficient networks. We have the following.

Theorem 1 The following are equivalent:
(i) The market structure (GX , q) satisfies weak acyclicity and bundling.
(ii) Chain stable networks are always group stable, that is, CS(R) = GS(R) for all

R ∈ Rq.
(iii) Chain stable networks are always in the core, that is, CS(R) ⊆ C(R) for all R ∈ Rq.
(iv) Chain stable networks are always efficient, that is, CS(R) ⊆ E(R) for all R ∈ Rq.
(v) A group stable network always exists, that is, GS(R) 6= ∅ for all R ∈ Rq.
(vi) An efficient and individually stable network always exists, that is, E(R)∩IS(R) 6= ∅

for all R ∈ Rq.

Proof of Theorem 1:
The implications (ii) ⇒ (iii), (iii) ⇒ (iv), (iv) ⇒ (vi), and (v) ⇒ (vi) follow

immediately from the definitions. That (ii) ⇒ (v) follows directly from Ostrovsky [10]’s
result that chain stable networks exist for all profiles in R. I now show the two non-
obvious implications (i) ⇒ (ii) and (vi) ⇒ (i), which completes the proof of Theorem
1.

(i) ⇒ (ii) For agent v ∈ V and a contract x ∈ X(v), let Sx,v denote the direction of the
contract relative to v, that is, Sx,v = Uv if and only if x is an upstream contract for
v. Let Sx,v denote the complementary direction, that is, Sx,v = Dv if and only if
Sx,v = Uv.

The proof is by contradiction: Suppose that (GX , q) satisfies weak acyclicity and
bundling but for some preference profile R ∈ Rq there exists a network µ ∈ CS(R)\
GS(R). By the definition of group stability there must then be a coalition A that
blocks µ via network µ′. I show that µ′ \µ must contain a blocking chain of µ. The
following algorithm will be key to the proof.

Step 1: Let v1 ∈ A be arbitrary.

1.1 If x ∈ Chv1
(µ(v1) ∪ {x}) for some x ∈ µ′(v1) \ µ(v1), set x1 = y1 = x,

B1 = ∅ and let v2 6= v1 be such that {v1, v2} = {sx1
, bx1

}.
1.2 Else, let x ∈ µ′(v1) \ µ(v1) and y ∈ Sx,v1

(µ′(v1) \ µ(v1)) be such that
{x, y} ⊆ Chv1

(µ(v1) ∪ {x, y}). Set x1 = x, y1 = y, B1 = {v1} and let
v2 6= v1 be such that {v1, v2} = {sx1

, bx1
}.

...

Step k: k.1 If xk−1 ∈ Chvk
(µ(vk) ∪ {xk−1}) and Bk−1 = ∅, stop.

k.2 If xk−1 ∈ Chvk
(µ(vk) ∪ {xk−1}) and Bk−1 = {vl} for some l < k, set

xk = yk = yl, Bk = ∅ and let vk+1 6= vl be such that {vl, vk+1} = {sxk
, bxk

}.
k.3 If xk−1 /∈ Chvk

(µ(vk) ∪ {xk−1}) and x ∈ Chvk
(µ(vk) ∪ {x}) for some

x ∈ µ′(vk) \µ(vk) set xk = yk = x, Bk = ∅, and let vk+1 6= vk be such that
{vk, vk+1} = {sxk

, bxk
}.
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k.4 If x /∈ Chvk
(µ(vk)∪{x}) for all x ∈ µ′(vk)\µ(vk) and xk−1 ∈ Chvk

(µ(vk)∪
µ′(vk)), let x ∈ Sxk−1,vk

(µ′(vk)\µ(vk)) be a contract such that {xk−1, x} ⊆
Chvk

(µ(vk) ∪ {xk−1, x}). Set xk = yk = x, Bk = Bk−1 and let vk+1 6= vk

be such that {vk, vk+1} = {sxk
, bxk

}.
k.5 If x /∈ Chvk

(µ(vk)∪{x}) for all x ∈ µ′(vk)\µ(vk) and xk−1 /∈ Chvk
(µ(vk)∪

µ′(vk)), let x ∈ µ′(vk) \ µ(vk) and y ∈ Sx,vk
(µ′(vk) \ µ(vk)) be such that

{x, y} ⊆ Chvk
(µ(vk) ∪ {x, y}). Set xk = x, yk = y, Bk = {vk} and let

vk+1 6= vk be such that {vk, vk+1} = {sxk
, bxk

}.
...

In the algorithm the sequence {Bk}k≥1 contains agents who are marked for later
processing. Note that Bk is either empty, or contains exactly one agent. I now
show that the algorithm is well defined. This requires me to establish that the
case distinction made by the algorithm is exhaustive and that it ends after a finite
number of steps.

I show the first statement via induction on the number of steps k, starting with
the induction base k = 1. Suppose that case 1.1 does not apply. I need to show
that case 1.2 applies. Note that since v1 ∈ A, we must have µ′(v1)Pv1

µ(v1) by
the group stability definition of blocking coalitions. Since µ ∈ CS(R) ⊆ IS(R)
this implies that there exists a contract x ∈ Chv1

(µ(v1) ∪ µ′(v1)) \ µ(v1). By SSS,
we must have x ∈ Chv1

[µ(v1) ∪ {x} ∪ Sx,v1
(µ′(v1) \ µ(v1))]. If Chv1

[µ(v1) ∪ {x} ∪
Sx,v1

(µ′(v1) \ µ(v1))] \ (µ(v1) ∪ {x}) = ∅, we would obtain that Chv1
[µ(v1) ∪ {x} ∪

Sx,v1
(µ′(v1) \ µ(v1))] ⊆ µ(v1) ∪ {x}. By revealed preference, this would imply

x ∈ Chv1
[µ(v1) ∪ {x} ∪ Sx,v1

(µ′(v1) \ µ(v1))] = Chv1
(µ(v1) ∪ {x}) so that case 1.1

would apply - a contradiction. So let y ∈ Chv1
[µ(v1)∪{x}∪Sx,v1

(µ′(v1)\µ(v1))] be
arbitrary and note that, again by SSS, we must have y ∈ Chv1

(µ(v1) ∪ {x, y}). If
x /∈ Chv1

(µ(v1)∪{x, y}), we would have, again by revealed preference, Chv1
(µ(v1)∪

{x, y}) = Chv1
(µ(v1) ∪ {y}) yielding another contradiction to the assumption that

case 1.1 did not apply. This completes the proof for the induction base. Now
suppose the statement is true for all l ≤ k′ − 1 for some k′ ≥ 2 and suppose that
cases k′.1 − k′.3 do not apply. Note that since xk′−1 ∈ µ′(vk′) \ µ(vk′), we must
have vk′ ∈ A as well. Suppose first that xk′−1 ∈ Chvk′

(µ(vk′) ∪ µ′(vk′)). I need

to show that there exists some contract x ∈ Sxk′−1,vk′
(µ′(vk′) \ µ(vk′)) such that

{xk′−1, x} ⊆ Chvk′
(µ(vk′)∪{xk′−1, x}). Since xk′−1 ∈ Chvk′

(µ(vk′)∪µ′(vk′))\µ(vk′),

SSS implies xk′−1 ∈ Chvk′
[µ(vk′) ∪ {xk′−1} ∪ Sxk′−1,vk′

(µ′(vk′) \ µ(vk′))]. Since cases
k′.1−k′.3 do not apply, there cannot be a contract x ∈ µ′(vk′)\(µ(vk′)∪{xk′−1}) such
that either (i) x ∈ Chvk′

(µ(vk′)∪ {xk′−1, x}) and xk′−1 /∈ Chvk′
(µ(vk′)∪ {xk′−1, x}),

or (ii) x /∈ Chvk′
(µ(vk′) ∪ {xk′−1, x}) and xk′−1 ∈ Chvk′

(µ(vk′) ∪ {xk′−1, x}). Now if

x ∈ Chvk′
[µ(vk′)∪{xk′−1}∪Sxk′−1,vk′

(µ′(vk′)\µ(vk′))]\(µ(vk′)∪{xk′−1}), SSS would
imply that x ∈ Chvk′

(µ(vk′) ∪ {xk′−1, x}) and hence {xk′−1, x} ⊆ Chvk′
(µ(vk′) ∪

{xk′−1, x}) by the above. If there was no such contract, we would necessarily obtain
Chvk′

(µ(vk′) ∪ {xk′−1}) = Chvk′
[µ(vk′) ∪ {xk′−1} ∪ Sxk′−1,vk′

(µ′(vk′) \ µ(vk′))]. Since
xk′−1 belongs to the set on the right hand side, we obtain a contradiction to the
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assumption that cases k′.1−k′.3 do not apply. Showing that case k′.5 holds provided
that k′.1 − k′.4 do not apply amounts to repeating the arguments used for the
induction base. The details are omitted.

Next, I show that the algorithm must terminate after a finite number of steps.
Suppose to the contrary that this is not the case. Then, since the set of agents
is finite there must exist indices k and l such that k < l and v = vk = vl. I can
assume w.l.o.g. that all agents between vk and vl are different. Since all agents
considered by the algorithm are part of the blocking coalition A we must have
µ′(vj)Pvj

µ(vj)Rvj
∅ for all j ∈ {k, . . . , l − 1}. Note that we must have l ≥ k + 2. If

l ≥ k + 3, vk, . . . , vl−1 is a cycle in GX . Since {xk+1, . . . , xl−1} ⊆ µ′ no agent on
the cycle is capacity constrained so that the market structure cannot satisfy weak
acyclicity. If l = k +2, note that since the algorithm does not stop in step k +1, we
must have xk+1 ∈ Sxk,vk+1

(µ′(vk+1) \ µ(vk+1)) so that in particular xk 6= xk+1. But
then |µ∩X(vk, vk+1)| ≥ 2 and, since preferences conform to capacities, qvk,vk+1

≥ 2,
which contradicts the assumption that bundling is satisfied.

So let K < ∞ be the last step of the above algorithm and let {xk, yk, Bk}
K−1

k=1
be

the corresponding sequences of contracts and stacks for later processing. I now
show how to find a blocking chain of µ within {xk}

K−1

k=1
. By definition of K, xK−1 ∈

ChvK
(µ(vK)∪{xK−1}) and BK−1 = ∅. Let L be the last step k ≤ K for which case

k.2 applies, that is, BL = {vM} for some M < L and Bk = ∅ for all k ≥ L+1. Here
I use the convention that L = 1, M = 0, and x0 = x1 if Bk = ∅ for all k ≤ K − 1.
Suppose first that there is no step k > L such that case k.3 applied. Then case
k.4 has to apply for all steps k ∈ {M + 1, . . . , L − 1} ∪ {L + 1, . . . , K − 1}: If
there was a step k ∈ {M + 1, . . . , L} such that one of the cases k.2, k.3, and k.5
applied, the stack would have been either emptied or modified before step L. Since,
as shown above, no agent is considered twice by the algorithm this is a contradiction
to BL = {vM}. By the definitions of L and K, no agent could have been put on
the stack in some step k ∈ {L + 1, . . . , K − 1} so that neither case k.2 nor case k.5
could have applied for such k. Now if xK−1 is a downstream contract for agent vK ,
this implies that xK−1, xK−2, . . . , xL, xM , xM+1, . . . , xL−1 is a blocking chain of µ.
Otherwise, the sequence in reverse order is a blocking chain. If on the other hand
k ∈ {L + 1, . . . , K − 1} is the last step ≥ L + 1 for which k.3 applies, the sequence
xK−1, . . . , xk is a blocking chain for µ (it may again be necessary to reverse the
order).

Thus, the above algorithm finds a chain block of µ within µ′ \ µ. This contradicts
the assumption that µ is chain stable and completes the proof that (i) ⇒ (ii).10

(vi) ⇒ (i) Suppose that either there is a cycle v1, . . . , vm in GX which does not contain
a capacity constrained agent, or that there is a pair v, w such that qv,w ≥ 2. In
the second case, set v1 = v, v2 = w, and m = 2. I show that there exists a profile
R ∈ Rq such that E(R) ∩ IS(R) = ∅. Since I can always construct the preference

10Note that this proof does not rely on the CSC assumption. In the appendix I discuss which results
continue to hold without the CSC assumption.
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profile in such a way that none of v1, . . . , vm wants to sign a contract with the
outside world and vice versa, I can assume that V = {v1, . . . , vm}. Let xi ∈ X
denote some contract between vi and vi+1 for i ∈ {1, . . . ,m}, where x1 6= x2 if
m = 2 (remember that 2 ≤ qv1,v2

≤ |X(v1, v2)| in this case). Agents’ preferences
are defined as follows: For all i ∈ {1, . . . ,m}, Agent vi strictly prefers signing only
contract xi over signing the set of contracts {xi−1, xi}, over signing no contracts at
all. These are the only acceptable sets of contracts. It is easy to check that the
resulting profile belongs to Rq.

11

I show that for this profile any individually stable network must assign the empty
set of contracts to all agents. By construction of the preference profile, individual
stability demands that v1 is assigned either the empty set of contracts or only x1. So
suppose that there is an individually stable network µ that includes x1. But v2 must
be assigned either the empty set of contracts or only contract x2 in an individually
stable network. Hence, any individually stable network must assign the empty set
of contracts to agent v1. A simple repetition of this argument establishes that
the unique individually stable network is the empty network. But this network is
(strictly) Pareto dominated by the complete network. This completes the proof
that (vi) ⇒ (i).

�

One important special case of the implication (i) ⇒ (ii) above is the many-to-one
matching model with substitutable preferences. Before proceeding, I now consider two
applications of Theorem 1 that have not been covered by the previous literature. The
first application uses restrictions on the pattern of connections and the capacity vector,
while the second application only introduces restrictions on the capacity vector.

Application 1 (Many-to-One Matching with a central intermediary) Consider a
matching market with a finite set of firms F , a finite set of workers W , and one cen-
tral intermediary I. All workers can sign at most one contract and work for either a
firm or the intermediary. The intermediary and the firms can have an arbitrary number
of trading partners but no firm can sign more than one contract with the intermediary.
This market structure satisfies bundling as well as weak acyclicity since each undirected
cycle must contain at least one worker and each worker is capacity constrained on any
cycle. Hence, group and chain stability coincide and, in particular, a group stable net-
work always exists. If there is more than one intermediary, more restrictions on the set
of allowable trades and/or capacities are necessary to guarantee weak acyclicity.

Application 2 (Multiple Inputs - One Output) Consider an arbitrary supply chain
model (V, X). Assume that the capacity vector is such that qv,w = 1 for all v, w ∈ V and
that no agent can sign more than one downstream contract, that is, qD

v = 1 for all v ∈ V .
This special case of the supply chain model can be thought of as describing a production

11Note that these preferences are actually same side responsive in the sense that they are responsive
when restricted to either upstream or downstream contracts. Hence, (vi) ⇒ (i) continues to hold for
this smaller domain of preferences. I thank Lars Ehlers for pointing this out to me.
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process in which each agent combines indivisible inputs from (potentially) multiple sources
into one indivisible output good, which she sells to one of her customers. The resulting
market structure satisfies weak acyclicity since all sources are capacity constrained. Note
that in this application only the capacity vector is restricted. This shows in particular
that we do not necessarily have to require that the market structure resembles a (sequence
of) many-to-one matching markets in order to guarantee the equivalence of chain and
group stability. It is clear that instead of restricting downstream capacities one could also
restrict upstream capacities of agents to obtain a weakly acyclic market structure.

Theorem 1 is related to the literature on network formation models since the supply
chain model is a special case of the general network formation models studied in e.g.
[5]. For these models the incompatibility between efficiency and stability is well known.
On the other hand, the supply chain model contains the many-to-one matching model
as a special case. As mentioned above efficiency and stability are compatible in this
model. Theorem 1 thus identifies a point at which the positive results from the two sided
matching literature break down and the general incompatibility results from the network
formation literature obtain since even the minimal requirement of individual stability
cannot in general be reconciled with efficiency.12 While the above applications show that
Theorem 1 extends the domain of models for which chain and group stability coincide,
the characterizing conditions for the equivalence are quite restrictive. However, I will
now argue that the above equivalences can be interpreted as justifying the use of chain
stability also in the unrestricted supply chain model. The following is an immediate
corollary of Theorem 1.

Corollary 1 A group stable network always exists if and only if chain stable networks
are always group stable.

This can be seen as a justification for chain stability from a robustness perspective:
The only reason for a chain stable network to fail the group stability criterion is that
the existence of a group stable network cannot, in general, be guaranteed. In this sense
a chain stable network is as stable to coordinated deviations as it gets. The following is
another immediate corollary of Theorem 1.

Corollary 2 An efficient and individually stable network always exists if and only if
chain stable networks are always efficient.

This can be seen as a justification for chain stability from an efficiency perspective:
The only reason for a chain stable network to fail the efficiency criterion is that even
the minimal requirement of individual stability cannot, in general, be reconciled with
efficiency. This implies that there is no additional efficiency loss from imposing the
stronger chain stability concept.

It is important to bear in mind that the above results are about solution concepts.
As I show in the appendix, the non-trivial of the implications in Theorem 1 do not

12Individual stability is often viewed as a minimal stability requirement in the matching literature.
For example, except for the core all stability concepts considered in [3], [8] and [9] require individual
stability.
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hold without the quantifiers. For example, it is not in general true that if for some
profile R ∈ Rq an efficient and individually stable network exists, then all chain stable
networks with respect to R are efficient. This may lead some readers to question the
efficiency justification for chain stability given above. After all, a better compromise
between efficiency and stability considerations might be achieved if we settle for individual
stability whenever it is compatible with efficiency but chain stability is not, and otherwise
require chain stability. Apart from the question whether such a concept is descriptively
appealing, such a solution concept is likely to be (computationally) infeasible as one
would need to check that given a particular problem, (a) there is an individually stable
and efficient network, and (b) any chain stable network is inefficient. Ostrovsky [10]
provides a reasonably fast algorithm to compute chain stable allocations so that chain
stability is immune to this type of criticism. A similar remark applies to the robustness
justification of chain stability.

3.1 Core Equivalence

The core is one of the most prominent solution concepts in cooperative game theory and
it is interesting to know when core and chain stability coincide. By Theorem 1, we can
restrict attention to the class of supply chain models that satisfy weak acyclicity and
bundling. Given the equivalence of chain and group stability for this class of supply
chain models, the question can be rephrased as: When is it irrelevant whether a stability
concept allows deviating agents to maintain relationships with outsiders or not? It turns
out that the absence of implementable trading cycles is not sufficient for this equivalence
to hold and that we need the following stronger restriction.

Definition 4 The market structure (GX , q) is strongly acyclic if every undirected cycle
in GX contains at least two capacity constrained agents.

Note that strong implies weak acyclicity. It is easy to see that the market structures
in applications 1 and 2 satisfy weak but not strong acyclicity. The following result shows
that for these applications chain stability is a strictly stronger solution concept than the
core.

Theorem 2 The following are equivalent:
(i) The market structure (GX , q) satisfies strong acyclicity and bundling.
(ii) Chain stability is equivalent to core stability, that is, CS(R) = C(R) for all R ∈ Rq.

Proof of Theorem 2

(i) ⇒ (ii) Note that any network µ with |µ ∩ X(v, w)| ≤ 1 for all v, w ∈ V defines a
(unique) subgraph Gµ of GX that includes an edge from v to w if and only if µ
contains a contract x with sx = v and bx = w.

By Theorem 1 we know that, for all R ∈ Rq, CS(R) ⊆ C(R) if the market structure
satisfies weakly acyclicity and bundling. Hence, I only need to show that C(R) ⊆
CS(R) if the market structure satisfies strong acyclicity and bundling. The proof
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will be by contradiction: Assume that for some R ∈ Rq there exists a network
µ ∈ C(R) \ CS(R). In the appendix, I prove the following Lemma.

Lemma 1 If the market structure (GX , q) satisfies weak acyclicity and bundling,
core allocations are always individually stable, that is, C(R) ⊆ IS(R) for all R ∈
Rq.

Since strong implies weak acyclicity, C(R) ⊆ IS(R) by the above lemma. Hence,
there must be a chain x1, . . . , xn /∈ µ that blocks µ. Consider the network µ′

that results from µ when we add the contracts x1, . . . , xn and delete contracts in
µ(sx1

)\Chsx1
(µ(sx1

)∪{x1}), µ(bxn
)\Chbxn

(µ(bxn
)∪{xn}), and µ(bxi

)\Chbxi
(µ(bxi

)∪
{xi, xi+1}) for all i < n. Note that µ′ and µ can both contain at most one contract
between each pair of agents since the market structure satisfies bundling. Now let
A ⊆ V be the set of agents who are in the same connected component of Gµ′ as
sx1

, that is, the set of agents v ∈ V such that GX contains a sequence of edges
connecting sx1

and v. I claim that µ′ weakly dominates µ via A.

Suppose to the contrary that there is an agent v̂ ∈ A \ {sx1
, bx1

, . . . , bxn
} such

that µ(v̂)Pv̂µ
′(v̂). Since we have only deleted some contracts involving agents on

the blocking chain this means that there is a contract x ∈ µ \ µ′ which involves
v̂ and an agent ṽ ∈ {sx1

, bx1
. . . , bxn

}. Note that Gµ′ cannot contain a cycle due
to weak acyclicity. Since v̂ is in the same connected component of Gµ′ as sx1

this implies that Gµ′∪{x} contains a cycle v1, . . . , vm with {v̂, ṽ} ⊂ {v1, . . . , vm}.
But on this cycle, ṽ is the only capacity constrained agent: For each agent v ∈
{v1, . . . , vm} \ ({sx1

, bx1
, . . . , bxn

} ∪ {v̂}), µ′(v) ⊆ µ(v) contains contracts with both
of her neighbors on the cycle and, given the individual rationality of µ, µ(v)Pv∅. For
each agent v ∈ ({v1, . . . , vm}∩{sx1

, bx1
, . . . , bxn

})\{ṽ}, µ′(v) contains contracts with
both of her neighbors on the cycle and µ′(v)Pvµ(v)Rv∅. Finally, µ′(v̂)∪{x} ⊆ µ(v̂)
(as v̂ /∈ {sx1

, bx1
, . . . , bxn

}) and µ(v̂)Pv̂∅ since µ ∈ C(R). Hence, the market structure
cannot satisfy strong acyclicity.

Hence, µ′ weakly dominates µ via A if the market structure satisfies strong acyclicity
and we obtain a contradiction to the assumption that µ ∈ C(R).

(ii) ⇒ (i) If either weak acyclicity or bundling is not satisfied, consider the counterex-
amples used to prove that (vi) ⇒ (i) in Theorem 1: It is easy to check that the core
consists of the complete network while the empty network is the unique chain stable
network. Now suppose that weak acyclicity and bundling are satisfied but that there
is a cycle v1, . . . , vm for which only the source v1 is capacity constrained (the case
where v1 is a sink can be handled similarly). Let x1, . . . , xm be an accompanying
sequence of contracts, that is, xk is a contract between agents vk and vk+1 (where
m + 1 := 1). As in the proof of Theorem 1 I can assume that V = {v1, . . . , vm}.
I now define a preference profile for the agents starting with Rv1

= {x1}, {xm}.
Let k ∈ {2, . . . ,m} be arbitrary and set Rvk

= {xk−1, xk} if vk is a passing node,
and Rvk

= {xk−1, xk}, {xk}, {xk−1} in any other case. Let the resulting profile be
denoted by R and note that R ∈ Rq since v1 is the only capacity constrained agent
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among v1, . . . , vm. Now let j be the smallest index in {2, . . . ,m} such that vj is
a sink and consider the network µ = {xj, . . . , xm}. Clearly, µ /∈ CS(R) since it is
blocked by the chain x1, . . . , xj−1. I now show that µ ∈ C(R).

Suppose to the contrary that µ is weakly dominated by some network µ′ via a
coalition A ⊆ V . Since agents vj+1, . . . , vm get their most preferred set of contracts
under µ, A ∩ {v1, . . . , vj} 6= ∅. By definition of j, agents v2, . . . , vj−1 are all pass-
ing nodes. It follows readily from the construction of R that v ∈ {v1, . . . , vj} ∩ A
and µ′(v)Pvµ(v) imply {x1, . . . , xj−1} ⊆ µ′ as well as {v1, . . . , vj} ⊆ A. Since
{xj}Pvj

{xj−1} this implies xj ∈ µ′ and thus vj+1 ∈ A. Continuing with this
line of reasoning it is easy to see that we must have µ′ = {x1, . . . , xm} and A =
{v1, . . . , vm}. But then v1 is worse off compared to µ since ∅Pv1

{x1, xm}, a contra-
diction.

�

Two special cases of Theorem 2 that have been studied in the previous literature
are the many-to-one matching model with substitutable preferences ([14]) and the unit
capacity model, in which each agent can sign at most one upstream and at most one
downstream contract ([10, Theorem 5]). Another special case is a discrete version of the
many-to-one matching model with substitutes and complements studied by Sun and Yang
[15]: A set of workers can be decomposed into two sets W1 and W2 such that all firms
view two workers from the same set as substitutes (in the sense of SSS) and two workers
from different sets as complements (in the sense of CSC). Workers can work for at most
one firm, while firms can hire an arbitrary number of workers. Ostrovsky [10] discusses
how this can be formulated as a supply chain model in which the set of sellers of basic
inputs comprises W1, the set of consumers of final products comprises W2, and the set
of intermediaries comprises all firms. Note that since there are no edges connecting two
firms or two workers, any undirected cycle must contain at least two workers. Since all
workers are capacity constrained (on any cycle), the market structure is strongly acyclic
and satisfies bundling so that the core coincides with the set of chain stable networks
by Theorem 2. Hence, we obtain the non-emptiness of the core as a corollary to the
existence of a chain stable network for this model.

4 Conclusion

This paper showed that the structural properties of supply chain models are important for
the relationship between (cooperative) solution concepts. Weak acyclicity and bundling
were shown to be necessary and sufficient for (i) the equivalence of chain and group
stability, (ii) the core stability of chain stable networks, (iii) the efficiency of chain stable
networks, (iv) the existence of group stable networks, and (v) the existence of an efficient
and individually stable network. The second main result characterized the class of models
for which the chain stable set coincides with the core by means of a stronger acyclicity
condition and bundling. I have argued that the first main result can be interpreted as a
justification of chain stability on basis of efficiency and robustness considerations. The

16



cooperative foundation shows that this stability concept is a reasonable allocative goal for
markets that fit the assumptions of the supply chain model. An important open question
for future research is how such markets would have to be organized in order to reach this
goal when agents act strategically.
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5 Appendix

5.1 Proof of Lemma 1

Suppose to the contrary that (GX , q) satisfies weak acyclicity and bundling but that for some
preference profile R ∈ Rq there exists a core stable network µ that is not individually sta-
ble. Let v0 ∈ V be an agent who would like to drop some of the contracts in µ(v0), that is,
Chv0

(µ(v0)) 6= µ(v0). This implies in particular that µ(v0) 6= ∅. But then it has to be the
case that Chv0

(µ(v0)) 6= ∅ since µ is at least individually rational. I denote by µ′ the network
that results from µ when contracts in µ(v0) \ Chv0

(µ(v0)) are deleted. For the following let
V0 := {v0}.

Let V1 ⊆ V \ V0 be the (nonempty) set of agents who are involved with some contract in
Chv0

(µ(v0)) and let W be the set of agents who are involved with one of the contracts v0 wants
to drop, that is, with one of the contracts in µ(v0) \ Chv0

(µ(v0)). We must have V1 ∩ W = ∅
since qv,w ≤ 1 for all v, w ∈ V and µ is individually rational. Furthermore, µ cannot contain
a contract between a pair of agents in V1 × (W ∪ V1) if the market structure satisfies weak
acyclicity. Otherwise, there would be two agents w1 ∈ V1 and w2 ∈ W ∪V1 such that µ contains
a contract between w1 and w2. By definition of V1 and W , µ also contains contracts between v0

and both, w1 and w2. Since µ is individually rational, none of the three agents can be capacity
constrained. Hence, we have found an undirected cycle in GX that does not contain a capacity
constrained agent. On the other hand, µ has to contain at least one contract between an agent
in V1 and an agent in V \ (W ∪ V0 ∪ V1). Otherwise µ′ weakly dominates µ via the coalition
V0∪V1 since (i) all agents in V1 would be indifferent between these two networks, (ii) v0 strictly
prefers µ′ over µ, and (iii) µ′ does not contain a contract between an agent in V0∪V1 and another
agent in V \ (V0 ∪ V1). Thus, there has to be a nonempty set of agents V2 ⊆ V \ (W ∪ V0 ∪ V1)
who sign a contract with some agent in V1 under µ.

Now suppose that for some k ≥ 2 we have shown that there is a sequence of sets of agents
V1, . . . , Vk such that, for all l ∈ {2, . . . , k}, Vl ⊂ V \ (W ∪ V0 ∪ . . . ∪ Vl−1) and the set of all
agents who sign a contract with agents in Vl−1 under µ is Vl−2 ∪ Vl. If the market structure
satisfies weak acyclicity and bundling, µ cannot contain a contract between a pair of agents
in Vk × (W ∪ V0 . . . ∪ Vk). The argument is similar to above and the details are omitted. On
the other hand, µ has to contain at least one contract between an agent in Vk and an agent in
V \ (W ∪ V0 . . . ∪ Vk). Otherwise µ′ weakly dominates µ via the coalition V0 ∪ . . . ∪ Vk since
(i) all agents in V1 ∪ . . . ∪ Vk would be indifferent between these two networks, (ii) v0 strictly
prefers µ′ over µ, and (iii) µ′ does not contain a contract between an agent in V0 ∪ . . . ∪ Vk

and another agent in V \ (V0 ∪ . . . ∪ Vk−1). Thus, there has to be a nonempty set of agents
Vk+1 ⊆ V \ (W ∪ V0 ∪ . . . ∪ Vk) who sign a contract with some agent in Vk under µ.

The above argument is valid for any k and the procedure would thus run forever, contra-
dicting the finiteness of V . This completes the proof.

�

Note that the converse is also true: If C(R) ⊆ IS(R) for all R ∈ Rq, the market structure
must satisfy weak acyclicity and bundling. To see this note that individual stability of the core
implies that an efficient individually stable network always exists. Hence, the statement follows
from (vi) ⇒ (i) in Theorem 1.
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5.2 Feasibility Restrictions on Networks

Instead of requiring preferences to conform to an exogenously given capacity vector, one could
also restrict the set of feasible networks. Given a capacity vector q, the set of feasible networks
Mq can be defined as follows: µ ∈ Mq if and only if µ does not violate any agent’s capacity
constraints (cf Definition 1 in section 3). Given some network µ ∈ Mq let Gµ be the directed
graph which contains one edge from v to w for each contract x ∈ µ such that sx = v and
bx = w. Note that in contrast to the graphs used in the main text, this graph may contain
multiple edges between a given pair of agents. The following shows how the acyclicity condition
developed in section 3 can be expressed in this framework.

Proposition 1 The market structure (GX , q) satisfies weak acyclicity and bundling if and only
if Gµ is a forest for all µ ∈ Mq.

13

The proof is straightforward and omitted here. It is not clear how strong acyclicity could
have been formulated in this framework. This is the main reason for requiring preferences to
conform to capacities instead.

5.3 Discussion of the main results

For this Appendix I assume that there are no capacity constraints and consider the domain R
of all admissible preference profiles. The following statements are easily seen to be true for any
given R ∈ R.

CS(R) = GS(R) ⇒ CS(R) ⊆ C(R), CS(R) ⊆ E(R),GS(R) 6= ∅, E(R) ∩ IS(R) 6= ∅
CS(R) ⊆ C(R) ⇒ CS(R) ⊆ E(R), E(R) ∩ IS(R) 6= ∅
CS(R) ⊆ E(R) ⇒ E(R) ∩ IS(R) 6= ∅
GS(R) 6= ∅ ⇒ E(R) ∩ IS(R) 6= ∅

In this appendix I show that all other implications of Theorem 1 do not necessarily hold
for any given preference profile. Chain stable networks in the examples can be calculated using
the T-algorithm of [10]. All counterexamples use a supply chain model with five agents and the
following graph of potential interactions:
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Figure 1: Graph of potential interactions for counterexamples.

13A forest is a directed graph containing no directed or undirected cycles. Note that since Gµ is not
necessarily a simple graph a cycle may consist of two agents.
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Throughout the Appendix I use the following notation: x
j
i denotes some contract in which

agent i sells something to agent j. Agent v5 will only be needed for the last example and her
preferences will not be specified in the other examples.

1. There exist profiles R ∈ R such that CS(R) ⊆ C(R), CS(R) ⊆ E(R), and E(R)∩IS(R) 6=
∅, but CS(R) 6= GS(R) and GS(R) = ∅.

Consider the following preference profile:14

R1 R1
v1

R1
v2

R1
v3

R1
v4

{x2
1} {x2

1, x
3
2} {x3

1, x
4
3} {x4

1, x
4
3}

{x2
1, x

3
1} {x3

1, x
3
2, x

4
3} {x4

1}
{x4

1} {x4
3} {x4

3}

Using the T-Algorithm it is easy to show that the unique chain stable network is given
by µ = {x4

1, x
4
3}.

To see that µ ∈ C(R1) note that v4 cannot be made better off and the only network which
makes v1 and v3 better off without hurting v2 is {x2

1, x
3
1, x

3
2, x

4
3}. This network would

make v4 worse off and thus does not weakly dominate µ in the sense of the core. Hence,
µ is in the core and thus in particular efficient.

On the other hand, µ is blocked by {v1, v2, v3} via {x2
1, x

3
1, x

3
2, x

4
3} so that µ is not group

stable. The other nonempty individually stable networks are {x4
3} and {x4

1}, which are
not even chain stable. Since a group stable matching has to be individually stable, this
shows that GS(R1) = ∅.

2. There exist preference profiles R ∈ R such that IS(R)∩E(R) 6= ∅ , but CS(R)∩C(R) = ∅
and CS(R) ∩ E(R) = ∅.

Consider the following preference profile:

R2 R2
v1

R2
v2

R2
v3

R2
v4

{x4
1, x

3
1} {x2

1, x
3
2, x

4
2} {x3

1, x
3
2, x

4
3} {x4

1, x
4
2}

{x2
1, x

3
1} {x3

2} {x3
2} {x4

2, x
4
3}

{x4
1} {x4

2} {x3
1} {x4

1}
{x2

1} {x4
3}

{x3
1} {x4

2}

The unique chain stable network is given by µ = {x4
1, x

3
2}. But the network µ′ =

{x2
1, x

3
1, x

3
2, x

4
2, x

4
3} is individually stable as well as efficient, and makes all agents bet-

ter off (note that this network is blocked by the chain x4
1).

3. There exist preference profiles R ∈ R such that CS(R) ⊆ E(R) but CS(R) ∩ C(R) = ∅.

Consider the following preference profile:

14As in all examples that follow it is easy to check that SSS and CSC are indeed satisfied.
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R3 R3
v1

R3
v2

R3
v3

R3
v4

{x2
1} {x2

1, x
3
2} {x3

1} {x4
1}

{x2
1, x

3
1} {x3

1, x
3
2}

{x4
1}

The unique chain stable network is the efficient network {x4
1}. The unique core network,

however, is given by {x2
1, x

3
1, x

3
2}.

4. There exist preference profiles R ∈ R such that GS(R) 6= ∅ but CS(R) \ E(R) 6= ∅,
CS(R) \ GS(R) 6= ∅, and CS(R) \ C(R) 6= ∅.

Preferences are given by:

R4 R4
v1

R4
v2

R4
v3

R4
v4

R4
v5

{x4
1} {x2

1, x
4
2} {x3

1, x
4
3} {x4

5} {x5
1, x

4
5}

{x2
1} {x4

2, x
4
3, x

4
5}

{x2
1, x

3
1, x

5
1} {x4

3}
{x3

1} {x4
1}

For this profile there are two chain stable networks: {x4
1} and {x3

1, x
4
3}.

The first network is also group stable, but the second is not even efficient as the network
{x2

1, x
3
1, x

5
1, x

4
2, x

4
3, x

4
5} makes all agents (weakly) better off.

5.4 Beyond the Supply Chain Model

Some of the main results of the paper continue to hold without the CSC assumption. Let
(GX , q) be a market structure and let R̂q be the set of all preference profiles that conform
to capacities and satisfy all assumptions of section 2.1 except CSC. The following theorem
summarizes the results that carry over to this more general setting (in which the existence of
chain stable networks cannot be guaranteed).

Theorem 3 1. The following are equivalent:

(i) (GX , q) satisfies weak acyclicity and bundling.
(ii) CS(R) = GS(R) for all R ∈ R̂q.
(iii) CS(R) ⊆ C(R) for all R ∈ R̂q.
(iv) CS(R) ⊆ E(R) for all R ∈ R̂q.

2. If GS(R) 6= ∅ for all R ∈ R̂q then (GX , q) satisfies weak acyclicity and bundling.

3. If IS(R) ∩ E(R) 6= ∅ for all R ∈ R̂q then (GX , q) satisfies weak acyclicity and bundling.

4. (GX , q) satisfies strong acyclicity and bundling if and only if C(R) = CS(R) for all R ∈
R̂q.

The proof of this Theorem follows directly from the observation that the corresponding
parts of the proofs of Theorems 1 and 2 do not rely on CSC. Since the existence of a chain
stable network cannot be guaranteed for the larger domain of preferences, weak acyclicity and
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bundling are not in general sufficient for the existence of either a group stable or an efficient
individually stable network.

One application of Theorem 3 is the well known roommate problem first analyzed by Gale
and Shapley [4]. In this problem 2n agents have to be assigned among n rooms that each have
place for 2 agents. Each agent can share a room with any other agent, has a strict preference
relation over potential roommates, and does not care about which room she is assigned to (only
the roommate matters). If we want to allow agents to have any (rational) preference relation
over potential roommates, this model does not belong to the class of supply chain models
with same side substitutable and cross side complementary preferences: In order to write this
problem as a supply chain model, we would have to define a directed graph of potential trading
relationships. In order to allow all potential roommate combinations we would need to introduce
an arbitrarily directed edge between all pairs of agents. It is easy to see that if n ≥ 2, at least
one agent has to be an intermediary if we require the market structure to be free of directed
cycles. The preferences of such an agent would be severely restricted by the assumption of CSC:
The intermediary would be required to either declare all upstream or all downstream agents as
unacceptable roommates. Given that the direction of the edges introduced is arbitrary, this is
not a satisfactory embedding of the roommate problem. If we dispense with the assumption
that preferences satisfy the CSC condition this problem does not occur since it is easy to see
that SSS does not restrict the set of allowed preference relations. Hence, any roommate problem
can be formulated as a supply chain model in which agents’ preferences satisfy SSS (but are
allowed to violate CSC). Note that since each agent is looking for at most one partner chain
stability reduces to pairwise stability and (any) market structure satisfies strong acyclicity and
bundling. The above Theorem thus implies the following.

Corollary 3 For roommate problems the set of pairwise stable matchings coincides with the
core.
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