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Uncertain Demand, Consumer Loss Aversion, and

Flat-Rate Tariffs∗

FABIAN HERWEG†

July 16, 2010

The so called flat-rate bias is a well documented phenomenon caused by consumers’

desire to be insured against fluctuations in their billing amounts. This paper shows that

expectation-based loss aversion provides a formal explanation for this bias. We solve

for the optimal two-part tariff when contracting with loss-averse consumers who are

uncertain about their demand. The optimal tariff is a flat rate if marginal cost of pro-

duction is low compared to a consumer’s degree of loss aversion and if there is enough

variation in the consumer’s demand. Moreover, if consumers differ with respect to the

degree of loss aversion, firms’ optimal menu of tariffs typically comprises a flat-rate

contract.

JEL classification: D11; D43; L11

Keywords: Consumer Loss Aversion; Flat-Rate Tariffs; Nonlinear Pricing; Uncertain Demand

1. INTRODUCTION

Nowadays, flat-rate tariffs are widely utilized in many industries, e.g., telephone services,

Internet access, car rental, car leasing, DVD rental, amusement parks, health clubs, and

many others. With a flat-rate tariff a consumer pays a fixed amount, which is independent

of his usage, to obtain unlimited access to a good or a service. The fact that flat-rate tariffs

are such favorable pricing schemes is hard to reconcile with orthodox economic theory,

in particular for industries where marginal costs are non-negligible. If marginal costs are

positive, a marginal payment of zero leads to an inefficiently high level of consumption

which hardly can be optimal. On the other hand, usage-based pricing may cause positive

transaction costs for measuring the actual usage of a consumer.1 In many of the examples

provided above, however, marginal costs of production or service provision are positive but

transaction costs for measuring usage are close to zero.2 This holds true, for instance, for

amusement parks the leading example of flat-rate pricing in the IO literature. The usage

∗In preparing this paper I have greatly benefited from comments made by Paul Heidhues, David Laibson,
Kristóf Madarász, Daniel Müller, Martin Peitz, Matthew Rabin,Klaus M. Schmidt, Urs Schweizer, Igor
Sloev, and Philipp Weinschenk. I also thank participants at the Nordic Conference on Behavioral and
Experimental Economics at Oslo (2009), at the IMEBE at Bilbao (2010), at the SFB Meeting at Caputh
(2010), and at the WZB Conference Biases in Markets, Berlin (2010). All remaining errors are my own
responsibility. No-one else can be blamed for any shortcomings.

†University of Bonn, Department of Economics, Chair of Economic Theory II, Adenauerallee 24-42, D-53113
Bonn, Germany, E-mail address: fherweg@uni-bonn.de.

1Sundararajan (2004) shows that it is always optimal for a monopolistic firm to offer a flat rate next to usage-
based tariffs if marginal costs are zero and there are positive transaction costs accompanied with usage-based
pricing.

2It is important to notice that, despite conventional wisdom, the marginal cost of a telephone call is not zero,
see for instance Faulhaber and Hogendorn (2000). Moreover, one should keep in mind that telephone
companies pay access charges on a per minute basis for off-net calls.
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of flat-rate contracts presumably is most puzzling for rental cars: The price for a rental car

typically is fixed per day and does not depend on the mileage.3 The costs for the rental car

company are clearly higher if the car is used more heavily, due to for instance a higher wear

of the tires. To ascertain how many miles a customer drove with the car is relatively easy

and not very costly for the company.4 Given these observations, what reasons do firms have

to offer flat-rate contracts? This paper provides a theoretical answer to that question, which

lies outside standard consumer behavior.5

There is plenty of evidence, that consumers facing the choice between several tariffs

often do not select the optimal one given their consumption patterns. In particular, con-

sumers often prefer a flat-rate tariff even though they would save money with a measured

tariff. Train (1991) referred to this phenomenon as “flat-rate bias”.6 Given the fact that

consumers are willing to pay a “flat-rate premium” it is unsurprising that this tariff form is

widely utilized in many industries. The question is, however, what causes the flat-rate bias?

Train et al. (1989) point out that “customers do not choose tariffs with complete knowledge

of their demand, but rather choose tariffs [...] on the basis of the insurance provided by

the tariff in the face of uncertain consumption patterns”. Standard risk aversion, however,

cannot capture this insurance motive, since the variations in billing rates are usually small

compared to a consumer’s income.7 Already Train (1991) states that “[t]he existence of

this [flat-rate] bias is problematical. Standard theory of consumer behavior does not incor-

porate it.” Therefore, to capture first-order risk aversion we posit that consumers are loss

averse.8 A loss-averse consumer dislikes even small deviations from his reference point. In

our model, the consumer’s demand is uncertain at the point where he selects a tariff. We

assume that the consumer forms rational expectations about his invoice, which determine

his reference point.9 The consumer feels a loss if his actual invoice amount is above his

reference point, and he feels a gain if it is below his reference point. We follow Kőszegi and

Rabin (2006, 2007) and assume that the reference point is a full distribution of the possible

billing rates. To illustrate this concept, suppose the consumer’s amount invoiced is either

$15, $20, or $30. Then, receiving a bill of $20 generates a mixture of feelings, a gain of

$5 and a loss of $10. We show that a consumer with these preferences is biased in favor

of flat-rate tariffs, since flat rates insure against the risk of losses in periods of greater than

average consumption.

First, we consider a monopolist who offers a two-part tariff to an ex ante homogeneous

group of consumers. After accepting the contract, each consumer privately observes his

3For instance, in Germany, the rental car companies Sixt, Europcar, and Hertz (the three major brands) offer
flat-rate contracts. Another common contractual form for rental cars is a three-part tariff: the contract
includes a mileage allowance and a charge per mile thereafter.

4Other well-fitting examples are the flat-rate contracts for leasing cars newly introduced by Ford and Citroën
in Germany. These contracts cover—next to the usual services—also wear repairings for a fixed amount per
month that does not depend on the mileage.

5We do not claim that our explanation is the only explanation for observing flat-rate tariffs. Another explana-
tion may be preferences for larger choice sets or mental accounting, see Thaler (1999).

6For an overview of the empirical evidence documenting the flat-rate bias see Lambrecht and Skiera (2006).
7Cf. Clay et al. (1992) or Miravete (2002).
8That consumer loss aversion could potentially explain the flat-rate bias is argued in the marketing literature,

see Lambrecht and Skiera (2006).
9Evidence for the assumption that expectations determine the reference point is documented by Abeler et al.

(forthcoming), Post et al. (2008), Crawford and Meng (2009), Gill and Prowse (2009), and Ericson and
Fuster (2009).
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demand type and thereafter chooses a quantity. The main finding is that the optimal tariff

is a flat rate if (i) the consumers are sufficiently loss averse, (ii) consumers’ consumption

patterns are uncertain, and (iii) the firm’s marginal cost of production or service provision

is low.

We extend the model to an imperfectly competitive market where firms compete for loss-

averse consumers. Moreover, we allow for consumer heterogeneity with respect to their

degree of loss aversion. Now, each firm offers a menu of two-part tariffs to screen dif-

ferently loss-averse consumers. The symmetric information case in which firms observe a

consumer’s degree of loss aversion, as well as the asymmetric information case in which the

degree of loss aversion is private information, is analyzed. In equilibrium of the symmet-

ric information benchmark, firms offer a flat-rate tariff to those consumers whose degree

of loss aversion compared to marginal cost exceeds a certain threshold. Consumers with a

lower degree of loss aversion are assigned to a metered tariff, i.e., a two-part tariff with a

strictly positive unit price. These findings turn out to carry over likewise to the asymmetric

information case. Moreover, under certain conditions, differently loss averse consumers do

not impose informational externalities on each other. In other words, firms may be able

to screen a consumer’s degree of loss aversion at no cost. This finding has the interesting

implication that a firm’s optimal menu of two-part tariffs comprises a flat-rate contract if

demand is uncertain and at least some consumers are sufficiently loss averse.

The paper proceeds as follows. Section 2 presents a simple example that illustrates the

main findings. Section 3 presents the baseline model with one firm and homogeneous con-

sumers. The demand function of a loss averse consumer for a given tariff is analyzed in

Section 4. Section 5 identifies the conditions under which a flat-rate tariff is optimal. Sec-

tion 6 extends the model to allow for imperfect competition and heterogeneous consumers.

The literature documenting evidence for the flat-rate bias as well as related theoretical arti-

cles are reviewed in Section 7. Section 8 concludes.

2. ILLUSTRATIVE EXAMPLE

In the following, we present a simple example that illustrates our main findings. Consider

a monopolist who sells one good to a single consumer. The monopolist produces with

constant per-unit cost 0 < c < 6. Suppose the take-it-or-leave-it offer the monopolist

makes to the consumer is a two-part tariff (p, L), where p is the price per unit and L is the

basic charge. For simplicity assume that the offered tariff is either cost based (p = c) or

a flat rate (p = 0). The consumer’s demand—his satiation point—depends on his demand

type θ = 6, 10. With probability α the type is “low demand” (L) and θ = 6, while with

probability 1 − α the type is “high demand” (H) and θ = 10. The consumer’s (intrinsic)

utility is quasi linear and given by θq − (1/2)q2 − pq − L, where q denotes the quantity.

If the demand type is H , then the quantity the consumer demands under the cost-based and

the flat-rate tariff is qH(c) = 10 − c and qH(0) = 10, respectively. The corresponding

gross benefit of consuming the good is uH(c) = (1/2)(100−c2) under the cost-based tariff

and uH(0) = (1/2)100 under a flat rate. If the type is L then the demanded quantities

and the corresponding gross benefits under the cost-based and the flat-rate contract are:

qL(c) = 6 − c, uL(c) = (1/2)(36 − c2) and qL(0) = 6, uL(0) = (1/2)36, respectively.
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At date 1, when the consumer decides whether or not to accept the monopolist’s offer,

neither the consumer nor the firm knows the demand type. If the consumer rejects the offer,

then he receives his reservation utility of zero. At the beginning of date 2, the consumer

learns his type and thereafter he makes his quantity choice. Let Si(p) := ui(p) − cqi(p)

with i = H, L be the generated surplus for the per-unit price p and a given demand type of

the consumer. If the consumer has “standard preferences”, it is optimal for the monopolist

to offer the cost-based tariff. Via the lump sum fee, the monopolist can extract the whole

(expected) generated surplus. A cost-based tariff provides the correct incentives for the

consumer to choose for each realized type the efficient quantity. With a flat rate, demanded

quantities are too high since marginal prices do not reflect production costs. The difference

in profits from the cost-based tariff to the flat rate is

πUSAGE − πFLAT = α[SL(c) − SL(0)] + (1 − α)[SH(c) − SH(0)] = (1/2)c2.

Now, suppose the consumer is expectation-based loss averse with respect to his billing

amount according to Kőszegi and Rabin (2006). Next to standard (intrinsic) utility from

consuming the good and paying the bill, the consumer derives gain-loss utility by compar-

ing his actual billing amount with his lagged rational expectations. More precisely, the con-

sumer evaluates a given amount of the bill by comparing it to all possible billing amounts,

where each comparison is weighted with the probability with which the alternative outcome

occurs ex ante. Moreover, let λ > 1 be the weight the consumer attaches to losses, while

the weight on gains equals 1. To keep the example as simple as possible, it is assumed that

the consumer ignores his gain-loss utility when making his quantity choice. Thus, the de-

manded quantities under both tariffs and for each demand type are the same as before. When

deciding whether or not to accept the contract, the consumer takes his expected gain-loss

utility into account.10

First, consider the case where the consumer signed the measured tariff option. If the

realized type is H then the consumer’s utility amounts to

uH(c) − cqH(c) − Lc
︸ ︷︷ ︸

intrinsic utility

−αλ[cqH(c) − cqL(c)]
︸ ︷︷ ︸

gain-loss utility

.

The first term is the gross utility from consuming amount qH(c) in the high-demand state

minus the tariff payment to the firm. The second term represents the perceived loss. With

probability α the consumer expected that his type is low demand which corresponds to a

billing amount of Lc+cqL(c). The actual type, however, is high demand and thus his billing

amount is Lc + cqH(c). Comparing the expected bill with the actual bill leads to a loss of

cqH(c) − cqL(c) which is weighted with λ. With probability 1 − α the consumer expected

that his type is high demand. Since the actual type is H this comparison does neither lead

to the sensation of a gain nor of a loss.

The consumer’s utility if demand type L is realized amounts to

uL(c) − cqL(c) − Lc
︸ ︷︷ ︸

intrinsic utility

+ (1 − α)[cqH(c) − cqL(c)]
︸ ︷︷ ︸

gain-loss utility

.

10In this example, we do not solve for a personal equilibrium. Nevertheless, the consumer forms rational
expectations about his future consumption.
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The first term is the standard consumption utility from consuming the low quantity and

making the corresponding payment. The second term captures the consumer’s perceived

gain. With probability 1 − α the consumer expected to purchase the high quantity and

paying a high bill, which feels like a gain when comparing it to the actual billing amount.

With probability α the consumer expected to pay exactly his actual amount of the bill. In

this case, this comparison does neither lead to the sensation of a loss nor of a gain.

The consumer is fully rational and in consequence he anticipates ex ante these compar-

isons of billing amounts. Thus, the consumer’s expected utility from accepting the measured

tariff is

αSL(c) + (1 − α)SH(c) − Lc − (λ − 1)α(1 − α)4c.

The consumer expects to incur a net loss which reduces his utility, since losses loom larger

than gains of equal size. Put verbally, a loss averse consumer dislikes fluctuations in his

billing amount. A flat rate, in contrast, completely insures the consumer and he does not

expect to incur any gain-loss sensation. The consumer’s expected utility from signing the

flat-rate tariff is

αuL(0) + (1 − α)uH(0) − L0.

The term (λ−1)α(1−α)4c captures the “flat-rate premium” the consumer is willing to pay

more for the flat rate than for the usage-based tariff in addition to his increased willingness

to pay due to higher consumption.

The profits generated by the flat-rate tariff exceed the profits of the cost-based tariff if

(λ − 1)α(1 − α)8 > c.

Hence, a flat rate is optimal when three criteria are satisfied: (i) the consumer is loss averse,

i.e., λ > 1 , (ii) the per-unit production costs are not too high, and (iii) the consumption

pattern is sufficiently uncertain, i.e., α is neither close to 0 nor to 1. The model predicts, for

instance, that one observes flat-rate contracts for rental cars, in particular at vacation resorts

where customers are unfamiliar with the network of roads. The model does not predict flat

rates for heating oil. Typically, the demand for heating oil is uncertain but the marginal

costs are high.

A further interesting insight can be obtained by considering the case where the monopo-

list sells to two ex ante heterogeneous groups of consumers. Consumers in the first group

have standard preferences while consumers belonging to the other group are loss averse.

Suppose that under complete information it is optimal to offer a flat-rate tariff to the group

of loss averse consumers. What is the optimal menu of two-part tariffs if the consumers

are privately informed about their degree of loss aversion? The monopolist optimally of-

fers the cost-based and the flat-rate tariff as if it could observe consumers’ types. By doing

so, the loss-averse consumers strictly prefer the flat rate. The standard types weakly prefer

the cost-based tariff, their expected utility equals zero under both contracts.11 Thus, the

monopolist can screen differently loss-averse consumers at no cost. The reason is that the

expected utility from signing a flat-rate contract is independent of a consumer’s degree of

loss aversion.

11In a perfectly competitive market not only loss averse consumers strictly prefer the flat-rate but also the
standard consumers strictly prefer the cost-based tariff. In a perfectly competitive market the basic charge
is determined by a zero profit condition.
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3. MONOPOLISTIC MARKET WITH HOMOGENEOUS CONSUMERS

3.1. Players and Timing

We consider a market where a monopolist produces a single good at constant marginal cost

c > 0 and without fixed costs. The monopolist offers a two-part tariff to a continuum of

ex ante homogeneous consumers of measure one. The tariff is given by T (q) = L + pq,

where q ≥ 0 is the quantity and L and p denote the basic charge and the per-unit price,

respectively. At the contracting stage a consumer does not know his future demand type

θ ∈ [θ, θ̄] ≡ Θ. Consumers’ demand types are independently and identically distributed

according to the commonly known and twice differentiable cumulative distribution function

F (·).12 Let the probability density function be f(·). To make this assumption more vivid

consider a consumer who decides today whether or not to sign a contract with a car rental

company for his holidays in a few weeks. How frequently he will use the rented car depends

on the weather. If the sun is always shining the consumer uses the car only to drive to the

nearby beach. But if the weather is bad he takes longer sight-seeing trips.

The sequence of events is as follows: (1) The monopolist makes a take-it-or-leave-it offer

(L, p) to consumers. (2) Each consumer forms expectations about his demand and decides

whether or not to accept the offered two-part tariff. (3) At the beginning of stage 3, each

consumer privately observes his demand type θ. Thereafter, each consumer, who accepted

the offer, demands a quantity that maximizes his utility. (4) Finally, payments are made

according to the demanded quantities and the concluded contracts.

3.2. Consumers’ Preferences

We assume that consumers are loss averse, in the sense that a consumer is disappointed

if the payment he has to make exceeds his reference payment. For instance, consumers

typically feel a loss if at the end of the month the invoice from their telecommunication

provider is larger than expected. Since, for the situations we have in mind, it is natural

to assume that the reference point incorporates forward looking expectations, we apply

the approach of reference-dependent preferences developed by Kőszegi and Rabin (2006,

2007). First, this concept posits that overall utility has two additively separable components,

consumption utility (intrinsic utility) and gain-loss utility. Second, the consumer’s reference

point is determined by his rational expectations about outcomes. Finally, a given outcome

is evaluated by comparing it to each possible outcome, where each comparison is weighted

with the ex-ante probability with which the alternative outcome occurs.

The consumer’s intrinsic utility is quasi linear in money; formally, intrinsic utility equals

u(q, θ) − T (q) if he accepts the contract.13

For the markets we have in mind, like rental cars or Internet services, even if the price

per unit is zero, demand is bounded. Therefore, we assume that there exists a satiation

12All our findings are robust to assuming that consumers’ demand types are perfectly correlated, i.e., θ is rather
a state of the world than a demand type.

13With the utility function being quasi linear, the consumer is not risk averse in the usual sense. Standard risk
aversion cannot explain flat-rate contracts, since a risk- but not loss-averse consumer is locally risk neutral.
Hence, a marginal price slightly above zero creates incentives to reduce overconsumption without reducing
the consumer’s expected utility. We focus on pure loss aversion to highlight the effect of loss aversion on
the optimal pricing scheme.
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point, qS(θ), and that overconsumption is harmless, i.e., free disposal is possible. Addi-

tionally, it is assumed that a higher demand type is associated with a stronger need for the

good. The assumptions imposed on the consumer’s intrinsic utility function concerning the

consumption good are summarized as follows:

Assumption (A1) For all θ ∈ Θ, (i) not consuming the good yields zero intrinsic utility

u(0, θ) ≡ 0, and (ii) u(q, θ) is C3 for q ≤ qS(θ). Furthermore, intrinsic utility has the

following properties,

∂u(q, θ)/∂q > 0 for q < qS(θ), ∂2u(q, θ)/∂q2 < 0 for q ≤ qS(θ),

∂u(q, θ)/∂q = 0 for q ≥ qS(θ), ∂2u(q, θ)/∂q∂θ > κ for q ≤ qS(θ),

with κ > 0. (iii) ∂u(0, θ)/∂q = ∞.

Note that ∂u(q, θ)/∂θ > 0 for q ∈ (0, qS(θ)], since the intrinsic utility of zero consumption

is normalized to zero and marginal utility is increasing in the demand type. By Assumption

(A1), the satiation point qS(θ) is defined by

qS(θ) = min{q ∈ R
+|∂u(q, θ)/∂q = 0} . (1)

The satiation point is increasing in the demand type θ, formally:14

dqS(θ)

dθ
= −

∂2u(qS(θ), θ)/∂q∂θ

∂2u(qS(θ), θ)/∂q2
> 0 . (2)

As a special case of (A1), which we will make use of in a later section to illustrate our

findings, consider u(q, θ) = θq − (1/2)q2 for q ≤ θ = qS(θ) and u(q, θ) = (1/2)θ2 for

q > θ. The Inada condition (iii) is replaced by θ > ε > 0, which guarantees that the

consumer demands a positive quantity for each realization of the demand type.

For simplicity, we depart from the Kőszegi and Rabin concept by assuming that the con-

sumer feels gains and losses only in the money dimension.15 We discuss the implications

of this assumption further below. Put verbally, we posit that a consumer does not feel a

loss if the weather is nice and he uses the rental car less often than expected. Similarly, he

does not feel a gain when using the car more often than expected due to bad weather. The

consumer feels a loss, however, if the rental price depends on the driven miles and he used

the car more often than expected. One could defend this assumption also on the ground

that there is one point in time where the consumer receives his bill and compares it with his

expectations, whereas the potential gains and losses regarding the consumption of the good

are distributed among the whole billing period and therefore less salient.

The consumer’s gain-loss function is assumed to be piece-wise linear, since the main

driver of loss aversion—in particular for small stakes—is the kink in the value function and

not its diminishing sensitivity.16 If the consumer pays T , but expected to pay T̂ , then his

14Strictly speaking, we have to take the left-hand limit when q approaches qS(θ) to obtain the stated derivative.
15This assumption is also imposed by Spiegler (2010). The implications of not assuming a general gain-loss

function for both dimensions are investigated by Karle and Peitz (2010b). They show that this assumption
has merely quantitative effects.

16The assumption of a piece-wise linear gain-loss function is in accordance with the majority of applied loss-
aversion articles. See, for instance, Heidhues and Kőszegi 2008) or Herweg et al. (forthcoming).
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gain-loss utility is given by

µ(T̂ − T ) =

{

η(T̂ − T ) , for T̂ ≥ T

−ηλ(T − T̂ ), for T > T̂
,

where η > 0 is the weight put on gain-loss utility relative to intrinsic utility and λ ≥ 1 is the

weight put on losses relative to gains. With λ > 1 the consumer is loss averse in the sense

that losses loom larger than gains of equal size. For η = 0 the consumer’s preferences are

not reference dependent.

The consumer’s expected demand conditional on the type fully determines the distribu-

tion of his expected payments, and thus his reference point. Suppose the consumer signed

the contract. Then his overall utility from this contract when purchasing q units, given his

demand type is φ and his expected consumption is 〈q(θ)〉θ∈Θ, is given by

U(q|φ, 〈q(θ)〉) = u(q, φ) − T (q) + η

∫

X(q)
[T (q(θ)) − T (q)]f(θ) dθ

− ηλ

∫

Xc(q)
[T (q) − T (q(θ))]f(θ) dθ , (3)

with X(q) ≡ {θ ∈ Θ|T (q) < T (q(θ))} and Xc(q) ≡ {θ ∈ Θ|T (q) ≥ T (q(θ))}. Observe

that for p ≥ 0 it holds that X(q) ⊇ X(q + z) and Xc(q) ⊆ X(q + z) for any z > 0.

In words, if the consumer demands a higher quantity this increases the number of demand

types compared to which he feels a loss and reduces the number of demand types compared

to which he feels a gain.

To deal with the resulting interdependence between actual consumption and expected

consumption, we use the personal equilibrium concept, which requires the strategy that

generates expectations to be optimal conditional on these expectations.17

Definition 1 (Personal Equilibrium) For a given per unit price p the demand function

〈q̂(θ; p)〉θ∈Θ is a personal equilibrium if for all φ ∈ Θ,

q̂(φ; p) ∈ arg max
q≥0

U(q|φ, 〈q̂(θ; p)〉) .

4. THE DEMAND FUNCTION

In this section, we characterize the consumer’s demand given he accepted the two-part tariff

(p, L). First, we characterize some basic properties the demand function needs to satisfy

to constitute a personal equilibrium. Thereafter, it is shown that the demand function that

constitutes a personal equilibrium is unique if the marginal price is not too high. For high

marginal prices there are multiple personal equilibria. In these equilibria, there is an interval

of demand types where demand is independent of the type. We will show, that—given

marginal costs are not too high—it is never optimal for the monopolist to charge such a

high marginal price that multiplicity of personal equilibria occurs. This allows us to focus

on the cases where a unique personal equilibrium exists when solving the firm’s tariff choice

problem, even though the marginal price is an endogenous variable.

17See Kőszegi and Rabin (2006, 2007) for a general description and a defense of this concept of consumer
behavior.
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4.1. Preliminary Characterization of the Demand Function

We can restrict attention to nonnegative per-unit prices, p ≥ 0: A negative unit prices

cannot be optimal since overconsumption is harmless. In order not to render flat-rate tariffs

infeasible, it is assumed that in case of being indifferent between two or more quantities

the consumer chooses the lowest of these quantities. Alternatively, one could assume that

overconsumption is not completely harmless.

Since a higher demand type is associated with a stronger preference for the good, it seems

reasonable that the demand function is increasing in the type. The following lemma shows

that this indeed is the case.

Lemma 1 For any two demand types θ1, θ2 ∈ Θ with θ1 < θ2, q̂(θ1; p) ≤ q̂(θ2; p).

Unless specified otherwise, all proofs are presented in the appendix. Since in any personal

equilibrium demand is increasing in the demand type and p ≥ 0, the consumer feels losses

compared to lower types and gains compared to higher ones. Thus, the consumer’s utility

for a given type φ in a personal equilibrium can be written as

U(q̂(φ; p)|φ, 〈q̂(θ; p)〉) = u(q̂(φ; p), φ) − T (q̂(φ; p))

+ η

∫ θ̄

φ

[T (q̂(θ; p)) − T (q̂(φ; p))]f(θ) dθ − ηλ

∫ φ

θ

[T (q̂(φ; p)) − T (q̂(θ; p))]f(θ) dθ .

(4)

Taking the expected value with respect to the demand type of the above formula yields the

consumer’s expected utility on the equilibrium path,

Eθ[U(q̂(θ; p)|θ, 〈q(θ; p)〉)] =

∫ θ̄

θ

[u(q̂(θ; p); θ) − T (q̂(θ; p))]f(θ) dθ

− η(λ − 1)

∫ θ̄

θ

∫ θ̄

θ

[T (q̂(φ; p)) − T (q̂(θ; p))]f(φ)f(θ) dφdθ . (5)

The first integral of the above formula represents standard expected intrinsic utility. The

second term is the ex ante expected net loss of the consumer, which is weighted by η(λ−1).

Remember that the consumer compares a given outcome with each possible other outcome.

Thus, the comparison of any two possible payments enters the consumer’s expected utility

exactly twice, once as a loss and once as an equally-sized gain. For λ = 1 the consumer

puts equal weights on gains and losses, hence, ex ante all these comparisons cancel out.

When making the purchasing decision, however, even for λ = 1 these comparisons do not

cancel out since expectations are fixed. We will further explain this observation in the next

section.

Even with loss-averse consumers demand is well behaved in the following sense: The

consumer’s demand when playing a personal equilibrium does not “jump” if the demand

type changes slightly.

Lemma 2 Any demand function that constitutes a personal equilibrium 〈q̂(θ; p)〉θ∈Θ is

continuous in the demand type θ.
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4.2. A Candidate for a Personal Equilibrium Demand Function

In this part, we show that demand is strictly increasing in the type if the marginal price is

relatively low. To establish this result, we define the function q̃(θ; p). In fact—as we will

show—the function q̃(θ; p) characterizes the unique personal equilibrium if p is sufficiently

small. The function q̃(θ; p) is implicitly characterized by

∂u(q̃(θ; p), θ)

∂q
≡ p [1 + η + η(λ − 1)F (θ)] . (6)

For a standard consumer with η = 0, the function q̃(θ; p) equates marginal utility with

marginal payments. For a consumer with reference-dependent preferences but who is not

loss averse, i.e. λ = 1, the marginal value of money at the point of the quantity decision is

1 + η. Paying $1 more reduces the intrinsic utility by 1 and it reduces the gain-loss utility

which is weighted by η: either by increasing the losses by 1 or by reducing the gains by

1. If the consumer also is loss averse, he additionally perceives a net loss compared to

lower demand types which are paying lower bills. Thus, loss aversion leads to a downward

distortion of demand, in particular for high-demand types.

It turns out that whether or not q̃(θ; p) is strictly increasing in the type plays an impor-

tant role for the characterization of personal equilibria. Implicit differentiation of (6) with

respect to θ yields

dq̃(θ; p)

dθ
= −

∂2u(q̃(θ; p), θ)/∂q∂θ − pη(λ − 1)f(θ)

∂2u(q̃(θ; p), θ)/∂q2
.

The function q̃(θ; p) is strictly increasing in θ if and only if the following condition is

satisfied:

Condition 1 For all θ ∈ Θ,

p <
∂2u(q̃(θ; p), θ)/∂q∂θ

η(λ − 1)f(θ)
. (C1)

The right-hand side of (C1) tends to infinity, and thus Condition 1 is always satisfied, if

either η tends to zero or λ tends to 1. The condition is more likely to be satisfied if the

distribution of the demand types is not very dense. In other words, if the environment

is sufficiently unpredictable then Condition 1 holds. Furthermore, the above condition is

satisfied if the per unit price is sufficiently small.

Now we are prepared to establish the result that in a personal equilibrium there cannot be

a set of types that consumes the same amount if the per unit price is low.

Lemma 3 In any personal equilibrium it holds: For every pair of types θ1, θ2 ∈ Θ with

θ1 6= θ2 it holds that q̂(θ1; p) 6= q̂(θ2; p) if and only if Condition 1 holds.

Unique Personal Equilibrium.—The demand function q̂(θ; p) is nondecreasing and con-

tinuous and thus differentiable with respect to q for q ∈ [q̂(θ; p), q̂(θ̄; p)] almost everywhere.

Given Condition 1 holds, the personal equilibrium is strictly increasing and thus we can

conclude that dq̂(θ; p)/dθ > 0.

In the following, we derive necessary conditions a personal equilibrium demand function

has to satisfy if it is strictly increasing in the demand type. It is shown that there exists
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exactly one candidate satisfying the necessary conditions. This unique candidate is indeed

strictly increasing if and only if Condition 1 holds. We proceed by construction, that is, we

assume the consumer expects that his demand is strictly increasing in the demand type. The

utility of a consumer of type φ who consumes q ∈ [q̂(θ; p), q̂(θ̄; p)] units, given he expected

to play a personal equilibrium where consumption is strictly higher for higher types, is given

by

U(q|φ, 〈q̂(θ; p)〉) = u(q; φ) − pq − L

+ ηp

∫ θ̄

α(q)
[q̂(θ; p) − q]f(θ) dθ − ηλp

∫ α(q)

θ

[q − q̂(θ; p)]f(θ) dθ , (7)

where α(q) is implicitly defined by q̂(α(q); p) ≡ q. Note that the derivative α′(q) =

(dq̂(α(q); p)/dθ)−1 > 0 almost everywhere by hypothesis. Taking the derivative of U(q|·)

with respect to q yields

dU(q|·)

dq
=

∂u(q, φ)

∂q
− p − ηλp[q − q̂(α(q); p)]f(α(q))α′(q) − ηλp

∫ α(q)

θ

f(θ) dθ

− ηp[q̂(α(q); p) − q]f(α(q))α′(q) − ηp

∫ θ̄

α(q)
f(θ) dθ . (8)

Taking into account that q̂(α(q); p) − q = 0, the above derivative can be simplified to

dU(q|·)

dq
=

∂u(q, φ)

∂q
− p − pη[1 − F (α(q))] − pηλF (α(q)) .

The consumer’s utility is strictly concave for q ∈ [q̂(θ; p), q̂(θ̄; p)], since

d2U(q|·)

dq2
=

∂2u(q, φ)

∂q2
− pη(λ − 1)f(α(q))α′(q) < 0 .

A necessary condition for 〈q̂(θ; p)〉θ∈Θ to constitute a personal equilibrium that is strictly in-

creasing in the demand type is that for all θ ∈ Θ the first-order condition dU(q̂(θ; p)|θ, ·)/dq =

0 is satisfied. Thus, a necessary condition for a personal equilibrium with a strictly increas-

ing demand function is that it satisfies for all θ ∈ Θ the first-order condition (6). In other

words, q̂(θ; p) ≡ q̃(θ; p). Note that the first-order condition (6) characterizes a unique can-

didate for a personal equilibrium demand function, that is strictly increasing in the type.

We know that dq̃(θ; p)/dq > 0 for all θ ∈ Θ if and only if Condition 1 is satisfied. Thus,

provided that Condition 1 holds the unique personal equilibrium is q̂(θ; p) ≡ q̃(θ; p). Fur-

thermore, note that q̂(θ; p) = qS(θ) for p = 0.

Proposition 1 Suppose Condition 1 holds. Then there exists a unique personal equilibrium

〈q̂(θ; p)〉θ∈Θ. The personal equilibrium is characterized by ∂u(q̂(θ; p), θ)/∂q ≡ p[1 + η +

η(λ − 1)F (θ)].

Since Condition 1 is satisfied for a flat-rate tariff, the next result is immediately obtained

from Proposition 1.

Corollary 1 Suppose p = 0, then there is a unique personal equilibrium, in which the

consumer demands his satiation quantity, i.e., q̂(θ; 0) = qS(θ) for all θ ∈ Θ.
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Before characterizing the personal equilibria for the cases where Condition 1 fails to hold,

we define S(p) as the expected joint surplus of a firm and a consumer when contracting at

marginal price p. Formally

S(p) ≡ Eθ[U(q̂(θ; p)|θ, 〈q̂(θ; p)〉)] + (p − c)Eθ[q̂(θ; p)] + L . (9)

Thus, the generated joint surplus from a flat-rate tariff amounts to

S(0) =

∫ θ̄

θ

[
u(qS(θ), θ) − cqS(θ)

]
f(θ) dθ. (10)

The surplus generated by a flat rate, S(0), becomes arbitrarily negative for sufficiently large

marginal cost c and approaches the first-best surplus SFB for c → 0, where SFB :=

max〈q(θ)〉θ∈Θ

∫ θ̄

θ
(u(q(θ), θ) − cq(θ)) f(θ)dθ. This is intuitively plausible since the firm

severely suffers from overconsumption induced by a flat-rate if marginal costs are high.

For marginal costs of zero, on the other hand, the flat-rate contract implements the efficient

quantities.

4.3. Personal Equilibrium with Bunching

How does the personal equilibrium look like if Condition 1 fails to hold? In this case there

exists an interval of demand types for which demand is the same. Before characterizing the

personal equilibrium candidates, we show that any personal equilibrium demand is bounded

from below and from above. Let the lower and the upper bound be denoted by qMIN and

qMAX , respectively. Clearly, these bounds depend on the marginal price p. It is straightfor-

ward to show that the bounds are characterized by the following equations,18

∂u(qMIN , θ)

∂q
= (1 + ηλ)p and

∂u(qMAX , θ̄)

∂q
= (1 + η)p.

For q < qMIN even the lowest type, θ, has an incentive to deviate to a higher quantity.

Similarly, for q > qMAX it is optimal for all types, even for the highest type, θ̄, to deviate

to a lower quantity.

By Lemma 2, any personal equilibrium is continuous in the demand type even if Condi-

tion 1 does not hold. Furthermore, if the personal equilibrium consists of flat parts as well

as strictly increasing parts, then for the strictly increasing parts the personal equilibrium is

given by q̃(θ; p). Thus, if the flat part is an interior interval of Θ, then at the boundary points

condition (6) has to hold. On the other hand, if the flat segment starts at θ or ends at θ̄, then

the “bunching quantity" q̄ has to satisfy an inequality constraint: given q̄ a downward (up-

ward) deviation has to reduce the utility of the type θ (respectively θ̄). The following lemma

characterizes these cases.

18Suppose q̂(θ; p) < qMIN for some θ ∈ Θ. If the consumer with demand type θ chooses a quantity q ≥

qMIN his utility is at least u(q, θ) − pq − L − ηλp
∫ θ̄

θ
[q − q̂(φ; p)]f(φ)dφ. (The worst case is to perceive

a loss compared to all other demand types). Thus, ∂u(qMIN , θ)/∂q − (ηλ + 1)p > 0 is a sufficient

condition that type θ has an incentive to deviate to a quantity q ≥ qMIN . The lowest incentive for an

upward deviation has type θ, which characterizes the bound qMIN . Put verbally, quantities lower than

qMIN are not optimal even for the lowest demand type and even if higher quantities are accompanied with

perceiving a loss compared to all other demand types. The upper bound, qMAX , is obtained by a similar
reasoning.
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Lemma 4 Consider a personal equilibrium 〈q̂(θ; p)〉θ∈Θ with bunching in at least one in-

terval I ⊆ Θ with bounds θ1 and θ2 where θ ≤ θ1 < θ2 ≤ θ̄, i.e., q̂(θ; p) = q̄ ∀ θ ∈ I .

Then the constant quantity q̄ and the bounds, θ1 and θ2, are characterized by

∂u(q̄, θ1)/∂q − p[1 + η + η(λ − 1)F (θ1)] = 0 if θ1 > θ

∂u(q̄, θ)/∂q − p[1 + η] ≥ 0 if θ1 = θ

and

∂u(q̄, θ2)/∂q − p[1 + η + η(λ − 1)F (θ2)] = 0 if θ2 < θ̄

∂u(q̄, θ̄)/∂q − p[1 + ηλ] ≤ 0 if θ2 = θ̄.

For the parts where the personal equilibrium is strictly increasing q̂(θ; p) ≡ q̃(θ; p).

The situation described in the above lemma is depicted in Figure 1.

θ θ1 θ2 θ̄

q̄

q̂(θ; p)

θ

q̃(θ; p)

Figure 1: Personal Equilibrium with Bunching

What is the reason for demand not being strictly increasing in the type? When the per-

sonal equilibrium demand function consists of flat parts, then the personal equilibrium itself

insures the consumer against fluctuations in his billing amount—at least to some degree.

The consumer values this insurance if fluctuations lead to high expected losses, which is the

case if p is high and if the marginal utility does not differ by too much between different

types, i.e. if ∂2u(q; θ)/∂q∂θ is low. A consumer ex ante may prefer a demand function

that consists of flat parts, but to expect this function is not necessarily credible. A con-

sumer’s quantity decision depends on the realized demand type and on his expectations. A

dense distribution of demand types amplifies the feedback on which the possibility that a

self-fulfilling expected demand functions consist of flat parts hinges. This is also the reason

why there are multiple personal equilibria, if the demand function is not strictly increasing.

If, on the other hand, the demand function is not very dense then the expected demand for

a given demand type has only a minor impact on the consumer’s purchasing decision. In

other words, for a widespread distribution of demand types only demand functions that are
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strictly increasing in the demand type are credible, since a higher demand type is associated

with a higher (intrinsic) marginal utility.

Without further assumptions on the utility function and the distribution of the demand

types, the bunching regions are intricate to characterize. Moreover, if Condition 1 does

not hold and thus the personal equilibrium consists of flat parts, then there typically are

multiple personal equilibria.19 A flat rate can only be optimal if marginal costs are not too

high. As we will show, if marginal costs are relatively low, then the gains from trade for high

marginal prices such that bunching occurs are lower than the gains from trade generated by

a flat rate. Hence, for low marginal costs it is never optimal for the monopolist to set such

high per-unit prices that bunching occurs. When solving for the optimal tariff, we provide

a sufficient condition that allows us to focus on the cases in which Condition 1 is satisfied.

Put differently, since we are interested in situations where it is optimal for firms to offer

flat-rate tariffs, there is no need to further discuss the personal equilibria for high per-unit

prices.

For illustrative purposes, we characterize all personal equilibria for a special case. Sup-

pose that types are uniformly distributed and that the cross derivative of the utility function

is constant. Then, dq̃(θ; p)/dθ is either strictly increasing for all θ ∈ Θ or nonincreasing

for all θ. Thus, depending on the per-unit price, the personal equilibrium is either strictly

increasing or constant over all states of the world.

Corollary 2 Suppose ∂2u(q, θ)/∂q∂θ = K > 0 for q ≤ qS(θ) and θ ∼ U [θ, θ̄]. Then

(i) for p < K(θ̄ − θ)/[η(λ − 1)] there exists a unique personal equilibrium which is

characterized by ∂u(q̂(θ; p), θ)/∂q ≡ p[1 + η + η(λ − 1)(θ − θ)/(θ̄ − θ)], (ii) for p ≥

K(θ̄ − θ)/[η(λ − 1)] in any personal equilibrium demand is independent of the demand

type, i.e., q̂(θ; p) = q̄ for all θ ∈ [θ, θ̄]. In this case there are multiple personal equilibria

and q̄ satisfies [∂u(q̄, θ̄)/∂q]/(1 + ηλ) ≤ p ≤ [∂u(q̄, θ)/∂q]/(1 + η) .

5. THE OPTIMALITY OF FLAT-RATE TARIFFS

The monopolist maximizes its revenues minus costs subject to the consumers’ participation

constraint:

max
L,p≥0

L + (p − c)

∫ θ̄

θ

q̂(θ, p)f(θ)dθ

subject to Eθ [U(q̂(θ, p)|θ, 〈q̂(φ, p)〉)] ≥ 0.

For any unit price p, the optimal fixed fee is determined by the binding participation con-

straint. Thus, the monopolist’s tariff choice problem can be restated as a problem of choos-

ing only the unit price p. Since there is no asymmetric information at the contracting stage,

the optimal unit price, p̂, maximizes the joint surplus S(p) of the two contracting parties.

19Kőszegi and Rabin (2006) define the preferred personal equilibrium as refinement for situations where mul-
tiple personal equilibria exist.
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The joint surplus is given by

S(p) =

∫ θ̄

θ

{

u(q̂(φ, p), φ) − cq̂(φ, p) + ηp

∫ θ̄

φ

[q̂(θ, p) − q̂(φ, p)]f(θ) dθ

− ηλp

∫ φ

θ

[q̂(φ, p) − q̂(θ, p)]f(θ) dθ

}

f(φ) dφ. (11)

Remember that a given difference in tariff payments enters the consumer’s expected utility

exactly twice, once as a gain and once as a loss. Adding expected gains and losses allows

us to rewrite the joint surplus as follows

S(p) =

∫ θ̄

θ

[u(q̂(φ, p), φ) − cq̂(φ, p)]f(φ) dφ

− η(λ − 1)p

∫ θ̄

θ

∫ θ̄

φ

[q̂(θ, p) − q̂(φ, p)]f(θ)f(φ) dθdφ.

For λ = 1—the consumer is not loss averse—the joint surplus is the expected utility of the

consumer minus the firm’s expected costs of production. A loss averse consumer expects

ex ante to bear a net loss if tariff payments depend on his demand type. This expected net

loss reduces the joint surplus and in a sense captures the consumer’s flat-rate bias.

Given Condition 1 does not hold then S(p) is not unambiguously defined, since the per-

sonal equilibrium is not unique. Due to the next lemma, one can focus on the cases in

which the personal equilibrium is unique given that the marginal cost is low. Let p̄ :=

minθ{κ[η(λ − 1)f(θ)]−1}. Note that if p < p̄ then Condition 1 is satisfied.

Lemma 5 Suppose marginal cost, c > 0, is sufficiently low. Then the joint surplus, S(p),

is maximized for a unit price p ∈ [0, p̄).

The condition under which Lemma 5 is applicable is not very restrictive if one is prepared

to assume that the distribution of the demand types is not very dense. With f(θ) being

small and thus p̄ being high, the possible gains from trade with unit prices larger than p̄

are small, since demand is decreasing in p. Keep in mind that the price p̄ is independent

of the marginal cost. For the sake of argument suppose the consumer is not loss averse.

If marginal cost is relatively low compared to the price p̄, then unit prices p ≥ p̄ lead to

higher distortions in demand than a unit price of zero compared to the efficient quantities.

Thus, the monopolist would optimally choose a unit price p ∈ [0, p̄). If the consumer is

loss averse, a unit price p ≥ p̄ not only leads to greater distortions in demand than a flat

rate, it additionally imposes an expected net loss on the consumer. When signing a flat-rate

contract, in contrast, the consumer does not expect to incur a net loss. Since the firm tries

to maximize the joint surplus—including gain-loss utility—the optimal unit price is below

p̄ for marginal cost not too high.

In all what follows it is assumed that c is such that Lemma 5 is applicable. Hence,

we can focus on the case where the personal equilibrium 〈q̂(θ, p)〉θ∈Θ is characterized by

∂u(q̂(θ, p), θ)/∂q ≡ p[1 + η + η(λ − 1)F (θ)]. The derivative of the joint surplus with
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respect to the marginal price p is

S′(p) =
∫ θ̄

θ

{

(p − c)
dq̂(θ, p)

dp
+ pη

∫ θ̄

θ

dq̂(φ, p)

dp
f(φ) dφ + pηλ

∫ θ

θ

dq̂(φ, p)

dp
f(φ) dφ

}

f(θ) dθ

− η(λ − 1)

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ)f(θ) dφdθ . (12)

Obviously, without reference-dependent preferences, i.e., η = 0, the joint surplus is maxi-

mized for a cost-based tariff where p = c. For all η ≥ 0 the demand function is downward

sloping,

dq̂(θ, p)

dp
=

1 + η + η(λ − 1)F (θ)

∂2u(q̂(θ, p), θ)/∂q2
< 0 . (13)

This immediately implies that for unit prices p ≥ c the joint surplus is strictly decreasing

in p. Thus, the optimal marginal price p̂ ∈ [0, c). In order to guarantee that S(p) is well

behaved, we need an additional assumption. In this regard, we define

Ψ(p) ≡ (p − c)

∫ θ̄

θ

dq̂(θ, p)

dp
f(θ)dθ − η(λ − 1)

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ)f(θ) dφdθ .

Assumption (A2) For p ∈ [0, c), Ψ(p) is non-increasing in p.

The function Ψ(p) depends on the demand function that constitutes a personal equilibrium.

Assumption (A2) is satisfied, for instance, if ∂2q̂(p, θ)/∂p2 ≥ 0 and ∂2q̂(p, θ)/∂p∂θ ≥ 0.

In particular, we have to rule out that a higher marginal price leads to a reduction in expected

losses, which may happen due to a highly compressed demand profile. A higher unit price

has two effects on the consumer’s expected net losses. On the one hand, a higher unit price

increases the expected net loss due to increased variations in payments for a given demand

function. On the other hand, the consumer reacts to the higher unit price by choosing a more

compressed demand function, which in turn reduces his expected net losses. In summary,

Assumption 2 ensures that the direct effect on the net losses is always stronger than the

indirect effect. To cut back on our lengthy formulas we define

Σ(λ) ≡ η(λ − 1)

∫ θ̄

θ

∫ θ̄

θ
[q̂(φ, 0) − q̂(θ, 0)]f(φ)f(θ)dφdθ

−
∫ θ̄

θ
[dq̂(θ, 0)/dp]f(θ)dθ

.

Note that q̂(θ, p) does also depend on λ. Obviously, Σ(1) = 0 and Σ(λ) tends to zero if

η tends to zero. Moreover, it can be shown that Σ(·) is strictly increasing in λ and thus

Σ(λ) > 0 for λ > 1.

With this notation, we are prepared to state the main result of this section.

Proposition 2 Suppose (A2) holds. Then, the monopolist optimally offers a flat-rate tariff,

i.e., p̂ = 0, if and only if Σ(λ) ≥ c. Moreover, Σ′(λ) > 0.

According to Proposition 2, a flat-rate tariff is optimal when the marginal cost is sufficiently

low compared to Σ(·). In other words, a flat-rate contract is optimal when the consumer is
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sufficiently loss averse, since Σ(·) is increasing in the consumer’s degree of loss aversion.

Thus, a consumer’s degree of loss aversion is directly linked to the strength of his flat-

rate bias. On the one hand, a flat-rate tariff eliminates losses on the side of the consumer,

which in turn increases his willingness to pay for the contract. The numerator of Σ(·) is

proportional to the net loss the consumer expects to bear if the firm increases the unit price

slightly above zero. On the other hand, a flat-rate tariff leads to an inefficiently high level

of consumption which is costly to the firm. In sum, if marginal costs are low, the positive

effect due to minimized losses outweighs the negative effect on production costs due to

overconsumption, and thus a flat-rate tariff is optimal. Interestingly, a flat-rate contract can

be optimal only if there is enough variation in the consumer’s demand. The numerator

of Σ(λ) is a measure for the degree of demand variation. If the consumer’s demand is

independent of his type—no variation in demand—then Σ(·) equals zero. The numerator

of Σ(·) averages over the cumulated differences in the satiation demand for a given type

to all higher types.20 Moreover, a measured tariff is optimal if the consumer’s demand

reacts sensitive to price changes. The denominator measures how strong on average the

consumer’s demand reacts due to an increase of the unit price slightly above zero. Since

a flat-rate contract leads to overconsumption which is costly, the firm has an incentive to

choose a positive unit price if price increases cause sharp reductions in demand. Thus, a

flat-rate tariff is more likely to be optimal when either fluctuations in demand are high, or

when demand reacts relatively inelastic to price changes.

For the sake of clarity, we stated Proposition 2 under Assumption (A2). The optimality

of flat-rate contracts, however, does not rely on (A2). Without imposing (A2) a flat-rate

tariff is optimal when the requirement Σ(λ) ≥ c is replaced by the following slightly more

restrictive condition: For all p ∈ [0, c):

η(λ − 1)

∫ θ̄

θ

∫ θ̄

θ
[q̂(φ, p) − q̂(θ, p)]f(φ)f(θ)dφdθ

−
∫ θ̄

θ
[dq̂(θ, p)/dp]f(θ)dθ

≥ c .

The intuition behind the above finding is the same as the one behind Proposition 2. Since

the firm’s profit—or, more precisely, the joint surplus—is not necessarily quasi concave

for p ∈ [0, c), it is not sufficient for the optimality of flat rates that S(·) is decreasing at

p = 0. The above condition ensures—without directly imposing quasi concavity—that the

joint surplus is decreasing in the marginal price.

Example.—To illustrate the optimality of flat-rate tariffs we now discuss an example.

Suppose the consumer’s intrinsic utility for the good is given by u(q, θ) = θq − (1/2)q2

for q ≤ θ = qS(θ) and u(q, θ) = (1/2)θ2 otherwise. The demand types are uniformly

distributed on [2, 3]. Let the weight put on gain-loss utility be η = 1 and suppose that

the marginal costs of production are c = 0.05.21 The quantities demanded in a personal

20Empirical studies about the flat-rate bias who support the so-called “ratio rule” often argue that a higher
variance in the consumer’s demand does not necessarily increase the consumer’s preferences for a flat-rate
option, see for instance Nunes (2000). Similarly, for a loss averse consumer an invoice profile is more risky
if it has a higher average self distance (numerator of Σ(·)), which does not imply a higher variance.

21Normalizing η = 1 is not crucial for the insights that are to be obtained. The effects of changing η are
qualitatively similar to the effects of changing λ. For λ = 1 the consumer has reference-dependent prefer-
ences but is not loss averse. His utility for a given state of the world θ is then u(q, θ) − 2T (q) + constant.
The consumer values money twice at the moment of the purchasing decision, since paying one dollar more
reduces intrinsic utility and reduces gain-loss utility either by reducing gains or by increasing losses. At
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equilibrium are characterized by Corollary 2. For p < (λ − 1)−1 the demand function is

strictly increasing and given by q̂(θ, p) = θ[1− p(λ− 1)]− 2p(2− λ). For p ≥ (λ− 1)−1

the consumer’s demand is independent of his demand type. In this case, there are multiple

personal equilibria. Here, it can easily be verified that the joint surplus is always maximized

for prices below (λ − 1)−1. Nevertheless, we briefly characterize the joint surplus for all

p values. For p ≥ (λ − 1)−1 it can be shown that the preferred personal equilibrium is to

demand the highest possible quantity, i.e., q̄ = max{2(1−p), 0}.22 The joint surplus, S(p),

is depicted below for the case λ = 3.23 Observe that S(p) is continuous at p = (λ − 1)−1

which is a general feature of the model and not due to the specific example.

Figure 2: Joint Surplus for λ = 3.

In this example the function Σ(·) takes the following simple form, Σ(λ) = (1/3)(λ −

1)(λ + 3)−1. Thus, by applying Proposition 2, a flat-rate tariff is optimal if λ ≥ 1.706.

Figure 3 depicts the joint surplus, S(p), for λ = 1; 1, 5; 2; 3; 5. Lower curves correspond to

higher values of λ. Without loss aversion (λ = 1) the optimal marginal price p = (1/2)c.

Figure 3: Joint Surplus for λ = 1, 1.5, 2, 3, 5.

Note that even for λ = 1 the consumer has reference-dependent preferences and therefore

the contracting stage, however, the consumer’s expected utility for λ = 1 equals the expected utility of a
consumer without gain-loss utility.

22The preferred personal equilibrium is the plan among the consistent plans (personal equilibria) that maxi-
mizes the consumer’s expected utility. Here, the preferred personal equilibrium is also optimal from the
firm’s perspective.

23For η = 1, the conventional estimate of two-to-one loss aversion corresponds to λ = 3.
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his marginal utility for money is two at the moment where he makes his purchasing decision.

With the consumer being loss averse (λ > 1), in most cases a flat-rate tariff is optimal.

6. DUOPOLISTIC COMPETITION AND HETEROGENEOUS CONSUMERS

6.1. Market Framework

In this section, we extend the baseline model to allow for imperfect competition and het-

erogeneous consumers. Consider a market for one good or service where two firms, A and

B, are active. Moreover, there is a continuum of ex ante heterogeneous consumers whose

measure is normalized to one.

Players & Timing.—The consumers can be partitioned into two groups that differ in their

degree of loss aversion. The weight put on gain-loss utility, η > 0, is the same for both

groups.24 Let the two groups be denoted by j = 1, 2 with λ1 < λ2. The distribution of

demand types is identical for both groups of loss-averse consumers. As before, the demand

type is unknown to consumers and firms at the point of contracting.

The two symmetric firms, A and B, produce at constant marginal cost c > 0 and without

fixed cost. Each firm i = A, B offers a two-part tariff to each group of consumers j = 1, 2.

The tariff is given by T i
j (q) = Li

j + pi
jq, where q ≥ 0 is the quantity, and Li

j and pi
j denote

the fixed fee and the per-unit price, respectively, charged by firm i from consumers of type

j. We will analyze the symmetric information case in which firms observe λ, as well as the

asymmetric information case in which λ is private information of the consumer.

The timing is as follows: (1) Firms simultaneously and independently offer a tupel of

two-part tariffs {(Li
j , p

i
j)}j=1,2 to consumers. (2) Each consumer either signs exactly one

contract or none. (3) Each consumer privately observes his demand type. Thereafter, each

consumer who accepted a contract chooses a quantity. (4) Finally, payments are made

according to the demanded quantities and the concluded contracts.

Discrete Choice Framework.—The products of the two firms are symmetrically differ-

entiated. We assume that, next to λ, consumers are ex ante heterogeneous with respect to

their brand preferences. Each consumer has idiosyncratic preferences for differing brands

of the product (firms), which are parameterized by ζ = (ζ0, ζA, ζB). A consumer with

brand preferences ζ has net utility vi + ζi if he buys from firm i, and net utility ζ0 if no

contract is signed, where vi = Eθ[U(·)]. The brand preferences ζ = (ζ0, ζA, ζB) are in-

dependently and identically distributed according to a known distribution among the two

groups of consumers.

To solve for the tariffs that are offered in the pure-strategy Nash equilibrium by the two

firms, we follow the approach of Armstrong and Vickers (2001) and model firms as offering

utility directly to consumers. Each two-part tariff can be considered as a deal of a certain ex-

pected value that is offered by a firm to its consumers. Thus, firms compete over customers

by trying to offer them better deals, i.e., a two-part tariff that yields higher utility (including

gain-loss utility). Put differently, we decompose a firm’s problem into two parts. First, we

solve for the two-part tariff that maximizes profits subject to the constraint that the consumer

receives a certain utility level. Thereafter, we solve for the utility levels (vi
1, v

i
2) a firm i of-

24The results would be qualitatively the same if the two groups would differ in η but not in λ.



Consumer Loss Aversion and Flat-Rate Tariffs 20

fers to its customers. It is important to note that, when λ is unobservable, the two-part tariffs

have to be designed such that each group of consumers prefers the offer that is dedicated to

them. Suppose the utility offered to consumers of group j by firm A and firm B is vA
j and

vB
j , respectively. Furthermore, assume that the incentive constraints are satisfied. Then, the

market share of firm A in the submarket j is mj(v
A
j , vB

j ) and the market share of firm B

is mj(v
B
j , vA

j ), with mj(v
A
j , vB

j ) + mj(v
B
j , vA

j ) ≤ 1. The market share function mj(·) is

increasing in the first argument and decreasing in the second. Since the brand preferences

are identically distributed among the two groups, the market share functions are identical

for the two submarkets, i.e., m1(·) = m2(·) = m(·). Following Armstrong and Vickers, we

impose some regularity conditions in order to guarantee existence of equilibrium. First, we

assume that

∂m(vA, vB)/∂vA

m(vA, vB)
is non-decreasing in vB.

Second, we assume that for each submarket the collusive utility level ṽj exists which maxi-

mizes (symmetric) joint profits.25

6.2. Firm’s Subproblem: Joint Surplus Maximization

For this part, suppose firms can observe consumers’ types λ ∈ {λ1, λ2}. With consumers’

loss aversion types being observable, the two market segments of types λ1 and λ2 can

be viewed as distinct markets. Thus, for the analysis we can focus on one market where

consumers are homogeneous with respect to their degree of loss aversion, which is denoted

by λ.

Suppose firm i ∈ {A, B} offers consumers a “deal" using a two-part tariff (Li, pi) that

gives them utility vi. Then, if a consumer with brand preferences ζ = (ζ0, ζA, ζB) pur-

chases from firm i his net utility is vi + ζi. Let πj(v
i) be firm i’s maximum profit per

customer of type j when offering them a deal that yields utility vi. The per-consumer profit

function is the same for both firms but—in general—it depends on the consumer’s degree

of loss aversion λ. For now we focus on one market segment and therefore the subscript

indicating the loss-aversion type can be omitted without confusion. Since π(·) is the same

for both firms, we will omit firm’s superscript in the following. With this notation, π(v) is

given by the solution to the problem:

π(v) = max
L,p≥0

:

{

L + (p − c)

∫ θ̄

θ

q̂(θ, p)f(θ)dθ

∣
∣
∣
∣
Eθ[U(q̂(θ, p)|θ, 〈q(φ, p)〉)] = v

}

.

(14)

First, we study the firm’s subproblem, that is, we derive the optimal two-part tariff that

solves the above problem. Thereafter, we solve for the utility levels and the corresponding

tariffs which are offered by the two firms in equilibrium. Put differently, the task is to

maximize a firm’s profit over the choice variables p and L subject to the constraint that the

consumer’s expected utility from the offered deal is v. The firm’s tariff choice problem can

be restated as a problem of choosing only the unit price p. The firm chooses p to maximize

25For a detailed description of the competition-in-utility-space framework and the needed assumptions see
Armstrong and Vickers (2001).
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S(p) − v, i.e., the firm chooses the marginal price p such that the joint surplus of the two

contracting parties, the consumer and the firm, is maximized. The optimal marginal price

p̂ is independent of the utility, v, the firm offers to the consumer. This immediately implies

that π′(v) = −1. More importantly, the optimal marginal price is characterized by the same

conditions as in the case of a monopolistic firm.

In the following we focus on the profit maximization problem of firm A. We assume that

(A2) holds for both types of loss-averse consumers, i.e, for λ ∈ {λ1, λ2}. Moreover, it is

assumed that Σ(λ2) ≥ c.

6.3. Symmetric Information Case

Consider market segment j ∈ {1, 2}. For a given utility vB
j offered by firm B the profit

maximization problem of firm A is given by

max
vA

j

m(vA
j , vB

j )πj(v
A
j ) . (15)

The necessary first-order condition for profit maximization amounts to

[∂m(vA
j , vB

j )/∂vA
j ]πj(v

A
j ) + m(vA

j , vB
j )π′

j(v
A
j ) = 0 . (16)

Remember that π′
j(v

A) = −1. Put verbally, the optimal marginal price is unaffected by

the choice of vA
j . If firm A offers one unit utility more to consumers, then this is optimally

achieved by lowering the fixed fee by one unit. The fixed fee is a one-to-one transfer from

the consumer to the firm. Define

Φ(v) ≡
m(v, v)

∂m(v, v)/∂vA
.

Applying Proposition 1 of Armstrong and Vickers (2001), the firm’s per customer profit in

submarket j in the symmetric equilibrium is given by

πj(v̂j) = Φ(v̂j) ,

where v̂j denotes the utility offered to consumers of type λj by both firms in equilibrium.

As is shown by Armstrong and Vickers, there are no asymmetric equilibria. Moreover, the

equilibrium often is unique.26 The following proposition summarizes the tariffs offered by

the two firms in equilibrium.

Proposition 3 (Full Information) Suppose (A2) holds. Then, in equilibrium, (i) if Σ(λ1) <

c ≤ Σ(λ2) both firms offer the tariff (p̂, L̂) with a positive unit price to consumers of type

λ1, and a flat-rate tariff (0, LF ) to consumers of type λ2. (ii) If c ≤ Σ(λ1) < Σ(λ2), then

both firms offer the flat-rate tariff (0, LF ) to both types of loss-averse consumers. The tariffs

(p̂, L̂) and (0, LF ) are characterized by: S′
1(p̂) = 0,

L̂ = Φ(v̂1) − (p̂ − c)

∫ θ̄

θ

q̂1(θ, p̂)f(θ)dθ

and LF = Φ(v̂2) + c

∫ θ̄

θ

qS(θ)f(θ)dθ ,

respectively, with p̂ ∈ (0, c).

26See Armstrong and Vickers (2001) for sufficient conditions for a unique equilibrium.
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If the degree of loss aversion of the less loss-averse consumers is below the threshold, then

firms offer to these consumers a usage-based pricing scheme. Next to the usage-based

scheme firms offer a flat-rate tariff to the more loss-averse consumers. Thus, consumer

heterogeneity with respect to their first-order risk preferences provides one possible answer

to the question why firms offer flat-rates next to usage-based tariffs. If the degree of loss

aversion of both types is above the threshold, then firms offer only a single tariff, which

is a flat-rate tariff. It is worthwhile to point out that the structure of the tariffs offered in

equilibrium does not depend on the degree of competition. The degree of competition only

influences the size of the basic charge. In a more competitive market firms offer tariffs

with lower basic charges, whereas the unit price is unaffected by the degree of competition.

Even in the limit, when we approach a perfectly competitive market, the equilibrium tariffs

do not converge to marginal cost pricing. Note that, in this model, the degree of competition

(or the degree of product differentiation) is measured by Φ(·). A lower Φ(·) corresponds

to a more competitive market. Φ(·) is the inverse semi-elasticity of demand evaluated at

the equilibrium utility level. Thus, the higher Φ(·) the less elastic is the demand of a firm.

To make this point even clearer, suppose firms are located at the two extreme points of a

Hotelling line of length one. Consumers’ ideal brands are uniformly distributed on this line.

If a consumer incurs “transport cost" of t times the distance between his ideal brand and the

firm he purchases from, then Φ(v̂) = t—given the market is fully covered in equilibrium.

A final comment to the offered tariffs is in order: Here, firms offer a flat-rate tariff to

those consumers who are willing to pay an extra amount to be insured against unexpected

high bills. The flat-rate tariff, however, is not offered to exploit consumers’ behavioral

bias. Here, firms offer flat-rate tariffs to consumers in the cases where these tariffs also

maximize the joint surplus. This is in contrast to several models with biased consumers

where firms design tariffs to exploit consumers’ biases, see for instance Grubb (2009) or

Eliaz and Spiegler (2008).

For completeness, the following result states the equilibrium outcome for the case where

consumers are not loss averse.

Corollary 3 Suppose consumers do not exhibit loss aversion, i.e., λ1 = λ2 = 1. Then, in

equilibrium both firms offer the two-part tariff with marginal price p̂ = [1/(1 + η)]c and

fixed fee L̂ = Φ(v̂)+ [η/(1+ η)]c
∫ θ̄

θ
qFB(θ)dθ, where qFB(θ) ≡ arg maxq{u(q, θ)− cq}.

In this case the joint surplus equals the first-best surplus, v̂ + π(v̂) = SFB .

Without loss aversion, due to ex ante contracting, firms choose a tariff that implements the

first-best allocation. Depending on the degree of competition, the first-best surplus is shared

between firms and consumers. Since with λ = 1 consumers still have reference-dependent

preferences, the unit price does not equal marginal cost. Due to reference-dependent pref-

erences the consumer’s marginal utility for money is 1 + η. It is important to point out that

reference-dependent preferences without loss aversion have only quantitative effects on the

equilibrium outcome but not qualitative effects.

6.4. Asymmetric Information Case

In this subsection, we investigate the tariffs offered by the two firms when facing a screening

problem, i.e., the degree of loss aversion is private information of the consumer. In order
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to analyze this situation, we first show that a consumer’s expected utility from accepting a

certain two-part tariff is decreasing in his degree of loss aversion.

Lemma 6 Consider a two-part tariff (p, L) and suppose that Condition 1 holds. Then,

d

dλ

[

Eθ[U(q̂(θ; p)|θ, 〈q(θ; p)〉)]

]

≤ 0.

For the sake of argument, suppose firms offer the tariffs as in the full information bench-

mark. Due to Lemma 6, consumers who are less loss averse may have an incentive to choose

the tariff that is designed for the more loss-averse consumers. Note that when choosing a

flat-rate tariff the consumer does neither feel a loss nor a gain. Thus, the expected utility

from a flat-rate contract is independent of the consumer’s degree of loss aversion. Hence, if

firms offer a flat-rate tariff to the types with a high degree of loss aversion, then a consumer

of type λ1 does not necessarily benefit from choosing the tariff that is designed for con-

sumers of type λ2. If firms’ profits from the market segment of λ1 types is lower than their

profits from λ2 types, however, then consumers of type λ2 may have an incentive to choose

the tariff (p̂, L̂). Because, if this is the case, then v̂1 is considerably larger than v̂2. We

rule this out by assuming that Φ(·) is non-decreasing.27 With this assumption, both firms’

profits and consumers’ surplus increase in equilibrium, if the joint surplus from contracting

increases. Assuming that an increase in joint surplus is shared between consumers and firms

seems to be natural for imperfectly competitive markets.

With this assumption, the two types of loss-averse consumers may not exert any infor-

mational externality on each other. In other words, if this is the case, firms can screen the

consumer’s loss-aversion type at no cost.

Proposition 4 (Asymmetric Information) Suppose (A2) holds and that Φ′(v) ≥ 0. Then,

(i) if Σ(λ1) < c ≤ Σ(λ2) both firms offering tariff (p̂, L̂) with a positive unit price to

consumers of type λ1, and flat-rate tariff (0, LF ) to consumers of type λ2 is an equilibrium.

(ii) If c ≤ Σ(λ1) < Σ(λ2), then in equilibrium both firms offer the flat-rate tariff (0, LF )

to both types of loss-averse consumers. The tariffs, (p̂, L̂) and (0, LF ), are characterized in

Proposition 3.

As in the symmetric information case, if λ1 is below and λ2 is above the threshold, then

firms offer a usage-based pricing scheme to the less loss-averse types and a flat-rate tariff to

the more loss-averse consumers. The fixed fee of the flat-rate tariff is higher than the fixed

fee of the usage-based pricing scheme. In this case, we do not make any claims about the

uniqueness of this equilibrium.28 If the degree of loss aversion of both types exceeds the

threshold, then we obtain a pooling equilibrium: each firm offers only a single tariff that is

accepted by both types of consumers.

If Σ(λ2) < c then there is an information externality. In this case, if firms can observe λ

they would offer to each type a different usage-based tariff. When offering these tariffs in the

asymmetric information case, then type λ1 obtains a higher expected utility from signing the

27For instance, this assumption is satisfied for the standard Hotelling model and the logit demand model, see
Appendix B.

28To analyze all equilibria we cannot apply the competition in utility space framework, since we have to take
the sorting constraints explicitly into account. Note that each firm has 4 choice variables which makes the
calculation of firm A’s best response to firm B’s tariff offers intricate.
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contract that is designed for the types λ2. We refrain from characterizing the equilibrium

tariffs for this case, since this case is intricate to analyze in the applied competition-in-

utility-space framework.

It is important to point out that offering a flat-rate tariff next to usage based tariffs does

not impose some additional incentive constraints. If the degree of loss aversion, λ, is con-

tinuously distributed on [λ, λ̄] with Σ(λ) < c < Σ(λ̄), then in equilibrium firms offer the

flat-rate tariff (0, LF ) which is chosen at least by types λ ∈ [λ̃, λ̄], with Σ(λ̃) = c.

7. EVIDENCE AND RELATED LITERATURE

7.1. Existence and Causes of Tariff-Choice Biases

The existence of tariff-choice biases was first documented for U.S. households among tele-

phone service options. Train et al. (1987) provide evidence for U.S. households favoring

flat-rate tariffs over measured services for local telephone calls. Conducting a logit model

with a tariff specific constant, the authors find that this constant is highest for the flat-rate

option. Similar results are obtained by Train et al. (1989). The authors argue that consumers

choose a tariff that ends up not being cost-minimizing for the customer’s level of consump-

tion because consumers also care about the insurance provided by the tariff option. Given

uncertain consumption patterns “the flat-rate tariff provides complete insurance” (Train et

al., 1989). A tendency of households to prefer flat-rate tariffs for telephone services is also

reported by Hobson and Spady (1988) for single-person households, by Kling and van der

Ploeg (1990) who evaluate a tariff experiment of AT&T, by Mitchell and Vogelsang (1991),

and Kridel et al. (1993). For instance, Kridel et al. (1993) find that 55% of all customers

who choose a flat-rate service would have achieved higher surplus if they had chosen a

measured service instead. The authors also hold an insurance motive of the customers re-

sponsible for this finding. They report that customers exhibit substantial risk aversion when

faced with bill uncertainty. Miravete (2003) rejects the thesis that customers are subject to

a flat-rate bias when selecting telephone service tariffs. In his data set, however, the flat-

rate option is optimal for the vast majority of households and thus a flat-rate bias is hard to

detect.29

The flat-rate bias is documented also for other telecommunication services. Lambrecht

and Skiera (2006) analyze transactional data of over 10,000 customers of an Internet service

provider in Germany. They find that over 50% of these customers are biased in favor of a

flat-rate option. Moreover, they provide evidence that the flat-rate bias is at least partially

due to an insurance motive of the consumers. In a follow up paper, Lambrecht et al. (2007)

argue that “[c]onsumers may prefer a tariff that leads to fewer month-to-month fluctuations

in their bill”. For mobile telephone services, a preference for flat-rate tariffs that cannot be

explained by customers’ usage is documented by Gerpot (2009) and Mitomo et al. (2009).

These papers, however, rely on survey data.

29Based on the data set of an tariff experiment conducted by South Central Bell in 1984, Miravete (2003) finds
that only 6–12% of the customers enrolled in a flat-rate contract would have saved money with the measured
option. Whereas, 62–67% of those customers who selected the measured option would have saved money
with the flat-rate contract. The majority of customers, 71%, however, selected the flat-rate option and this
was in most of the cases optimal from a cost savings perspective. Thus, the data set of Miravete (2003) has
little power to reject the flat-rate bias hypothesis.
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Also relying on survey data, Nunes (2000) finds strong evidence for a flat-rate bias out-

side telecommunications services (grocery shopping online, access payment for a swim-

ming pool of an apartment building). Presumably the most powerful demonstration of the

flat-rate bias outside the telecommunications service sector is DellaVigna and Malmendier

(2006). They analyze a data set from three U.S. health clubs and show that a large fraction of

health club members who are enrolled in a flat-fee contract (either monthly or annually) paid

on average more per visit than they would have paid with a pay-per-visit option. According

to the authors, the leading explanation for these observations is consumers’ overconfidence

about future self-control. A low per usage price is a commitment device for higher atten-

dance in case of self-control problems, when consumption leads to immediate costs and

delayed rewards. Such motives of selecting an option that provides commitment to higher

usage rates obviously cannot explain the prevalence of flat rates for telecommunications

services, car rental, car leasing and amusement parks.

7.2. (Behavioral) Models of Pricing Strategies

Since Oi’s (1971) analysis of an optimal two-part tariff for a monopolist, this pricing scheme

is intensely analyzed in the economic literature. Leland and Meyer (1976) show that a

firm, regardless of its objective, always does at least as well with a two-part tariff as with

linear pricing. Pareto-optimal menus of tariffs are analyzed by Willig (1978). He shows

that a Pareto-optimal menu includes a cost-based two-part tariff. The pricing literature of

the 80’s solves for the optimal nonlinear tariff. Notable works on this topic are Mussa

and Rosen (1978), Maskin and Riley (1984), Goldman et al. (1984), as well as the book

by Wilson (1993). This literature established the now well-known no-distortion-at-the-top

result, i.e., marginal prices exceed marginal costs for all but the last unit. While these

classic screening models focus on deterministic demand, there are some papers analyzing

sequential screening problems. In these papers, a consumer first chooses a contract and then

he learns his true preferences before making a quantity choice. See, for instance, Courty

and Li (2000) or Miravete (2002).

This paper is more related to the recent and growing literature investigating how rational

firms respond to consumer biases. A seminal contribution in this field is DellaVigna and

Malmendier (2004). They consider a market, either monopolistic or perfectly competitive,

with homogeneous time-inconsistent consumers. Their main finding is that the unit price of

the optimal two-part tariff is above marginal cost for leisure goods (usage of rental car) and

below marginal cost for investment goods (health club attendance). Likewise presuming

that consumers are quasi-hyperbolic discounters, Heidhues and Kőszegi (forthcoming) set

up a model of a perfectly competitive market for credit-cards. They allow for consumer

heterogeneity and pay particularly attention to welfare implications of possible policy in-

terventions. Using a different notion of time-inconsistency, Eliaz and Spiegler (2006) solve

for the optimal menu of tariffs for a monopolist who faces consumers that differ in their de-

gree of sophistication. The optimal contract exploits those consumers who are sufficiently

naive about their self-control problems. Moreover, they show that the optimal menu can

be implemented by a menu of three-part tariffs. The optimal menu does not include a flat-

rate tariff. The optimal nonlinear pricing scheme for a monopolist who sells to consumers
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with self-control problems is also analyzed by Esteban et al. (2007). Instead of assuming

time inconsistency, they model self-control problems by applying the concept of Gul and

Pesendorfer (2001). The optimal tariff resembles the one in the standard nonlinear pricing

literature except for a price ceiling. Similar results are obtained by Esteban and Miyagawa

(2006) for a perfectly competitive market where consumers have temptation preferences

according to Gul-Pesendorfer.

Next to time inconsistency, there are a few papers dealing with the optimal selling strategy

for overconfident consumers. Grubb (2009) analyzes the optimal menu of nonlinear price

schedules for a monopolist as well as for a perfectly competitive market. Consumers in his

model are overconfident in the sense that they underestimate fluctuations in their demand.

The optimal menu is close to a menu of three-part tariffs which is often observed in the

cellular phone service industry. A similar model where firms screen consumers at the basis

of their priors is considered by Uthemann (2005). In his model firms are differentiated à la

Hotelling. Unlike Grubb, he does not assume that consumption is satiated at a finite level,

and therefore he obtains that marginal prices are always above marginal cost. Focusing on

only two-states of the world but without imposing any differentiability assumptions on the

consumer’s utility function, Eliaz and Spiegler (2008) analyze the problem of a monopolist

who faces consumers with biased beliefs regarding the probability assignment to the two

states of nature. Optimistic consumers, who assign too much weight on the state of nature

that is characterized by larger gains from trade, sign exploitative contracts. In a stylized

example, the authors show that the optimal menu may include a flat-rate tariff. The authors,

however, do not derive conditions under which there model predicts flat-rate contracts.

To the best of our knowledge, there is no paper analyzing nonlinear tariffs when con-

sumers are loss averse. Nevertheless, loss aversion and in particular the concept developed

by Kőszegi and Rabin (2006, 2007) is used in models of industrial organization.30 Heid-

hues and Kőszegi (2005) apply this concept to provide an explanation why monopoly prices

react less sensitive to cost shocks than predicted by orthodox theory.31 Moreover, Heidhues

and Kőszegi (2008) introduce consumer loss aversion into a model of horizontally differen-

tiated firms. They show that in equilibrium asymmetric competitors charge identical focal

prices for differentiated products.32 Next to industrial organization, the Kőszegi and Rabin

formulation is applied to contract theory by Herweg et al. (forthcoming). Considering a

moral hazard framework, they provide an explanation for the frequent usage of lump-sum

bonus contracts. Alike considering an agency model, Macera (2009) provides a rational

for creating incentives solely based on an annual performance measure even if for instance

monthly performance measures are available.

8. CONCLUDING REMARKS

The goal of this article is to provide one possible explanation for the frequent usage of flat-

rate tariffs. Since empirical evidence suggests that consumers choose flat rates because these

30Risk preferences—in particular of higher order—of decision makers that are expectation-based loss averse
according to Kőszegi ad Rabin are investigated by Maier and Rüger (2009).

31A similar finding, in a slightly simpler setting, is obtained by Spiegler (2010).
32Consumer loss aversion is introduced in a model of product differentiation also bei Karle and Peitz (2010a,

2010b). Unlike Heidhues and Kőszegi, in their model consumers observe prices before making plans which
product to purchase.
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tariffs provide insurance in case of uncertain consumption patterns, we posit that consumers

are first-order risk averse. First-order risk aversion is captured by reference-dependent pref-

erences of the consumer in combination with loss aversion. This paper shows that offering

a flat-rate contract is optimal when (i) consumers are loss averse, (ii) marginal production

costs are small, and (iii) demand is uncertain. Moreover, firms offer flat-rate tariffs to those

consumers whose degree of loss aversion exceeds a certain threshold. Consumers with a

lower degree of loss aversion sign a metered tariff in equilibrium. Interestingly, offering a

flat-rate contract next to usage-based pricing schemes does not introduce additional sorting

constraints into a firm’s optimization problem. Thus, this paper predicts that in markets

with low marginal cost and uncertain consumption patterns, a firm’s tariff menu includes a

flat-rate option.

We departed from the Kőszegi-Rabin concept by positing that the consumer does not

feel any sensations of gains and losses in the good dimension. If one considers gain-loss

utility in both dimensions and assumes that higher demand types are always associated

with higher utility, then a flat-rate tariff eliminates only the losses in the money but not

in the good dimension. Depending on the particular form of the intrinsic utility function,

a flat-rate contract may increase or decrease the expected losses in the good dimension.

Alternatively, one could assume that intrinsic utility evaluated at the satiation quantity is

constant for all demand types, but marginal utility is still increasing in the type. With this

formulation, for a given type φ the consumer feels a loss in the good as well as in the money

dimension compared to lower types θ < φ. In this case, a flat rate tariff eliminates any

losses in both the good and the money dimension. Moreover, with this specification the

consumer’s expected utility from signing the flat-rate is independent of the degree of loss

aversion. Hence, the screening result would also be robust. In summary, the formulation of

this paper can be viewed as an intermediate case between the two possible approaches with

gain-loss utility in both dimensions. Moreover, focusing on the case with gain-loss utility

only in the money dimension helps to make the analysis of the personal equilibria clearer

and shorter.

An obvious drawback of our model is that firms are restricted to two-part tariffs. With

the consumer being loss averse according to Kőszegi-Rabin, his utility for a given demand

type also depends on his payments for all other types. Thus, the standard procedure of

the nonlinear pricing literature, where the tariff in the firm’s objective typically is replaced

by the consumer’s net surplus, does not work here. This in turn makes the analysis of

nonlinear tariffs more complicated. We believe, however, that focusing on two-part tariffs

provides some insights on the forces at play when consumers are loss averse. In particular,

the identified insurance motive of loss averse consumers should also play a major role when

firms can offer more sophisticated contracts.

It is rather obvious that imposing a quantity limit on the flat-rate option can improve

the joint surplus. If the quantity limit equals the first-best quantity for the highest state,

then—compared to a flat rate with unlimited usage—standard efficiency is improved with-

out imposing additional losses on the consumer. Flat-rate tariffs with limited usage are often

observed for the Internet service industry. Hence, investigation of optimal nonlinear pric-

ing schedules for firms facing loss-averse consumers is an interesting question for future

research.
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APPENDIX

A. Proofs of Propositions and Lemmas

Proof of Lemma 1: To reduce notation, we omit that demand depends on the marginal price p. Suppose, in
contradiction, that φ1 < φ2 but q̂(φ1) > q̂(φ2). By revealed preferences the two inequalities below follow
immediately,

u(q̂(φ1); φ1) − T (q̂(φ1)) + η

∫

X(q̂(φ1))

[T (q̂(θ)) − T (q̂(φ1))]f(θ) dθ

− ηλ

∫

Xc(q̂(φ1))

[T (q̂(φ1)) − T (q̂(θ))]f(θ) dθ ≥ u(q̂(φ2); φ1) − T (q̂(φ2))

+ η

∫

X(q̂(φ2))

[T (q̂(θ)) − T (q̂(φ2))]f(θ) dθ − ηλ

∫

Xc(q̂(φ2))

[T (q̂(φ2)) − T (q̂(θ))]f(θ) dθ, (A.1)

and

u(q̂(φ2); φ2) − T (q̂(φ2)) + η

∫

X(q̂(φ2))

[T (q̂(θ)) − T (q̂(φ2))]f(θ) dθ

− ηλ

∫

Xc(q̂(φ2))

[T (q̂(φ2)) − T (q̂(θ))]f(θ) dθ ≥ u(q̂(φ1); φ2) − T (q̂(φ1))

+ η

∫

X(q̂(φ1))

[T (q̂(θ)) − T (q̂(φ1))]f(θ) dθ − ηλ

∫

Xc(q̂(φ1))

[T (q̂(φ1)) − T (q̂(θ))]f(θ) dθ . (A.2)

Subtracting (A.1) from (A.2) and rearranging yields

[u(q̂(φ1); φ1) − u(q̂(φ2); φ1)] − [u(q̂(φ1); φ2) − u(q̂(φ2); φ2)] ≥ 0

⇐⇒

∫ q̂(φ1)

q̂(φ2)

∂u(q, φ1)

∂q
dq −

∫ q̂(φ1)

q̂(φ2)

∂u(q, φ2)

∂q
dq ≥ 0

⇐⇒

∫ q̂(φ1)

q̂(φ2)

∫ φ2

φ1

∂2u(q, θ)

∂q∂θ
dθdq ≤ 0 .

The last inequality cannot hold, since ∂2u(q, θ)/∂q∂θ > 0 for q ≤ qS(θ) by assumption and φ1 < φ2 and
q̂(φ1) > q̂(φ2) by hypothesis.

Q.E.D.

Proof of Lemma 2: Suppose, in contradiction, there is a personal equilibrium that is at least at one point φ ∈ Θ
discontinuous. If the personal equilibrium is discontinuous at φ then either q̂(φ; p) < limε→0 q̂(φ + |ε|; p) or
limε→0 q̂(φ − |ε|; p) < q̂(φ; p). While we proof explicitly only the former case, the latter one proceeds by
analogous steps. Let q̂(φ; p) =: q1 and limε→0 q̂(φ + |ε|; p) =: q2 with q1 < q2 by discontinuity and
monotonicity. First, consider a type θ ≤ φ who deviates from q̂(θ; p) ≤ q1 to a higher quantity q ∈ (q1, q2).
The utility of this type is then given by

U(q|θ, ·) = u(q, θ) − pq − L + pη

∫ θ̄

φ

(q̂(z; p) − q) f(z)dz − pηλ

∫ φ

θ

(q − q̂(z; p)) f(z)dz . (A.3)

For q ∈ (q1, q2) the derivative of type θ’s utility with respect to his demand is

dU(q|θ, ·)

dq
=

∂u(q, θ)

∂q
− p[1 + η + η(λ − 1)F (φ)] . (A.4)

Thus, U(q|φ, 〈q̂(θ; p)〉) is continuous for all q ∈ (q1, q2). Therefore, it has to hold that dU/dq|q=q1 ≤ 0 since
〈q̂(z; p)〉 is a personal equilibrium which implies that type θ has no incentive to demand a quantity q ∈ (q1, q2).
Hence, the following inequality has to be satisfied

∂u(q1, θ)/∂q − p[1 + η + η(λ − 1)F (φ)] ≤ 0 . (A.5)

Since ∂u(q1, θ)/∂q is increasing in θ, the above inequality is satisfied for all types θ ∈ [θ, φ] if it is satisfied
for φ. Thus, it has to hold that

∂u(q1, φ)/∂q − p[1 + η + η(λ − 1)F (φ)] ≤ 0 . (A.6)

Note that (A.6) gives us a lower bound for q1.
Now, consider a type θ > φ who deviates from q̂(θ; p) ≥ q2 to a lower quantity q ∈ (q1, q2). The marginal

change in type θ’s utility due to an increase in q amounts to

dU(q|θ, ·)

dq
=

∂u(q, θ)

∂q
− p[1 + η + η(λ − 1)F (φ)] . (A.7)
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This downward deviation is not profitable if dU/dq|q=q2 ≥ 0. Note that q̂(θ; p) ≥ q2 for θ > φ. Thus, the
following inequality needs to be satisfied

∂u(q2, θ)/∂q − p[1 + η + η(λ − 1)F (φ)] ≥ 0 . (A.8)

The above inequality is satisfied for all types θ ∈ (φ, θ̄] if it is satisfied for type φ. Thus, it has to hold that

∂u(q2, φ)/∂q − p[1 + η + η(λ − 1)F (φ)] ≥ 0 . (A.9)

The inequality (A.9) provides an upper bound for q2. Combining inequalities (A.6) and (A.9) yields

∂u(q2, φ)

∂q
≥

∂u(q1, φ)

∂q
, (A.10)

which implies that q2 ≤ q1 a contradiction to q1 < q2. Thus, the demand profile of any personal equilibrium is
continuous in the demand type.

Q.E.D.

Proof of Lemma 3: The sufficiency part is proved by showing that there cannot exist an interval I ⊆ Θ such

that for all θ ∈ I , q̂(θ; p) = q̄ if Condition 1 holds. We show that there is at least one type θ̂ ∈ I who can
profitably deviate to a slightly higher or slightly lower quantity than q̄. First, the upward deviation is analyzed.

Consider a type θ̂ ∈ I who consumes q̄ + ε, with ε > 0 but close to zero. The utility of this type is given by

U(q̄ + ε|θ̂, ·) = u(q̄ + ε, θ̂) − p(q̄ + ε) − L

+ ηp

∫

{θ∈Θ|q̂(θ;p)>q̄+ε}

(q̂(θ; p) − q̄ − ε)f(θ) dθ − ηλp

∫

{θ∈Θ|q̂(θ;p)<q̄+ε}

(q̄ + ε − q̂(θ; p))f(θ) dθ .

Let ΘL ≡ {θ ∈ Θ|θ < inf{I}} and ΘH ≡ {θ ∈ Θ|θ > sup{I}}. Thus, since demand is (weakly) increasing,
it follows that for ε → 0 it holds that {θ ∈ Θ|q̂(θ; p) > q̄+ε} = ΘH and {θ ∈ Θ|q̂(θ; p) < q̄+ε} = ΘL ∪I .
The increase in utility from consuming slightly more than q̄ is

dU(q̄ + ε|θ̂, ·)

dε

∣
∣
∣
∣
ε=0

=
∂u(q̄, θ̂)

∂q
− p − ηp

∫

θ∈ΘH

f(θ)dθ − ηλp

∫

θ∈ΘL∪I

f(θ)dθ

= ∂u(q̄, θ̂)/∂q − p[1 + η + η(λ − 1)F (θH)] , (A.11)

where θH := inf{ΘH}.

Next, the case of a downward deviation is considered. Utility of a type θ̂ ∈ I , who consumes q̄ − ε with
ε > 0 is

U(q̄ − ε|θ̂, ·) = u(q̄ − ε, θ̂) − p(q̄ − ε) − L

+ ηp

∫

{θ∈Θ|q̂(θ;p)>q̄−ε}

(q̂(θ; p) − q̄ + ε)f(θ) dθ − ηλp

∫

{θ∈Θ|q̂(θ;p)<q̄−ε}

(q̄ − ε − q̂(θ; p))f(θ) dθ .

The change in utility from an infinitesimal downward deviation is given by

dU(q̄ − ε|θ̂, ·)

dε

∣
∣
∣
∣
ε=0

= −
∂u(q̄, θ̂)

∂q
+ p + ηp

∫

θ∈ΘH∪I

f(θ)dθ + pηλ

∫

θ∈ΘL

f(θ)dθ

= −∂u(q̄, θ̂)/∂q + p[1 + η + η(λ − 1)F (θL)] , (A.12)

where θL := sup{ΘL}.
A deviation is not profitable if for all θ ∈ I it holds that dU(q̄+ε|θ)/dε|ε=0 ≤ 0 and dU(q̄−ε|θ)/dε|ε=0 ≤

0. Thus, a necessary and sufficient condition for the existence of a personal equilibrium where all θ ∈ I
consume q̄ is that an upward deviation is not profitable for θH and that a downward deviation is not profitable
for θL. Formally, using (A.11) and (A.12), the following two inequalities have to be satisfied:

∂u(q̄, θH)/∂q ≤ p[1 + η + η(λ − 1)F (θH)], (A.13)

∂u(q̄, θL)/∂q ≥ p[1 + η + η(λ − 1)F (θL)] . (A.14)

Define q̃(θ; p) such that ∂u(q̃(θ; p), θ)/∂q ≡ p[1 + η + η(λ − 1)F (θ)]. Inequalities (A.13) and (A.14) imply
that q̃(θL; p) ≥ q̄ ≥ q̃(θH ; p). By Condition 1, dq̃(θ; p)/dθ > 0. With I being an interval we have θL < θH

and thus q̃(θL; p) < q̃(θH ; p) a contradiction. This completes the sufficiency part of the proof.
Necessity, i.e., a demand function constituting a personal equilibrium that is strictly increasing in the de-

mand type exists only if Condition 1 hold. This part is proved in the main part of the text (Unique Personal
Equilibrium). In the text, it is shown that there exists a unique candidate for a personal equilibrium demand
function satisfying the necessary conditions for a strictly increasing demand function. This unique candidate
also fulfills the sufficient conditions if and only if Condition 1 holds. This completes the proof.

Q.E.D.
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Proof of Proposition 1: First, note that (6) characterizes the personal equilibrium almost everywhere (except
at kink points). Since the candidate equilibrium is continuously differentiable, we can conclude that there are
no kinks in the personal equilibrium if it is strictly increasing in θ.

Remember that local deviations q ∈ [q̂(θ; p), q̂(θ̄; p)] are considered in the main body of the paper. Thus, it
remains to show that there is no type who can profitably deviate to a very high or very low quantity, q < q̂(θ; p)
or q > q̂(θ̄; p). To verify this claim we can focus on the case where p > 0.

Suppose the consumer chooses a quantity q < q̂(θ; p), then his utility is given by

U(q|θ, ·) = u(q, θ) − pq − L + pη

∫ θ̄

θ

[q̂(θ̂; p) − q]f(θ̂) dθ̂ .

The optimal quantity in this case, qL, is characterized by

∂u(qL, θ)

∂q
= (1 + η)p .

Thus, qL > q̂(θ; p) for θ > θ and qL = q̂(θ; p) for θ = θ, a contradiction.

Now, consider the case where q > q̂(θ̄; p). Given the demand type is θ, the consumer’s utility is

U(q|θ, ·) = u(q, θ) − pq − L − pηλ

∫ θ̄

θ

[q − q̂(θ̂; p)]f(θ̂) dθ̂ .

The optimal quantity in this case, qH is characterized by

∂u(qH , θ)

∂q
= (ηλ + 1)p .

Note that qH < q̂(θ; p) for θ < θ̄ and qH = q̂(θ; p) for θ = θ̄, again a contradiction. Hence, no type has an
incentive to deviate.

Q.E.D.

Proof of Corollary 1: Follows directly from the observation that the consumer’s utility for an arbitrary type
is independent of the expected demand for all other types. Formally, U(q̂(φ; p)|φ, 〈q(θ; p)〉) = u(q; φ) − L
which is maximized for q ≥ qS(φ). By the assumption that the consumer does not overconsume, it follows

immediately that demand equals qS(φ).

Q.E.D.

Proof of Lemma 4: First, note that if the personal equilibrium is strictly increasing in θ in some interval, then
in this interval q̂(θ; p) ≡ q̃(θ; p). The proof of Proposition 1 reveals that there is a unique equilibrium candidate
if dq̂/dθ > 0.

Suppose there exists an interval I ⊆ Θ such that q̂(θ; p) = q̄ for all θ ∈ I . Let θA := inf{I} and

θB := sup{I}, with θA < θB . Furthermore, assume that if θA > θ (θB < θ̄) then there exists an neighborhood
(θA − ξ, θA) (respectively (θB , θB + ξ)) for ξ > 0 sufficiently small, where q̂(·) is strictly increasing. For q̂(·)
being constant for all θ ∈ I it has to hold that for all types θ ∈ I , neither a downward deviation nor an upward
deviation does improve the consumer’s utility.

DOWNWARD DEVIATION (q < q̄): Suppose θA > θ and that a consumer with type θ ∈ I deviates to

quantity q lower than q̄. Let θ̂(q) denote the demand type for which the consumer expected to choose this

quantity q. Formally, q̂(θ̂(q); p) = q and limε→0 θ̂(q̄ − |ε|) = θA. The consumer feels a gain compared to

types (θ̂(q), θ̄) and a loss compared to types [θ, θ̂(q)]. Note, for a minor downward deviation θ̂′(q) > 0. The
consumer’s utility from a (minor) downward deviation is

UD = u(q, θ) − pq − L + ηp

∫ θ̄

θ̂(q)

(q̂(φ; p) − q)f(φ)dφ − ηλp

∫ θ̂(q)

θ

(q − q̂(φ; p))f(φ)dφ . (A.15)

Differentiating the above utility function with respect to q yields

dUD

dq
=

∂u(q, θ)

∂q
− p

[

1 + η + η(λ − 1)F (θ̂(q))
]

. (A.16)

A downward deviation is not utility enhancing if the right-hand side of (A.16) is non-negative. The right-hand
side of (A.16) is non-negative for all q < q̄ if it is non-negative evaluated at q = q̄. Due to the imposed
Spence-Mirrlees condition, this inequality holds for all θ ∈ I if it holds for θA. Thus, it has to hold that

∂u(q̄, θA)

∂q
− p [1 + η + η(λ − 1)F (θA)] ≥ 0 . (A.17)

Note that q̂(θ; p) is continuous and defined by q̃(θ; p) for θ slightly below θA. Hence, for θA > θ condition
(A.17) has to hold with equality.
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Now suppose θA = θ. It is straightforward to show that a downward deviation is not utility improving if the
following condition holds

∂u(q̄, θ)

∂q
− p(1 + η) ≥ 0 . (A.18)

With similar reasonings it can be shown that a non-minor downward deviation is not utility enhancing if the
above inequality or (A.17) holds.

UPWARD DEVIATION (q > q̄): Suppose θB < θ̄. Let θ̂(q) still denote the cutoff type, i.e., the con-

sumer feels a gain compared to types (θ̂(q), θ̄] and a loss compared to types [θ, θ̂(q)]. Now θ̂(q) > θB and

limε→0 θ̂(q̄ + |ε|) = θB . The consumer’s utility from a (minor) upward deviation is given by

UU = u(q, θ) − pq − L + ηp

∫ θ̄

θ̂(q)

(q̂(φ; p) − q)f(φ)dφ − ηλp

∫ θ̂(q)

θ

(q − q̂(φ; p))f(φ)dφ . (A.19)

The derivative of UU with respect to q is

dUU

dq
=

∂u(q, θ)

∂q
− p

[

1 + η + η(λ − 1)F (θ̂(q))
]

. (A.20)

An upward deviation is not utility enhancing for all θ ∈ I if

∂u(q̄, θB)

∂q
− p [1 + η + η(λ − 1)F (θB)] ≤ 0 . (A.21)

Since the personal equilibrium is continuous, for θB < θ̄ the above inequality has to hold with equality.
Suppose θB = θ̄. In this case the consumer has no incentive to choose a quantity q > q̄ for all types θ ∈ I if

∂u(q̄, θ̄)

∂q
− p [1 + ηλ] ≤ 0 . (A.22)

Q.E.D.

Proof of Lemma 5: First, note that any personal equilibrium is bounded from above by qMAX(p), which

is implicitly defined by ∂u(qMAX , θ̄)/∂q = (1 + η)p. Let qFB(θ) denote the first-best quantities, i.e.,

∂u(qFB(θ), θ)/∂q = c. In the following, we will show that for p ≥ p̄ the joint surplus, S(p), is bounded from
above and that this bound is lower than S(0). To establish the above claim, we define q̌(θ) :=
min{qFB(θ), qMAX(p̄)}. It is important to note that there is a positive mass of types for which q̌(θ) =
qMAX(p̄) if p̄ > c/(1 + η). The joint surplus generated with a unit price p ≥ p̄ is strictly lower than

Š =

∫ θ̄

θ

[
u(q̌(θ), θ) − cq̌(θ)

]
f(θ)dθ , (A.23)

since with a positive unit price the consumer expects to incur some net losses. A sufficient condition for S(p)
being maximized by a unit price p ∈ [0, p̄) is that S(0) ≥ Š (this condition is by no means necessary).

S(0) ≥ Š is equivalent to

∫ θ̄

θ

{

u(qS(θ), θ) − u(q̌(θ), θ) − c[qS(θ) − q̌(θ)]

}

f(θ)dθ ≥ 0 . (A.24)

The above condition is satisfied for c being sufficiently small, which completes the proof.

Q.E.D.

Proof of Proposition 2: First, it is shown how to derive equation (12). Taking the derivative of (11) with
respect to p yields

S′(p) =

∫ θ̄

θ

{ (
∂u(q̂(θ, p), θ)

∂q
− c

)
dq̂(θ, p)

dp

+ η

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ) dφ + ηp

∫ θ̄

θ

[
dq̂(φ, p)

dp
−

dq̂(θ, p)

dp

]

f(φ) dφ

− ηλ

∫ θ

θ

[q̂(θ, p) − q̂(φ, p)]f(φ) dφ − ηλp

∫ θ

θ

[
dq̂(θ, p)

dp
−

dq̂(φ, p)

dp

]

f(φ) dφ

}

f(θ) dθ . (A.25)
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The above equation can be rearranged to

S′(p) =

∫ θ̄

θ

{ (
∂u(q̂(θ, p), θ)

∂q
− p[η + η(λ − 1)F (θ)] − c

)
dq̂(θ, p)

dp

+ ηp

∫ θ̄

θ

dq̂(φ, p)

dp
f(φ) dφ + ηλp

∫ θ

θ

dq̂(φ, p)

dp
f(φ) dφ

+ η

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ) dφ − ηλ

∫ θ

θ

[q̂(θ, p) − q̂(φ, p)]f(φ) dφ

}

f(θ) dθ . (A.26)

Note that the following equality holds

∫ θ̄

θ

{
∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ) dφ − λ

∫ θ

θ

[q̂(θ, p) − q̂(φ, p)]f(φ) dφ

}

f(θ) dθ

= −(λ − 1)

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, p) − q̂(θ, p)]f(φ)f(θ) dφdθ. (A.27)

Inserting (A.27) and (6) into (A.26) yields the equation (12) stated in the text. By using the definition of Ψ(·)
the above derivative can be further simplified to

S′(p) = Ψ(p) + pη

∫ θ̄

θ

{
∫ θ̄

θ

dq̂(φ, p)

dp
f(φ)dφ + λ

∫ θ

θ

dq̂(φ, p)

dp
f(φ)dφ

}

f(θ)dθ . (A.28)

First observe that S′(p) < 0 for p ≥ c. Since Ψ(p) is non-increasing for p ∈ [0, c), it holds that S′(0) > S′(p)
for p ∈ (0, c). Hence, if S′(0) ≤ 0 the joint surplus is maximized at p = 0. If, on the other hand, S′(0) > 0
then there exists a p̂ ∈ (0, c) at which S(p) is maximized. Since S(·) is continuously differentiable, the price
p̂ is characterized by the first-order condition S′(p̂) = 0. Note, however, that the first-order condition may not
be sufficient.

Next, we show that S′(0) ≤ 0 is equivalent to Σ(λ) ≥ c. By evaluating (12) at p = 0, it is obvious that
S′(0) ≤ 0 iff

−c

∫ θ̄

θ

dq̂(θ, 0)

dp
f(θ)dθ − η(λ − 1)

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, 0) − q̂(θ, 0)]f(φ)f(θ) dφdθ ≤ 0 . (A.29)

Rearranging the above inequality and using the definition of Σ(λ) reveals that S′(0) ≤ 0 if and only if Σ(λ) ≥
c. Finally, we verify the following claim.

Claim Σ′(λ) > 0.

Proof: To cut down on notation, we often write q̂(θ) instead of q̂(θ; p). Define Z(λ) and N(λ) as the numerator
and the denominator, respectively, of the fraction of Σ(·). Thus,

Z(λ) ≡

∫ θ̄

θ

∫ θ̄

θ

[q̂(φ, 0) − q̂(θ, 0)]f(φ)f(θ)dφdθ, (A.30)

and N(λ) ≡ −

∫ θ̄

θ

[dq̂(θ, 0)/dp]f(θ)dθ . (A.31)

With this notation the derivative of Σ(·) with respect to λ can be written as

Σ′(λ) = η
Z(λ)

N(λ)
+ η(λ − 1)

Z′(λ)N(λ) − N ′(λ)Z(λ)

N2(λ)
. (A.32)

In order to show that Σ′(λ) > 0, we analyze the itemized parts separately. First, we take the derivative of q̂(·)
with respect to λ which leads to

dq̂(·)

dλ
=

ηpF (θ)

∂2u(q̂(θ), θ)/∂q2
≤ 0 . (A.33)

Thus,

d

dλ
[q̂(φ) − q̂(θ)] =

pηF (φ)

∂2u(q̂(φ), φ)/∂q2
−

pηF (θ)

∂2u(q̂(θ), θ)/∂q2
, (A.34)

which equals zero at p = 0. Hence, Z′(λ) = 0. Taking the derivative of (13) with respect to λ yields

d

dλ

[
dq̂(·)

dp

]

= ηF (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1

− [1 + η + η(λ − 1)F (θ)]

(
∂2u(q̂(θ), θ)

∂q2

)−2
∂3u(q̂(θ), θ)

∂q3

dq̂(θ)

dλ
. (A.35)
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Evaluating the above derivative at p = 0, and thus dq̂/dλ|p=0 = 0, leads to

d

dλ

[
dq̂(·)

dp

] ∣
∣
∣
∣
p=0

= ηF (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1

< 0 .

Thus,

N ′(λ) = −η

∫ θ̄

θ

F (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1

f(θ)dθ .

Since Z′(λ) = 0, equation (A.32) simplifies to

Σ′(λ) = η

[
Z(λ)

N(λ)
− (λ − 1)

Z(λ)N ′(λ)

N2(λ)

]

= η
Z(λ)

N2(λ)

[

N(λ) − (λ − 1)N ′(λ)
]

. (A.36)

Since Z(λ) > 0 by q̂(·) being non-decreasing in type, it remains to show that N(λ) − (λ − 1)N ′(λ) > 0,
which is equivalent to

−

∫ θ̄

θ

[dq̂(θ, 0)/dp]f(θ)dθ + η(λ − 1)

∫ θ̄

θ

F (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1

f(θ)dθ > 0 . (A.37)

Inserting the explicit formula, (13), for dq̂(·)/dp into the above inequality yields

∫ θ̄

θ

{

− [1 + η + η(λ − 1)F (θ)]

(
∂2u(q̂(θ), θ)

∂q2

)−1

+ η(λ − 1)F (θ)

(
∂2u(q̂(θ), θ)

∂q2

)−1 }

f(θ)dθ > 0 (A.38)

⇐⇒

∫ θ̄

θ

−(1 + η)

(
∂2u(q̂(θ), θ)

∂q2

)−1

f(θ)dθ > 0 . (A.39)

The last inequality is satisfied since u(·) is a strictly concave function in q for q ≤ qS(θ). Q.E.D.

Q.E.D.

Proof of Proposition 3: In order to apply Proposition 1 of Armstrong and Vickers (2001), the following

three properties have to be satisfied: (i) [∂m(vA, vB)/∂vA] [m(vA, vB)]−1 is non-decreasing in vB , (ii) there
exists ṽj > −∞ that maximizes m(v, v)πj(v) for j = 1, 2, and (iii) for j = 1, 2 there exists v̄j defined
by πj(v̄j) = 0, πj(v) < 0 if v > v̄j . Since we explicitly assumed (i) and (ii) these properties are satisfied.
To see that (iii) is also satisfied note that v̄j = maxp{Sj(p)}. Obviously, πj(v̄j) = 0 and πj(v) < 0
if v > v̄j . Hence, we can apply Proposition 1 of Armstrong and Vickers. According to this proposition

there are no asymmetric equilibria and the equilibrium utility level v̂j ∈ (ṽj , v̄j). Since m(vA, vB)πj(v
A) is

continuously differentiable, the equilibrium utility level satisfies the first-order condition of profit maximization.
Thus, πj(v̂j) = Φ(v̂j).

From Proposition 2 it follows that the optimal marginal price p̂j is greater than zero if and only if Σ(λj) < c.
If this is the case then p̂j is characterized by S′

j(p̂j) = 0, as was shown in the proof of Proposition 2. The per
customer profit of a firm is given by

πj = L + (p − c)

∫ θ̄

θ

q̂j(θ; p)f(θ)dθ . (A.40)

Since, in equilibrium, πj = Φ(v̂j) the equilibrium fixed fee is given by

Lj = Φ(v̂j) − (pj − c)

∫ θ̄

θ

q̂j(θ; pj)f(θ)dθ . (A.41)

Replacing pj by p̂ and 0, leads to the fixed fees L̂ and LF , respectively.

Q.E.D.
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Proof of Lemma 6: With slight abuse of notation, we omit for the proof that the demand function, q̂(·),
depends on the marginal price p. Define V (λ; θ) as the consumer’s surplus for a given demand type on the
equilibrium path. Formally,

V (λ; θ) = u(q̂(θ), θ) − pq̂(θ) − L + ηp

∫ θ̄

θ

[q̂(φ) − q̂(θ)]f(φ)dφ

−ηλp

∫ θ

θ

[q̂(θ) − q̂(φ)]f(φ)dφ

= u(q̂(θ), θ) − L − pq̂(θ)[1 + η + η(λ − 1)F (θ)]

+ηp

∫ θ̄

θ

q̂(φ)f(φ)dφ + ηλp

∫ θ

θ

q̂(φ)f(φ)dφ . (A.42)

Taking the derivative of V (·; θ) with respect to λ yields

V ′(λ; θ) =
dq̂(θ)

dλ

[
∂u(q̂(θ), θ)

∂q
− p[1 + η + η(λ − 1)F (θ)]

]

︸ ︷︷ ︸

=0

−ηpF (θ)q̂(θ)

+ ηp

∫ θ̄

θ

dq̂(φ)

dλ
f(φ)dφ + ηp

∫ θ

θ

q̂(φ)f(φ)dφ + ηλp

∫ θ

θ

dq̂(φ)

dλ
f(φ)dφ. (A.43)

Note that

dq̂(λ; θ)

dλ
=

ηpF (θ)

∂2u(q̂(θ), θ)/∂q2
≤ 0 . (A.44)

Thus, V ′(λ; θ) ≤ 0 if

q̂(θ)F (θ) −

∫ θ

θ

q̂(φ)f(φ)dφ ≥ 0, (A.45)

which is satisfied, because q̂(·) is non-decreasing.

The consumer’s expected utility is given by Eθ[V (λ; θ)] =
∫ θ̄

θ
V (λ; θ)f(θ)dθ. Hence, the change in ex-

pected utility due to an increase in the consumer’s degree of loss aversion is given by

d

dλ
Eθ[V (λ; θ)] =

∫ θ̄

θ

V ′(λ; θ)f(θ)dθ ≤ 0.

Q.E.D.

Proof of Proposition 4: Irrespectively of the rival’s tariff offer, if the sorting constraint is satisfied it is optimal
for a firm to choose pj such that Sj(pj) is maximized. Put differently, the firm will choose the method of
generating vj that maximizes its (per customer) profits. Thus, if no type λ ∈ {λ1, λ2} has an incentive to
mimic the other type, it is an equilibrium that the firms offer the same tariffs as in the full information case.
Obviously, in case (ii) where c ≤ Σ(λ1) < Σ(λ2), both firms offer a flat-rate tariff to consumers. In this
case, a flat-rate tariff maximizes S1(p) as well as S2(p). Moreover, the generated joint surplus is the same for
both types of loss averse consumers. Since the brand preferences are i.i.d. across the λ1 and λ2 types, in any
equilibrium each firm offers a single flat-rate tariff to consumers.

In the remaining part of the proof we show hat in the case where Σ(λ1) < c ≤ Σ(λ2) neither type λ1 has

an incentive to choose the tariff (0, LF ) nor does type λ2 have an incentive to choose the tariff (p̂, L̂).

Claim v̂1 ≥ v̂2.

Proof: Let S∗
j ≡ maxp{Sj(p)}. Note that S1(0) = S2(0) = S∗

2 . The firm’s per customer profit from type
j = 1, 2 when offering utility v is

πj(v) = S∗
j − v . (A.46)

Thus, for any v it holds that π1(v) ≥ π2(v), since S∗
1 −v ≥ S∗

2 −v. The equilibrium utilities are characterized
by πj(v̂j) = Φ(v̂j). Hence, we obtain the following relations:

Φ(v̂1) = π1(v̂1) ≥ π2(v̂1) (A.47)

π1(v̂2) ≥ π2(v̂2) = Φ(v̂2) . (A.48)

Suppose, in contradiction, v̂1 < v̂2. This immediately implies that πj(v̂1) > πj(v̂2). Hence,

Φ(v̂1) = π1(v̂1) > π1(v̂2) ≥ π2(v̂2) = Φ(v̂2) . (A.49)

Since Φ′(v) ≥ 0 the above formula holds only if v̂1 > v̂2, a contradiction. Q.E.D.

Since v̂1 ≥ v̂2 and the expected utility from a flat-rate tariff being independent of λ, one can conclude that

a consumer of type λ1 has no incentive to choose the tariff (0, LF ) that is designed for consumers of type λ2.

Finally, we show that type λ2 has no incentive to mimic type λ1. Let vDEV
2 denote the expected utility of a

consumer of type λ2 who accepts the tariff (p̂, L̂) designed for type λ1.
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Claim vDEV
2 < v̂2.

Proof: The expected utility of type λ2 from the tariff (p̂, L̂) equals the generated joint surplus minus the profits
of the firm he purchases from. Thus,

vDEV
2 = S2(p̂) − L̂ − (p̂ − c)

∫ θ̄

θ

q̂2(θ; p̂)f(θ)dθ, (A.50)

where q̂2(θ; p) denotes the demand of type λ2 in the personal equilibrium. Inserting the explicit formula of L̂
into (A.50) yields

vDEV
2 = S2(p̂) − Φ(v̂1) − (c − p̂)

∫ θ̄

θ

[q̂1(θ; p̂) − q̂2(θ; p̂)]f(θ)dθ. (A.51)

Note that q̂1(θ, p̂) > q̂2(θ, p̂) for all θ ∈ Θ, since dq̂/dλ < 0 if p > 0. By Proposition 3 c > p̂, and hence

vDEV
2 < S2(p̂) − Φ(v̂1). (A.52)

The expected utility of a consumer of type λ2 when choosing the tariff that is designed for him can be expressed
as follows,

v̂2 = S∗
2 − Φ(v̂2). (A.53)

Hence, a deviation is not utility improving if

S∗
2 − Φ(v̂2) ≥ S2(p̂) − Φ(v̂1) (A.54)

⇐⇒ [S∗
2 − S2(p̂)] + [Φ(v̂1) − Φ(v̂2)] ≥ 0 . (A.55)

The above inequality is satisfied since Φ′(·) ≥ 0 and v̂1 ≥ v̂2. Q.E.D.

Thus, if the firms offer the optimal tariffs of the full information case, each type of loss averse consumer
selects the tariff that is designed for him, which completes the proof.

Q.E.D.

B. Examples of Discrete Choice Models

Hotelling Model with Linear Transport Cost.—Suppose consumers’ ideal brands are uniformly distributed on
the unit interval [0, 1]. The brands of the two firms, A and B, are located at the two extreme points, brand A at
zero and brand B at one. A consumer with ideal brand x ∈ [0, 1] has brand preferences ζ = (0,−tx,−t(1 −
x)). The parameter t > 0 is a consumer’s “transport cost" per unit distance between his ideal brand and the
brand he purchases from. For the Hotelling specification the market share function takes the following form,

m(vA, vB) = min

{
1

2t
(t + vA − vB),

vA

t

}

. (B.1)

The market share function has to be modified if vA and vB differ by so much that m(·) /∈ [0, 1] (this never
happens in equilibrium). Moreover, the Hotelling model has the well-known drawback that market shares are
kinked. If, however, the transport cost is sufficiently low then one can focus on the case where the market share
function is given by the first term of the above expression and thus well behaved. Formally, for t ≤ (2/3)S∗

2 it

suffices to analyze firms’ profit maximization problem for33

m(vA, vB) = [1/(2t)](t + vA − vB). (B.2)

Hence, ∂m(vA, vB)/∂vA = (2t)−1 which immediately implies that

Φ(v) ≡
m(v, v)

∂m(v, v)/∂vA
= t. (B.3)

Obviously, Φ(·) is non-decreasing. Note that

∂m(vA, vB)/∂vA

m(vA, vB)
= (t + vA − vB)−1. (B.4)

It can easily be seen that the above fraction is increasing in vB . Thus, the Hotelling model satisfies all imposed
assumptions if the transport cost is sufficiently low. One can check that the collusive utility level exists. To
calculate the collusive utility level one has to use the market share function given in (B.1).

Logit Demand Model.—An obvious drawback of the Hotelling specification is that a firm does not compete
with the rival and the outside option at the same time. A model that accounts for this simultaneous competition

33See Lemma 1 of Armstrong and Vickers (2001).
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on two fronts is the logit demand model. Here, a consumer’s brand preferences ζi for i = 0, A, B are i.i.d.

according to the double exponential distribution with mean zero and variance µ2π2/6, where π (here) denotes
the circular constant. Thus, the cumulative distribution function is

G(ζi) = exp
{
− exp[−(γ + ζi/µ)]

}
, (B.5)

where γ is the Euler–Mascheroni constant and µ is a positive constant. With this specification, the market share
of firm A is given by (see Anderson et al. 1992)

m(vA, vB) =
exp[vA/µ]

exp[vA/µ] + exp[vB/µ] + 1
. (B.6)

The parameter µ captures the degree of heterogeneity among consumers with respect to their brand preferences.
Put differently, µ measures the degree of product differentiation. A lower value of µ corresponds to a more
competitive market. For µ → ∞ the firms are local monopolists. Taking the partial derivative of (B.6) with

respect to vA yields

∂m(vA, vB)

∂vA
=

exp[vA/µ]{exp[vB/µ] + 1}

µ{exp[vA/µ] + exp[vB/µ] + 1}2
. (B.7)

Thus,

m(vA, vB)

∂m(vA, vB)/∂vA
=

µ{exp[vA/µ] + exp[vB/µ] + 1}

exp[vB/µ] + 1
. (B.8)

Evaluating the above expression at vA = vB = v leads to

Φ(v) = µ
2 exp[v/µ] + 1

exp[v/µ] + 1
. (B.9)

Taking the derivative of Φ(·) with respect to v yields

Φ′(v) =
exp[v/µ]

(exp[v/µ] + 1)2
> 0. (B.10)

Moreover, the derivative of [∂m(vA, vB)/∂vA][m(vA, vB)]−1 with respect to vB amounts to

d

dvB

[
∂m(vA, vB)/∂vA

m(vA, vB)

]

=
1

µ2

exp[vB/µ]{exp[vB/µ] + 1}

µ{exp[vB/µ] + exp[vB/µ] + 1}2
> 0. (B.11)

The collusive utility level ṽ maximizes m(v, v)π(v). Note that m(v, v) → 0 for v → −∞ and π(v) ≤ 0 if
v ≥ maxp{S(p)}. Thus, the collusive utility exists, since m(v, v)π(v) is continuously differentiable.
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