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Abstract

In this note, a class of nonlinear dynamic models under rational expectations is studied.
A particular solution is found using a model reference adaptive technique via an extended
Kalman filtering algorithm, for which initial conditions knowledge only is required.

Keywords: Nonlinear dynamic systems; Rational Expectations; Extended Kalman Fil-
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1 Introduction

Since the early work of Muth (1961) and Lucas (1972), the concept of rational expectations
(RE) has become the standard tool of modelling expectations in dynamic macroeconomics.
It essentially reduces to the assumption that agents collect and make optimal use of all
available (pertinent) information as to the economic environment when formulating their
forecasts of economic variables of interest (e.g., prices, interest rates, government policies).
Since rational expectations need be model-consistent and are endogenously determined,
equilibria of economic systems described by dynamic forward-looking systems are typically
non-unique (e.g., Sargent and Wallace, 1973; Taylor, 1977; Blanchard and Kahn, 1980;
Broze and Szafarz, 1991; Sims, 2002).

In order to address this issue, Carravetta and Sorge (2010) fully characterizes the
class of linear time-varying RE models - namely, those displaying no backward-looking
dimension - for which a solution can be obtained via a causal model forced by a well-
identified control function, estimated via a Kalman filter technique. More specifically,
the optimal minimum variance estimate of the future state is recursively computed by
applying the Kalman filter, fed by the noisy measurements of the state vector, on the
autoregressive equation describing the perfect-foresight dynamics of the economy. An
exact solution of the actual RE problem is thus determined by using such estimator
as control function in a causal (controllable) state system, for which initial conditions
knowlege only is required.

The use of dynamic stochastic nonlinear models has increasingly widened in the eco-
nomic literature over the last years. Since closed-form solutions for such models are rarely

∗I wish to thank Francesco Carravetta, Sergiy Zhuk and conference participants in Bielefeld and
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available, solution methods typically resort to either simple graphical analyses or elab-
orate numerical procedures. The introduction of the RE hypothesis for forward-looking
models, under which subjective beliefs of decision makers are replaced with the mathemat-
ical conditional expectation of some future model’s equilibrium state, has made this issue
even more difficult to deal with (e.g., Fair and Taylor, 1983; Christiano, 1990; den Haan
and Marcet, 1990; Taylor and Uhlig, 1990). This note extends the method developed in
Carravetta and Sorge (2010) to solution of a particular class of dynamic forward-looking
models in state-space form which are nonlinear in the RE term, using an extended Kalman
filtering approach (Anderson and Moore, 1986; Haykin, 1996). To this end, it is organized
as follows. In Section 2 the problem we deal with is formally stated, whereas Section 3
presents the estimation algorithm. Section 4 concludes.

2 The model

A general RE model may be characterized by the system of f equations:

F (x−, x,E(θ(x+)|Ω), v) = 0

F : ℜn ×ℜn ×ℜq ×ℜm → ℜf , θ : ℜn → ℜq

where x ∈ ℜn is a vector of (endogenous) state variables, defined on an appropriate filtered
probability space, the initial state x̄ being zero-mean Gaussian with covariance matrix
P0. The vector v ∈ ℜm collects zero-mean white Gaussian structural (exogenous) shocks
with covariance V . Dependence of the system on first lags of the states is summarized
in x−, whereas E(·|·) denotes conditional (rational) expectations of (some function θ of)
future states x+, based on the information set Ω available to economic agents at the time
the forecast is generated.

For given (time-invariant) model structure, the functions F and θ are known. The form
of nonlinearities considered in this note accounts for a first-difference temporary equilib-
rium map in which rational expectations - based on past information - are a nontrivial
function of the current states and the fundamental (exogenous) shocks:

E(xt+1|Yt−1) = (l ◦ h)(xt, vt), ∀t

l ◦ h : ℜn ×ℜn → ℜn

where it is assumed for simplicity n = m. For the purpose of the paper, we also make the
following:

Assumption 1. Let h be linear and l ∈ C1 on the open domain Ξ, with |D(l(ξ))| 6= 0 for
all ξ ∈ Ξ.

The requirement that the fundamental shocks be linearly separable from the nonlinear
structure of the economy is related to the nature of our solution procedure, which builds
upon an adaptive technique - well-known in the literature on stochastic control theory
(e.g., Landau, 1979; Kendrick, 1981) - whose reference model is chosen as the autore-
gressive equation governing the perfect-foresight dynamics of the system economy. The
second part of Assumption 1 further restricts the form of nonlinearities admitted by our
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estimation algorithm to invertible l functions, due to a few technical difficulties, which
will be assessed in the next Section.

Accordingly, we will study the vector nonlinear forward-looking difference system un-
der RE of the form1:

xt+1 = f(E(xt+2|Yt)) + vt+1, x0 = x̄ (1)

where f := l−1. The filtration Yt is generated by the output process {yj, j ≤ t} according
to:

yt = Cxt + wt, y0 = ȳ (2)

with y ∈ ℜn and w random vector drawn from N(0, W ), which accounts for the output
measurement noise, and C is a real square matrix. The error sequences {vt, wt} are
assumed to be mutually independent as well as independent of the initial state x̄2.

The RE model (1)-(2) typically admits non-unique solutions for given intial condi-
tions. In the linear case, Carravetta and Sorge (2010) addresses the multiplicity issue
by replacing the unobservable expectational component with a computable one of the re-
quired structure, namely the optimal prediction of the perfect-foresight future state whose
dynamics are given by (for non-singular state transition matrix B)3:

x∗
t+1 = Bx∗

t+2 + vt+1, x∗
0 = x0 = x̄, x∗

−1 = 0 (3)

to which the following output equation is attached:

y∗
t = Cx∗

t + wt (4)

More specifically, the following is shown (for the time-varying case):

Lemma 1 (Carravetta and Sorge (2010)). The linear stochastic forward-looking RE model
with noisy observations and time-varying parameters:

xt+1 = BtE(xt+2|Yt) + vt+1, x0 = x̄

yt = Ctxt + wt, y0 = ȳ

always admits a solution equal to the one of the causal dynamic stochastic model:

xt+1 = Btut + vt+1, x0 = x̄

yt = Ctxt + wt, y0 = ȳ

where the control sequence ut is set to the optimal minimum variance (prediction) estimate
of the perfect-foresight state x̂∗

t+2|t, fed by the actual measurements {yj, j ≤ t} as in (2)4.

1With no loss of generality, we set h = [I − I], with I denoting the n × n identity matrix.
2The parameters of the nonlinear dynamic system, namely f , V , W , and P0, are taken to be known.

Whereas the outputs are observed, the state and error variables are hidden.
3This assumption is made for the descriptor system (3) to admit an autoregressive representation.
4This was conjectured in De Santis et al. (1993). Nonetheless, as demonstrated in Carravetta and

Sorge (2010), such conjecture fails to obtain as a general property of dynamic RE models. Moreover,
the equilibrium state motion is shown to be the closest, in mean square, to the evolution of the perfect-
foresight model (3).
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Consider now the causal (memoryless) dynamic stochastic nonlinear model with noisy
observations:

xt+1 = f(ut) + vt+1, x0 = x̄ (5)

yt = Cxt + wt y0 = ȳ (6)

and let u′ ≡ f(u) ≡ {f(ut)} be an admissible - that is, Yt-adapted - control sequence. From
equation (5), the state motion x = (xt) generated by the input sequence u′ = E(x∗

t+2|Yt)
is such that, for any t, the optimal prediction of any future perfect-foresight state, given
the measurement (y0 . . . yt), is equal to that relative to the actual state. From Assumption
1 and Lemma 1, it readily follows that there exists a RE equilibrium x = (xt) - that is, a
time-dated sequence of (functions of) states and observables in Yt fulfilling the non-causal
system (1)-(2) - which is computable via a causal model of the form (5)-(6) forced by the
optimal prediction estimate of the two-step ahead perfect-foresight state variables:

xt+1 = f(E(x∗
t+2|Yt)) + vt+1

This method is therefore able to bypass the RE system non-causality by making the
equilibrium state motion track the evolution of a nonlinear dynamic model, describing the
perfect-foresight dynamics of the underlying economy, via an adaptive technique. Since
the estimation of the state can be performed by the economic agents themselves, our ap-
proach also provides new insight into the issue of whether agents’ optimizing mechanism
of expectations formation may serve by itself as a selection criterion in multiple equilib-
ria RE frameworks. Consequently, the main issue lies in developing a suitable (locally
optimal) state estimation algorithm for the system:

x∗
t+1 = f(x∗

t+2) + vt+1 (7)

3 The estimation algorithm

Equation (7) represents a non-causal first-difference descriptor model, whose estimation
cannot be in general performed by means of simple recursive algorithms. However, owing
to the invertibility of f , we may rewrite it as:

x∗
t+2 = Φ(x∗

t+1, vt+1) (8)

where Φ = (l ◦ h)(x∗, v). This enables us to address the nonlinear filtering problem by
means of an extended Kalman filter, fed by the measurements y∗

t . The state equation (8)
is thus linearized at x̂∗

t+1 to yield5:

x∗
t+2 ≈ Φ(x̂∗

t+1, 0) + Dx∗(Φ)(x̂∗
t+1, 0)[x∗

t+1 − x̂∗
t+1] + Dv(Φ)(x̂∗

t+1, 0)vt+1 (9)

By defining the vector zt := [x∗T

t x∗T

t+1]
T , the linearized state process (9) together with

the linear measurement function (4) can be written in vectorial form as:

zt+1 = Azt + ut + Bvt+1, z0 = [x̄T l(x̄)T ]T (10)

5Di(Φ)(̄i) denotes the Jacobian of Φ with respect to i = x∗, v evaluated at some ī.
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y∗
t = C̄zt + wt (11)

where:

A =

(

0 I

0 Dx∗(Φ)(x̂∗
t+1, 0)

)

; B =

(

0
Dv(Φ)(x̂∗

t+1, 0)

)

;

ut =

(

0 0
I −Dx∗(Φ)(x̂∗

t+1, 0)

) (

Φ(x̂∗
t+1, 0)

x̂∗
t+1

)

; C̄ =

(

C

0

)

where ut is regarded to as a Y ∗
t+1-measurable stochastic input to the augmented state

system (10)-(11), which can be dealt with as a deterministic one in order to apply the
Kalman filter formula6. The optimal filtering estimate is thus obtained as:

ẑt+1 = ẑt+1|t + K
(

yt+1 − C̄ẑt+1|t

)

(12)

P̂ z
t+1 = P̂ z

t+1|t − KΣKT (13)

where the innovation covariance and the Kalman gain are given respectively as:

Σ = C̄P̂ z
t+1|tC̄

T + W (14)

K = P̂ z
t+1|tC̄

T Σ−1 (15)

The filtering and one-step prediction error covariances are P̂ z
t = E

(

(zt − ẑt)(zt − ẑt)
T
)

and P̂ z
t|t−1

= E
(

(zt − ẑt|t−1)(zt − ẑt|t−1)
T
)

respectively, with P̂ z
t+1|t = AP̂ z

t AT + V . The
initial conditions for the augmented state zt are readily used to initialize the prediction
error covariance P̂ z

0|−1
.

Taking expectations conditional on Y ∗
t for equation (10) yields the one-step prediction

estimate:
ẑt+1|t = Aẑt + ut

and thus the optimal two-step prediction estimate for the perfect-foresight state x̂∗
t+2|t is

obtained as:
x̂∗

t+2|t = [0 I]T ẑt+1|t (16)

which can therefore be used to recursively solve the RE model (1)-(2), given initial con-
ditions knowledge only.

4 Concluding remarks

Solving stochastic RE models means finding an expression for the unobservable expecta-
tional term as a (possibly nonuniquely determined) function of the conditioning informa-
tion set. Carravetta and Sorge (2010) develops a recursive algorithm, based upon classical
Kalman filtering and stochastic control theory, for the solution of linear time-varying RE
models with past expectations and no predetermined variables. In this note, we extend
their approach to a class of nonlinear dynamic stochastic models by means of an extended
Kalman filtering technique.

6See Carravetta et al. (2002) and Lipster and Shiryaev (2004) on this issue. Note that the matrix
pair (A, B) is controllable whereas the matrix pair (A, C̄) is observable.
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